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Rate volatility and asymmetric segregation diversify
mutation burden in cells with mutator alleles
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Mutations that compromise mismatch repair (MMR) or DNA polymerase ε or δ exonuclease

domains produce mutator phenotypes capable of fueling cancer evolution. Here, we inves-

tigate how combined defects in these pathways expands genetic heterogeneity in cells of the

budding yeast, Saccharomyces cerevisiae, using a single-cell resolution approach that tallies all

mutations arising from individual divisions. The distribution of replication errors present in

mother cells after the initial S-phase was broader than expected for a single uniform mutation

rate across all cell divisions, consistent with volatility of the mutator phenotype. The number

of mismatches that then segregated to the mother and daughter cells co-varied, suggesting

that each division is governed by a different underlying genome-wide mutation rate. The

distribution of mutations that individual cells inherit after the second S-phase is further

broadened by the sequential actions of semiconservative replication and mitotic segregation

of chromosomes. Modeling suggests that this asymmetric segregation may diversify muta-

tion burden in mutator-driven tumors.
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A ll tumors contain genetically divergent cells spawned by
the evolutionary processes of mutation and selection. In
some tumors, genetic heterogeneity arises from a “muta-

tor phenotype”1 due to mismatch repair (MMR) defects2 or
heterozygous exonuclease domain mutations (EDMs) affecting
the leading or lagging strand DNA polymerases (pol), Polε or
Polδ3–9. Since MMR corrects polymerase errors, when MMR and
EDM mutations occur together they produce a dramatic increase
in the number of unrepaired polymerase errors. The resulting
tumors rapidly evolve and possess “ultramutated” genomes. Yet a
full understanding of the relative contributions of mutagenesis
and selection to the rise of heterogeneity within these tumors
remains elusive, since cells with more mutations tend to adapt
more readily.

A key unanswered question is whether the mutation rate is
constant within populations of cells with mutator alleles (mutator
cells). The two most common ways of measuring mutation rates
are fluctuation analysis10 and mutation accumulation lines11.
Both assume a uniform mutation rate and report the average of
hundreds or thousands of cell divisions. However, in recent years,
evidence has emerged that mutagenic processes may vary from
one division to the next. Kataegis and chromothripsis, for
instance, sharply increase mutation burden in a single-cell divi-
sion12–14. Indirect evidence for highly mutagenic sub-populations
of cells also comes from studies of yeast exposed to 6-
hydroxylaminopurine or AID/APOBEC cytosine deaminase.
Selected mutants in mutation rate assays had substantially higher
mutation burdens than non-selected isolates from the same
population15. Episodic APOBEC mutagenesis also occurs in
human cell cultures propagated for prolonged periods16. More-
over, limited single-cell propagation of human cancer cell lines
coupled to whole-genome sequencing (WGS) revealed broader
than expected variation in mutation rate in closely related sub-
clones17. Observations such as these challenge the assumption
that the mutation rate is constant and beg higher resolution
studies of mutator cells.

The asymmetrically dividing budding yeast, S. cerevisiae, is
ideal for studying mutator phenotypes with high resolution. It
encodes many of the same DNA replication and mismatch repair
genes found in humans. Yeast “daughter” cells can be separated
from their larger “mother” cell at each division by micro-
manipulation and then moved to defined locations on an agar
plate, forming a “single-cell lineage”. WGS of cultures derived
from these cells permits the number of new mutations that arose
in the mother cell at each division to be counted. Moreover, the
small size of the genome (12 megabases) makes it cost effective to
score enough cell divisions to see whether the distribution of
mutation counts conforms to that expected from a single
underlying mutation rate.

We previously pioneered this approach with haploid mutator
mother cells deficient in Polε proofreading and MMR (pol2-4
msh6Δ)18. A single underlying mutation rate could not explain
the distribution of mutation counts from 87 divisions. However,
the distribution did fit a model with two underlying mutation
rates that differed by 10-fold (0.4 and 4 mutations/genome/
division). This led to a hypothesis of “mutator volatility” in which
cells assumed one of two mutator states as they passed through
the cell cycle18. But since we only scored mutations retained by
the mother, we could not exclude an alternative hypothesis: that
polymerase errors sporadically segregated asymmetrically
between mother and daughter cells, either as mismatches at the
initial division or as permanent double-stranded mutations fol-
lowing the next round of synthesis. Here, to distinguish between
these two hypotheses, we sought to score all replication errors
that arose in individual cell divisions using more extensive single-
cell lineages. Examination of the distribution of the full

replication error counts from individual divisions provided a way
to test the mutator volatility hypothesis apart from the con-
founding influence of segregation. At the same time, sequencing
complete lineages gave us the means to determine whether
replication errors segregate asymmetrically. The full replication
error counts from two different mutator genotypes produced
unimodal distributions that were significantly overdispersed
relative to that expected from a single underlying mutation rate.
Our data suggest that mutator volatility in these cells derives from
continuous variation in the underlying mutation rate. Moreover,
we found that asymmetric segregation due to the normal process
of semiconservative DNA replication and mitotic segregation of
chromosomes further expands the distribution of new mutations
in individual mutator cells.

Results
Evidence for mutator volatility. To confidently score replication
errors arising on all nascent DNA strands from each division, we
devised a scheme that ensured that all mutations were observed in
at least two members of a single-cell lineage. After moving each
daughter by micromanipulation from the founding mother cell,
we isolated a sublineage of three additional cells to help score the
number of errors segregated to that daughter. These cells included
the first and second granddaughter (born to the daughter cell) as
well as the first great-granddaughter cell derived from the first
granddaughter (Fig. 1a). Errors segregated to the daughter as
mismatches in the first division segregate as double-stranded
mutations in the next division when the daughter produces the
first granddaughter. Mutations retained by the daughter after that
segregation event will be inherited by the second granddaughter,
forming what we call the “Da” segregant group. Mutations seg-
regated to the first granddaughter will be inherited by the great-
granddaughter, forming the “Db” segregant group. In theory, the
Da and Db segregant groups represent half of the errors made by
the mother cell during a given division. The remaining errors,
retained initially by the mother as mismatches, segregate between
the mother and her next daughter as double-stranded mutations
in the next division. The mutations segregated to that daughter
will be uniquely present in the next sublineage, forming the “Ma”
segregant group. Mutations retained by the mother will be found
in all later sublineages, defining the “Mb” segregant group. After
colony formation and WGS, a full error count for a given division
can be determined by simply summing the number of mutations
in the Da, Db, Ma, and Mb segregant groups. With a complete set
of sublineages from the same mother cell, the full replication
error counts from several sequential cell divisions can be deter-
mined from the nested data (Fig. 1b). By requiring that all errors
be observed in at least two members of the lineage, this approach
eliminates false positives due to sequencing errors or clonal
sweeps within the cultures.

We initially began our experiments with the pol2-4 msh6Δ
haploid strain used in the previous study18. We found evidence
for a more limited mutator volatility but were concerned that
lethality within some sublineages may have introduced a bias (see
Supplementary Information and Supplementary Fig. 1). To
improve the viability and the mutational signal, we switched
to using diploid yeast with a 10-fold higher mutation rate due to
homozygous mutations affecting Polδ proofreading and base-base
mismatch repair (pol3-01/pol3-01 msh6Δ/msh6Δ)18,19. To obtain
pol3-01/pol3-01 msh6Δ/msh6Δ cells, we mated pol3-01 msh6Δ
haploids, freshly dissected from sporulated POL3/pol3-01 MSH6/
msh6Δ diploids. We isolated the newly formed zygotes and then
used the first or second diploid daughters as founding mother
cells for the isolation of single-cell lineages, noting the time and
placement of each cell. Following colony formation, and WGS, we
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scored 13,801 mutations from 50 divisions obtained from seven
different lineages (Fig. 1c, Supplementary Table 1, Supplementary
Fig. 2). The mutations were distributed across the genome and
displayed a spectrum consistent with combined proofreading and
MMR deficiency (Supplementary Fig. 3). We only scored
mutations at genomic sites confidently called in all members of

a lineage and carefully vetted the resulting variant lists. Having
complete lineage information allowed us to assign when the
mutations arose using the logic described above. In addition, we
visually inspected the variant sites in all genomes from a given
lineage using the Integrative Genomics Viewer, which allowed us
to detect discrepancies in the lineage order or whether mutations
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had been incorrectly assigned (see Methods). We tallied the full
replication error counts from each division and determined
whether the distribution could be explained by a single under-
lying mutation rate.

Mutagenesis has been modeled for more than 70 years19–21

with the Poisson distribution, which is a discrete probability
distribution of the number of expected independent events
occurring within a defined interval, assuming a constant rate (λ).
A simple test of whether a distribution matches a single Poisson is
to calculate the index of dispersion (D̂), which is equal to the
variance of the distribution divided by the mean (σ2 /μ). The
variance of Poisson distributions always equals the mean, which
results in a D̂ of 1. The pol3-01/pol3-01 msh6Δ/msh6Δ mother
cells committed an average of 276 (±37.7, standard deviation (σ))
replication errors per division. This corresponds to a D̂ of 5.15
(37.72/276), which suggests that the distribution does not
conform to a single Poisson (Fig. 1c). Two alternative explana-
tions failed to account for the overdispersion. For instance, we did
not observe any relationship between the mother’s replicative age
and the number of errors made by Polδ (Spearman’s rank
correlation coefficient: 0.007209, p= 0.9604)(Supplementary
Fig. 4), nor did the number of mutations correlate with the size
of the scored genome, which differed between lineages due to
variation in sequencing depth and the number of members in
each lineage (Spearman’s rank correlation coefficient: −0.0416,
p= 0.7743)(Supplementary Fig. 4). Instead, the broad distribu-
tion of full replication error counts, free from the confounder of
segregation, is consistent with mutator volatility.

To better understand the nature of mutator volatility in pol3-
01/pol3-01 msh6Δ/msh6Δ cells, we used finite mixture modeling,
which employs a maximum likelihood framework to identify
mixtures of two or more Poisson distributions that better fit the
data. We also modeled the data as a negative binomial (nb),
which is a discrete distribution with a separate rate (μ) and shape
parameters (θ) commonly used to interpret overdispersed count
data. The rate parameters λ and μ, for the Poisson and nb
distributions, both define the mean number of events. Since these
models derive from different distributions, they cannot be directly
compared using standard statistical tests. Non-nested models
such as these can be evaluated with Akaike Information Criteria
(AIC), which uses maximum likelihood to estimate the loss of
information of each model relative to the observed distribution.
To prevent overfitting, AIC penalizes models with more
parameters. Lower AIC values correspond to a more parsimo-
nious fit; however, interpreting the difference in the magnitude of
raw AIC values is not intuitive. Thus, we transformed the raw
AIC values to “Akaike weighted values”, which conveys their
relative likelihood (Fig. 1b)22,23. We found that the negative
binomial model was the most likely (relative likelihood of 0.9999),
followed by the two-Poisson-mixture model (2.2 × 10−6), and
the single Poisson (4.3 × 10−28) (Fig. 1c). Similar results were
obtained using Bayesian Information Criteria (BIC), which
imposes stronger penalties for overfitting. Thus, mutator volatility

in pol3-01/pol3-01 msh6Δ/msh6Δ cells is more complex than just
two distinct mutator states.

Mutation rate varies between divisions. The superiority of the
negative binomial model suggests that the mutator phenotype
may vary continuously. This rationale derives from the ability
to describe a negative binomial as a gamma-Poisson distribu-
tion (Fig. 2a). The gamma function is a continuous, rather than
discrete, distribution. Here, it takes the same shape parameter
(θ) as the negative binomial and serves as a conjugate-prior to
define variation in the rate parameter λ of a mixture of Poisson
distributions. The variation in λ that creates a negative binomial
occurs between replication events at the same site, or a col-
lection of sites such as a chromosome or genome. Having
complete lineage information provided an opportunity to test
whether λ varies at a chromosomal or genome-wide level. The
distributions of mismatches segregated to mother (Mm) or
daughter cells (Dm) across all divisions were the same and fit a
negative binomial (Fig. 2b). If λ varied widely during the
replication of individual replicons (the units of DNA replica-
tion on a chromosome), this could introduce asymmetry in the
number of errors on sister chromatids, which would then
propagate to the daughter and mother cells (Fig. 2c). Conse-
quently, Dm and Mm from the same division would be free to
vary within the observed negative binomial distribution.
Alternatively, if the genome-wide value for λ varies between cell
divisions, a single mutation rate would govern mismatch for-
mation for both the mother and daughter genomes (Fig. 2d).
Dm and Mm would co-vary within the constraints of the cor-
responding Poisson distribution. To distinguish between these
two hypotheses, we first compared the correlation of mis-
matches segregated to mother and daughter cells to simulated
data generated under the constraints of the two models. While
no correlation was seen between Dm and Mm in the simulated
data from the “replicon variant” model (R2= 0.001), similar
correlations were observed for both the simulated data from the
“division variant” model (R2= 0.47) and the actual data (R2=
0.37). This correspondence in the number of mismatches seg-
regated to mother and daughter cells extended down to the level
of chromosomes (Fig. 2e). The R2 values are lower than typi-
cally seen with strong correlations, but as our modeling shows,
this is expected since both X and Y values are randomly drawn
from a Poisson distribution. As a second test of the hypotheses,
we also performed 10,000 simulations of how each model would
affect the distribution of full replication error counts from 50
divisions (Fig. 2f). With the replicon variant model, the simu-
lated index of dispersion (3.28 ± 0.66, σ) was substantially less
than observed with the actual data (D̂= 5.15), while the divi-
sion variant model produced a good match (5.54 ± 1.12, σ).
Together, these analyses strongly suggest that the source of
mutator volatility is variation in the genome-wide mutation rate
from one division to the next.

Fig. 1 Mutator DNA polymerase errors at single-cell resolution. a Isolation of single-cell pedigrees. Using microdissection, the founding mother (M),
daughter (e.g. D1), granddaughter (e.g. GD1.1, GD1.2) and great-granddaughter (e.g. GGD1.1) cells from each maternal division (n = 50) are separated (red
arrows) and moved to isolated regions on the plate to form colonies, which are then sequenced. Polymerase errors arising during the initial S-phase are
passed on to four segregant groups, highlighted by large colored boxes (Da, Db, Ma, Mb), the sum of which represents the full error count for that division.
Large spheres connected by black arrows represent the same cell through multiple divisions. Small spheres circled in red represent budding daughter cells;
parallel lines in cells, double-stranded DNA; colored boxes on lines, polymerase errors. b Scoring full error counts from sequential divisions. Arrows depict
movement of each dissected daughter cell and their descendants to unique positions on the plate to form sublineages. Color-coding indicates cells that will
form colonies used for the Da (yellow), Db (red), Ma (blue), and Mb (purple) segregant groups in a given division (See AH121 in Extended Data Fig. 2 for
an example). Segregant group identities shift one sublineage to the right with each division. c Fitting the distributions of full error counts from diploid pol3-
01/pol3-01 msh6Δ/msh6Δ divisions to different models. k = 1, single Poisson; k = 2, two-Poisson; nb, negative binomial; AIC, Akaike information criterion.
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Asymmetric inheritance of new mutations. With this support
for the mutator volatility hypothesis, we turned our attention to
the question of asymmetric inheritance of new mutations. Indi-
vidual cells averaged 69 (±18, σ) new mutations/diploid genome/
division (n= 200) (Fig. 3a) with an index of dispersion of 4.8. A

negative binomial fit the distribution most closely (relative like-
lihood= 0.82), followed by a four-Poisson mixture model (rela-
tive likelihood= 0.18). A close examination of mutations arising
from the same division revealed a striking asymmetric pattern
of inheritance. When pairs of segregant groups were compared
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(e.g. Da vs Db or Ma vs Mb), half of the time one segregant group
inherited all of the mutations for a given chromosome while the
other received none (Fig. 3b, c). This pattern is explained by the
sequential actions of semiconservative DNA replication and
mitotic segregation of chromosomes (Fig. 3d). At the end of the
first S-phase, due to semiconservative replication, all errors aris-
ing due to the Poisson process of polymerase error formation
reside on one of the two strands of each sister chromatid. These
strands segregate equally between mother and daughter cells. The
next round of replication produces two new duplexes per cell,
only one of which contains double-stranded mutations. At
metaphase, cells receive either all or none of the new mutations
for that chromosome from the previous division. This binomial
process occurs twice for every chromosome number in diploid
cells. Consequently, for each chromosome number, cells receive
0%, ~50%, or 100% of the mutations in a given division with a
“Mendelian” ratio of 1:2:1 (Fig. 3c) (actual ratio, 876:1490:834).
Thus, we can describe how polymerase errors arise in an indi-
vidual division and later become permanent as a compound
Poisson-binomial process.

To determine the contribution of the Poisson-binomial process
to the overdispersion of mutation counts, we simulated
mutagenesis in pol3-01/pol3-01 msh6Δ/msh6Δ cells assuming a
constant error rate. Given that we observed an average of 138
mismatches per diploid mother or daughter cell (Fig. 2b), the
average rate of error formation was 69 errors/haploid genome/
division. Since cells only inherit, on average, half of the
polymerase errors, the observed mutation rate in pol3-01/pol3-
01 msh6Δ/msh6Δ cells was 34.5 mutations/haploid genome/
division. To model the Poisson-binomial process we simulated
mutagenesis on each chromosome by setting λ equal to 69 errors/
haploid genome and then, to mimic segregation, multiplied the
number of mutations apportioned to each chromosome by a
randomly chosen 1 or 0, before summing the total mutations
(Fig. 3e). For comparison, we simulated mutation accumulation
assuming a simple Poisson process in which mutations
accumulated with a rate of 34.5 mutations per haploid genome
(Fig. 3e). With 1000 simulations of 200 cell cohorts, the Poisson-
binomial model produced a broader index of dispersion (D̂=
3.58 ± 0.49, σ) than the Poisson model (D̂= 1.0 ± 0.1, σ) (Fig. 3f),
but narrower than the observed data (D̂= 4.8). However,
substituting the constant mutation rate with the gamma-
distributed set of λ values from Fig. 2c yielded simulated data
with an equivalent dispersion (D̂= 4.80 ± 0.49, σ) (Fig. 3f). Thus,
the combination of mutator volatility and asymmetric segregation
of mutations—a gamma-Poisson-binomial process—accounts for
the observed distribution of mutations in individual pol3-01/pol3-
01 msh6Δ/msh6Δ cells.

To understand the potential implications of our findings for
mutator-driven cancers, we first focused on how the Poisson-
binomial process would influence the heterogeneity of mutation
burden within a dividing population of tumor cells. Assuming a

constant mutation rate comparable to pol3-01/pol3-01 msh6Δ/
msh6Δ yeast, the expected distribution of simulated mutation
counts in human cells after one division (D̂= 50) was far broader
than in yeast (Fig. 3g) and persisted through 30 simulated
divisions (Fig. 3h, i). Adding a comparable level of volatility to the
mutator phenotype further increased the simulated dispersion
(D̂= 82) (Fig. 3g). Using the Poisson-binomial model, we
simulated a range of mutator phenotypes observed in cancer
cells and found a linear relationship between mutation rate and
predicted index of dispersion. For instance, mutation accumula-
tion in HCT116, the well-known MLH1 mutant colon cancer cell
line, increases from 48 to 190 mutations/haploid genome/division
upon introduction of a heterozygous POLE proofreading-
deficient allele9. In these cells, the predicted index of dispersion
expanded from 3.4 to 10.8 (Fig. 3j). Even greater heterogeneity
may arise in human cancers when more potent POLE mutator
alleles occur in combination with MMR deficiency5,7,24,25. Thus,
the fundamental Poisson-binomial process of asymmetric segre-
gation of new mutations has the potential to dramatically expand
the diversity of mutation burdens present among a population of
human mutator cells.

Discussion
Genetic heterogeneity progressively increases in a dividing
population of cells as an unavoidable consequence of errors made
during DNA synthesis. Here, for the first time, we describe the
fate of polymerase errors made on all nascent DNA strands
synthesized in individual cell divisions. We developed this single-
cell resolution approach in order to understand previous obser-
vations that the distribution of new mutations in individual
mutator cells was broader than expected. To explain the phe-
nomenon, we proposed two hypotheses: (1) that mutator phe-
notypes are volatile and (2) that polymerase errors arise with a
constant rate but segregate asymmetrically on the way to
becoming double-stranded mutations. The design of our single-
cell pedigrees ensured at least two independent biological obser-
vations for each mutation, which allowed us to confidently assign
more than 13,000 mutations to fifty divisions. From the resulting
mutation count data, we found strong evidence that both mutator
volatility and asymmetric segregation of new mutations sig-
nificantly expand genetic heterogeneity in pol3-01/pol3-01 msh6Δ/
msh6Δ yeast.

Historically, mutagenesis has been modeled with the Poisson
distribution, which describes the probability of the number of
independent events per unit time given a constant rate. The
observed distribution of full replication error counts of mutator
cells, free from the influence of segregation, best fit a negative
binomial and not a single Poisson (Fig. 1c). Negative binomials
are equivalent to a continuous mixture of Poisson distributions
whose rates vary according to a gamma distribution (Fig. 2a).
This suggests that mutator volatility may create a continuum of
mutation rates rather than discrete mutator states. We explored

Fig. 2 Evidence that mutation rate varies between divisions. a The negative binomial as a gamma-Poisson distribution. The gamma distribution takes
the same shape parameter (θ) as the negative binomial and describes the variation in the rate parameter (λ) of a continuous mixture of Poisson
distributions. b Schematic of single-cell lineage showing summing of segregant groups to determine the number of mismatches segregated to the mother
(Mm) or daughter (Dm) in a single division. Actual distributions are represented by gold (Dm) and purple (Mm) bars. Lines depict models of data:
pink, single Poisson (P, k = 1); aqua, negative binomial (nb). c, d Correlations between Mm and Dm counts from actual data (green, n = 50) and
simulations (n = 1000) under two different models. In (c) top panel depicts a cell with converging replication forks from two replicons with different
mutation rates. Bottom panel shows the correlation of simulated Mm and Dm values (blue) drawn from the full negative binomial and their linear
regression. In (d), top panel depicts two cells replicating DNA with different mutation rates. Bottom shows the correlation of simulated Mm and Dm values
(orange) and their linear regression. e Correlation between the number of mismatches per chromosome segregated to Mother (Mm) or Daughter cells
(Dm). green, observed counts; orange, simulated counts from model in (d). f Simulated index of dispersion of full replication error counts from small
cohorts (n = 50) assuming the models from (c and d).
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the idea that mutation rate varies from one division to the next by
simulating the number of mismatches segregated to mother and
daughter cells (Fig. 2d, e) and the dispersion of full replication
error counts expected from small cohorts of cells (Fig. 2f). Both
simulations closely matched the observed data, consistent with
the hypothesis that mutator volatility derives from continuous
variation in mutation rate between divisions. Two caveats are
worth noting. First, this model of volatility was developed from a
relatively small sample size (n= 50). Substantially increasing the
number of scored divisions may reveal that the underlying

distribution is derived from discrete mutator states rather than a
continuum of rates. Second, in cells with different mutator alleles
the underlying distribution may vary substantially depending on
how the mutator alleles interact with the currently undefined
source of volatility, and mutator phenotypes affecting other
processes besides DNA replication may have different sources of
volatility. Mutator polymerases do not operate as a closed system.
They interface with a myriad of other replication components
and metabolites, such as dNTPs, that influence their fidelity26,27.
Variation in the timing and duration of perturbations to these
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interactions may produce volatility. The observed overall muta-
tion rate that cells exhibit represents a composite of mutation
rates at all sites within the genome. Conceivably, the change in
replication fidelity could be localized to certain parts of
the genome in a given division. But if so, our data suggest, that
the nascent strands from each pair of sister chromatids in the
affected region must be equally influenced by the change in rate
(Fig. 2c, f).

The asymmetric inheritance of new mutations observed in
mutator cells results from the fundamental processes of semi-
conservative replication and mitotic segregation of chromosomes
acting in concert. Current models of mutation accumulation
generally ignore the potential for this synergy to expand genetic
heterogeneity, although there are exceptions. John Cairns pro-
posed a far more extreme asymmetric inheritance of mutations in
the “Immortal Strand Hypothesis” in which stem cells always
segregated away newer DNA duplexes with double-stranded
mutations28. In keeping with this hypothesis, a recent computa-
tional analysis of human somatic variants argued that the high
variance of mutation burden in adult stem cells with age supports
a preferential inheritance of ancestral strands29. A second study
from the field of evolutionary biology examined the potential
influence of disparate mutagenesis of leading and lagging strand
synthesis to promote variable evolutionary trajectories from the
same cell population30. Our findings here demonstrate that, in the
context of a mutator phenotype, the normal process of semi-
conservative replication and mitotic segregation of chromosomes
has the potential to create unequal sharing of mutations. We find
no evidence that daughter or mother cells preferentially inherit
new mutations (Supplementary Fig. 5). For every cell that inherits
disproportionately more mutations there will be another cell with
fewer mutations. The predicted impact of this process on the
variation in mutation burden is larger in human cells than in
yeast due to the vast differences in chromosome length, and the
correspondingly larger number of errors per chromosome.
However, with longer chromosomes comes an increased like-
lihood that sister chromatid exchanges (SCEs) may mitigate the
asymmetry. SCEs clearly to do not homogenize mutation burden
in diploid mutator yeast cells since half of cells either received all
or none of the new mutations for a given chromosome (Fig. 3c).
A high frequency of SCEs would have left few chromosomes with
0 mutations. This finding is in keeping with recent evidence from
a sensitive Next Generation Sequencing methodology (Strand-

seq) that SCE occurs with a rate of 0.26 events/division in yeast31.
Strand-seq experiments of normal human fibroblasts and lym-
phoblasts indicate the SCEs occur with a rate of 5 events/cell
division32. At this rate, most chromatid pairs in mutator cells
would be free of SCEs even after the two divisions it takes for
polymerase errors to become double-stranded. Of course, the
frequency of SCEs may increase in some cancer cells, especially
those with certain intrinsic DNA repair defects32. Performing
single-cell lineage analysis of human mutator cells in future stu-
dies should address both the prevalence of SCEs and the asym-
metric inheritance of mutations.

Our simulation of a mutator-driven tumor rapidly generated
substantial intra-tumoral genetic heterogeneity during expansion
(colored lines, Fig. 3i) compared to a population in which
mutations accumulated by a simple Poisson process (black line,
Fig. 3j). The associated variability in mutation load may be
relevant to cancer evolution. Early during tumorigenesis the
subpopulation of cells that inherit disproportionately more
mutations may adapt more readily. With elevated mutation rates,
polyclonal adaptation is almost certain. The unifying feature of
these adapted cells is a high mutation burden. As mutation
burden mounts and mutator cells contend with increasingly
strong negative selection pressure due to immune surveillance
and negative epistatic interactions33,34, adapted cells that inherit
fewer new mutations due to asymmetric inheritance may be at a
relative fitness advantage. In this context, selectively increasing
mutation rate in mutator cancer cells could represent a novel
therapy26. If, as a means of treatment, the mutation rate of cancer
cells is only transiently elevated to induce extinction, this sub-
population may persist. Sustained elevation of mutation rate over
many divisions of mutator cells may be required to drive their
extinction.

Methods
Yeast strains and culture conditions. The diploid strains AH2801 (POL2/URA3::
pol2-4 MSH6/msh6Δ::LEU2)18 and AH2601 (POL3/URA3::pol3-01 MSH6/msh6Δ::
LEU2)35 are derived from AH0401, a BY4743 derivative engineered to be hetero-
zygous at the CAN1 locus (CAN1::natMX/can1Δ::HIS3) to facilitate forward
mutation rate assays33. We followed standard procedures for yeast propagation and
tetrad dissection36. For general propagation, we grew liquid YPD cultures (1% wt/
vol yeast extract, 2% wt/vol peptone, 2% wt/vol dextrose) at 30 °C. For sporulation,
we diluted overnight YPD cultures 1:100 in 3 mls of YPD and grew until the
culture reached 1–2 × 107 cells/ml. We recovered the cells by centrifugation,
resuspended and pelleted the cells once in 1 ml H2O, and then resumed growth at
22–25 °C in 2 mls of sporulation media (1% potassium acetate, 0.1% yeast extract,

Fig. 3 Asymmetric segregation broadens the distribution of mutation burden in mutator cell populations. a Combined distribution of new mutations
arising in the Da, Db, Ma, and Mb segregant groups (see inset) from pol3-01/pol3-01 msh6Δ/msh6Δ lineages (n = 200). Key of models (top): gray line,
single Poisson (P, k = 1); blue lines, four-Poisson (P, k = 4), green line, negative binomial (nb). AIC, Akaike information criterion. b, Table of representative
mutation counts from one division of a diploid mutator cell. Columns represent different segregant groups; rows, the chromosome (chr) number; values,
the total number of new mutations found on homologous chromosome pairs. Red box indicates a chromosome with both asymmetric and equal sharing of
mutations. c Segregation of double-stranded mutations between Da and Db. For each division, the fraction of mutations observed in Da or Db on each
chromosome was determined and then plotted against each other. d Asymmetric segregation of new mutations: (1) Two homologous chromosomes in
mother cell (orange and blue lines) prior to scored division. (2) During the first S-phase, mutator Pol δ generates errors (colored boxes) in the nascent
strands (dashed lines). (3) At segregation, mother and daughter each inherit two chromosomes with mismatches. (4) In the next S-phase, strands with
mismatches produce new double-stranded mutations, while error-free strands do not. (5) Segregation results in cells with 0, 1, or 2 chromosomes with new
double-stranded mutations. e, Simulated distributions of mutations/division at a rate of µ = 34.5 (n = 10,000) assuming a single Poisson process (gray), a
Poisson-binomial process (orange), or a gamma-Poisson-binomial process (green). f Variation in the index of dispersion of simulated data from the 3
models (n = 200) over 1000 iterations. g Simulated distribution of mutations/division in human ultra-mutator cells assuming a mutation rate (μ = 950,
n = 10000) comparable to pol3-01/pol3-01 msh6Δ/msh6Δ yeast and a single Poisson process (gray), Poisson-binomial process (orange), or gamma-
Poisson-binomial process (green). h The cumulative mutation burden of a human ultra-mutator cell after 30 simulated divisions with (orange) and without
(gray) asymmetric segregation. i Simulated trajectory of mutation burden of human mutator tumor cells (Colored lines, n = 1000) undergoing a Poisson-
binomial process compared to a Poisson process (black line). j Change in the index of dispersion under a Poisson-Binomial process (orange line) compared
to the static index of dispersion under a Poisson process (gray line at bottom) with an increasing mutation rate. Colored markers represent estimated
mutation rates for clinically relevant mutator-driven HCT116-derived mammalian cancer cell lines9 and a tumor from a patient with biallelic MMR
deficiency (bMMRD)34.
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0.05% dextrose) for five days. For rich solid media, we used synthetic complete
(SC) [6.7 g Difco yeast nitrogen base without amino acids, 2% wt/vol dextrose, 2 g/
L SC amino acid Mix (SCM) (Bufferad)] supplemented with 2% wt/vol agar. For
plates lacking leucine and uracil (SC-Leu-Ura), SCM was substituted for SCM-Leu-
Ura (Bufferad). Archival frozen stocks were stored in 23% glycerol at −80 °C.

Single-cell lineage isolation. To isolate pol2-4 msh6Δ lineages we dissected
AH2801 tetrads on SC-Leu-Ura selective media and chose one germinating spore
per plate to serve as the founding mother cell. To obtain pol3-01::URA3/pol3-01::
URA3 msh6Δ::LEU2/msh6Δ::LEU2 cells for pedigree analysis we first dissected
POL3/ pol3-01::URA3 MSH6/ msh6Δ::LEU2 tetrads on SC-Leu-Ura plates. After
two divisions, double mutant haploid cells from different tetrads were placed next
to each other to allow mating. Upon isolation of a zygote, the first or second
daughter was used as the founding mother (M) for the lineage. Mothers were
placed at an isolated location and we separated daughter cells (designated Dn, Dn
+1, etc.) from the mother as they were generated and moved them to select areas 5
mm apart on the plate. We repeated the procedure to obtain each daughter’s first
daughter (GD.1, Fig. 1b), second daughter (GD.2), and first granddaughter (GGD,
born to GD.1). This strategy was repeated for each daughter up to either the 20th

division or the end of the mother’s replicative lifespan, whichever occurred first. In
a typical experiment, we pre-punched the agar with the dissecting needle at each
drop-off location so that we would always put the cell in a defined place, making it
easy to later find the cell for inspection and manipulations. We isolated lineages
over the span of a week by performing rounds of dissections every 90–120 m. Only
a few cells on a plate were moved in any one round, and then, only one cell at a
time. We noted the timing of each round of bud dissections. We incubated plates at
30 °C between dissections. At the end of the day, plates were wrapped in parafilm
and stored overnight at 4 °C. When plate dissections were concluded, we incubated
each plate an additional 48 h at 30 °C to allow colonies to fully develop. Prior to
sequencing, the pol3-01/pol3-01 msh6Δ/msh6Δ and pol2-4 msh6Δ genotypes were
confirmed by allele-specific PCR assays35.

Genome sequencing. Each colony in a pedigree was used to inoculate overnight 5
ml liquid YPD cultures for WGS35. Glycerol stocks were made and genomic DNA
extracted with the ZR Fungal/bacterial purification kit (Zymo Research). DNA was
sheered into 500 to 1000 bp fragments by sonication. After end-repair, Illumina
sequencing libraries were made by ligating on dsDNA adapters and indexing by
quantitative PCR. The samples were then sequenced on the HiSeq 2500 or Nextseq
platforms. We performed sequencing alignments and variant calling using a cus-
tom pipeline (eex_yeast_pileline.sh) that runs in the Unix command-line (see
Github link in Code Availability). Reads were aligned to a repeat-masked S288C
yeast genome18 using the Burrows-Wheeler Aligner (0.7.17)37. We removed dis-
cordant and split-read groups using Samblaster (0.1.24)38. We used Picard tools
(2.21.9) AddorReplaceReadGroups to add information to the header used for later
steps in the analysis. We then indexed the BAM files with Samtools (1.8)39. To
minimize false variant calls, we sequentially processed the BAM files with functions
from the Genome Analysis Toolkit (GATK3)40 including RealignerTargetCreator,
IndelRealigner, LeftAlignIndels, BaseRecalibrator, and PrintReads. We made a
pileup file with Samtools and used VarScan (v2.3.9) mpileup2snp to call single
nucleotide variants41. We limited our analysis to single nucleotide variants, which
are by far the most abundant polymerase error type in these cells. We used the
Varscan2 tool to identify variants present in our colonies with the following
parameters. For pol2-4 msh6Δ haploid lineages we used a variant frequency cut-off
of 0.8 with a minimum read depth of 18 (daughter and GD.1 positions) or 10 (for
GD.2 and GGD positions). Since these are haploid cells, new variants should be
present in 100% of reads. Setting the cut-off at 0.8 accommodates sites with low
read depth and one sequencing error. For pol3-01/pol3-01 msh6Δ/msh6Δ diploids,
we used a minimum read depth of 18 for all strains and a variant frequency cut-off
of 0.22. With a read depth of 18, clonal heterozygous variants in diploid cells have a
false negative rate of 6.1 ×10-5. With 1000 mutations we have a 6% chance of
having 1 false negative in a genome. We filtered the above results to remove
variants present in the parental strains as well as recurrent sequencing artifacts. A
small number of variants (<0.1%) could be reliably scored with the above para-
meters but fell below a quality threshold for a subset of genomes. These were
manually curated for inclusion. We detected these by visually inspecting the BAM
files for all strains in a single-cell lineage at the same time using the Integrated
Genome Viewer (IGV).

Scoring of mutations and detection of assignment errors. We used a custom
Python script (JLSLineageCaller) to determine the number of shared variants
within each lineage. The program first determines all genomic positions with 18-
fold read depth in all members of the lineage and then filters the called variant lists
for mutations at positions within the shared genome. Pairwise comparisons are
done between certain strains to identify shared mutations at different branch points
in the lineage, resulting in a data-frame of comparisons that allows all mutations
arising in a lineage to be sorted and examined in Microsoft Excel. The mutation
counts for division n were determined by summing the number of new mutations
identified at branch points Da (GDn.1 vs GGDn.1), Db (Dn vs GDn.2), Ma (Dn+1
vs GDn+1.1), and Mb (Dn+2 vs Dn+3). Da mutations are only found in the

daughter (Dn) and her second daughter (GDn.2). Likewise, Db mutations are only
found in GDn.1 and her first daughter GGDn.1. Mismatches retained by the
mother after the first division become double-stranded mutations in the next
division and are either passed on to her next daughter (Dn+1) or are retained by
the mother and passed on to all future offspring. The mutations inherited by Dn+1
that form the Ma segregant group are only found in this branch of the lineage.
Finally, the mutations retained by the mother, the Mb segregant group, first appear
in Dn+2 and her offspring, but also show up in all subsequent daughters (Dn+3,
Dn+4, etc) and their offspring. Any deviation from this pattern of inheritance
indicates an “assignment error” has occurred and that a cell was inadvertently
placed in the wrong position in the lineage. In the Supplementary Information, we
describe two such cases. The divisions encompassing these strains were censored
from the analysis. Below we describe how these errors arise and are detected to
illustrate the reliability of the method.

One possible assignment error could occur at dissection when the daughter and
mother cells both divide before the next round of dissection. On the basis of size,
the first daughter (Dn) can be easily distinguished from the mother, the second
daughter (Dn+1), and her own daughter (GDn.1). Usually Dn+1 and GDn.1 can
also be distinguished because Dn+1 buds before GDn.1. However, in rare cases Dn
+1 and GDn.1 are adjacent and similarly sized. If Dn+1 is moved in place of
GDn.1, we will have a sublineage consisting of Dn, Dn+1, GDn.2, and GDn+1.1
(instead of Dn, GDn.1, GDn.2, and GGDn.1). Every sublineage should normally
contain subsets of mutations from different divisions (Da and Db mutations from
the “n” division; Ma mutations from the “n-1” division; and Mb mutations from
the “n-2” division). In this sublineage, the Ma segregant group mutation count will
be 0, since there are no new mutations that will be shared by these four colonies.
However, a substantial subset of the mutations assigned to the Db segregant group
will also be found in later sublineages indicating that they are not Db mutations but
Mb mutations from a later division. The other half of what appear to be Db
mutations will in fact be Ma mutations from a different division. Added
confirmation of the dissection error comes from the analysis of the next sublineage,
which will consist of GDn.1 (not Dn+1 as it should be), GGDn.1, GGDn.2,
GGGDn.1 (great-great-great granddaughter 1). There will be 0 Mb mutations in
this sublineage since all of these cells are directly descended from Dn. These
problematic cell divisions would be censored because we lack key lineage members
necessary to obtain a full replication error count. Another type of assignment errors
could occur during dissections to isolate the sublineages. For instance, if Dn divides
twice in the interval before the next round of dissection we would have to
distinguish between GDn.1 and GDn.2. This is usually easy to do because, as above,
GDn.1 would be forming a bud while GDn.2 would be unbudded. If we
inadvertently reversed those two cells, we would have a sublineage consisting of
Dn, GDn.2, GDn.1, and a great granddaughter born to the second granddaughter.
When calling the Da segregant group we would be calling shared mutations
between Dn and GDn.1 (and not between Gn and GDn.2). We would quickly see
that these are, in fact, Ma segregant group mutations because they would also be
present as a subset of Db mutations obtained in the comparison between GDn.2
and her offspring.

The most difficult potential assignment errors to detect would occur in the Da
and Db segregant groups. For example, if GDn.1 divided twice, producing GGDn.1
and GGDn.2, and we selected GGDn.2 instead of GGDn.1, the mutation count for
the Db segregant group would be derived from two divisions instead of one. Again,
this is unlikely, because GGDn.1 would begin budding long before GGDn.2. But we
lack an obvious distortion to the pattern of mutation inheritance to flag this as an
error. We don’t think this is a common problem given the correspondence between
mismatches segregated to the mother (Mm) and daughter (Dm) cells illustrated in
Fig. 2d,e. As described above, we regard the Ma and Mb segregant groups as highly
reliable because dissection errors lead to obvious perturbations in the pattern of
mutation inheritance. In favor of the reliability of the Da/Db data, an XY scatter
plot of mutation counts observed in pairs of Ma/Mb segregant groups corresponds
very well to that observed with pairs of Da/Db segregant groups (Supplementary
Fig. 5). Both sets also correspond with what would be expected based on simulated
data. (The simulation assumed a gamma-Poisson distribution as in Fig. 2).
Interestingly, there are two Ma/Mb (47,36) and Da/Db (52, 20) segregant pairs in
the lower left-hand quadrant that appear as outliers. Both pairs are derived from
Division 15 (Supplementary Data 1), leading to the conclusion that the mutation
rate in that division was inherently low. The highest Da/Db outlier (51,120),
derived from Division 8, is also associated with a Ma/Mb pair with high mutation
counts (120,65), leading to the conclusion that this division had a high
mutation rate.

Statistical modeling. We grouped the mutation counts from the above branch
points into Da, Db, Ma, and Mb segregant groups to determine their distributions.
We also joined all segregant groups into one larger group to examine the dis-
tribution of mutation counts across all cell divisions. To determine the distribu-
tions of mismatches segregated to the daughter (Dm) and mother (Mm) cells, we
first summed the Da and Db or Ma and Mb mutation counts from each division.
We also combined these two sets into one group to view the distribution of mis-
matches across all cell divisions. To determine the distribution of total polymerase
errors per division, we summed all mutations from individual divisions (Da+Db
+Ma+Mb). We considered two common approaches for modeling overdispersed
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count data: the Poisson mixture distribution and the negative binomial
distribution.

A K-component Poisson mixture distribution, which we denote PM(K), has a
probability mass function (pmf) given by

fPM x; K; pK ; λKð Þ :¼
XK

k¼1

pkfPoisson x; λkð Þ; ð1Þ

where pK = (p1,…,pK) is a vector of mixture proportions, λK= (λ1,…,λK) is a vector
of Poisson means, and f is the pmf of a Poisson(λk):

fPoisson x; λkð Þ :¼ λxk e
�λk

x!
: ð2Þ

From this formulation, we see that the full density of the distribution is
decomposed as a sum of the scaled Poisson densities. In (1), pk represents the prior
probability that a given count measurement will be generated from the kth Poisson
component distribution, parameterized by λk. Since a given count measurement
could have been generated from any of these K components, we average over their
densities based on their prior probabilities to get the full density of that count.

The negative binomial distribution can be specified by the following probability
mass function:

fNegBinom x; μ; θð Þ :¼ Γ x þ θð Þ
x!Γ θð Þ

θ

θ þ μ

� �θ θ

θ þ μ

� �x

; ð3Þ

where μ is the rate parameter and θ is the shape or dispersion parameter. As θ
tends towards zero, the variance increases. As θ→∞, the negative binomial
reduces to a Poisson distribution.

We implemented these principles using a single R script (FMM.R, see Github
link below).To fit Poisson mixture models we used the flexmix R package in R
v3.5.342. To fit negative binomial models we used the glm.nb function of the MASS
R package43. Goodness of fit testing of the models was performed using both
Akaike information criterion (AIC) and Bayesian information Criterion (BIC) in R.
Although these two approaches score fit in slightly different ways, BIC returned
results consistent with AIC and we thus report only the more commonly used AIC
scores. We scored each tested distribution against up to four parameters. We
reported only up to the number of parameters that improved model fit. Lower raw
AIC values indicate better fit; however, the relative differences are not immediately
intuitive and so we calculated Akaike weighted values21,22. To illustrate this
approach, the AIC values in Fig. 1b were 637, 537, and 511. The first step in getting
weighted AIC values is to determine ΔiAIC: the difference between each AIC value
and the AIC with the lowest value (so for these numbers: 126, 26, 0). The likelihood
of each is then calculated by exp(−1/2 × ΔiAIC). The weighted AIC value for a
given model is its likelihood divided by the sum of all competing likelihoods. From
these calculations the weighted AIC values are 4.3e−28 (P, k=1), 2.2e−6 (P, k=2),
and 0.9999978 (nb), respectively. Thus, the negative binomial model is far more
likely than the other two models to account for the observed data. Mixture model
graphs were constructed using the ggplot2 package R44. Spearman rank correlation
coefficients were calculated using the Scipy Stats package in Python and graphs
generated with Seaborn 0.9.

Simulation of negative binomial models. We wrote a Python script (Fig2.py, see
Github link below) to simulate the expected correlation between Dm and Mm
under two distinct models of mutagenesis (Fig. 2). The script uses the θ (60.42) and
μ (138) parameters estimated by glm.nb for the negative binomial model of mis-
matches segregated to mother (Mm) or daughter (Dm) cells (see FMM.R). (Note
that glm.nb actually returns the natural log value for μ (in this case 4.927), which
must be exponentiated (e4.927) to get 138). In the first model, we assumed that the
negative binomial distribution was created by variation in mutation rate along
chromatid pairs, so that upon segregation, Dm and Mm from the same division
were free to vary within the predicted negative binomial distribution. To simulate
this process with Scipy.stats.nbinom.rvs, we converted the θ and μ shape para-
meters to the n and p inputs (see script for details) for nbinom.rvs and then, for
each division, we selected two random values from the distribution to represent the
Dm and Mm counts. In the second model, we assumed that the negative binomial
was created by a gamma distribution of λ values for a series of Poisson processes
acting in different cell divisions. We used Scipy.stats.gamma.rvs to simulate λ
values from a gamma distribution with shape and scale parameters derived from
those of the negative binomial. The shape parameter for the gamma distribution is
simply equal to θ. With variance (v) equal to μ2/θ, the scale parameter is equal to v/
μ. With a random λ from the gamma distribution as an input for Scipy.stats.
poisson.rvs, we selected two values from the associated Poisson distribution to
serve as Dm and Mm counts for each division. To examine the relationship
between Dm and Mm in these different models and the actual data, we performed
linear regression with Scipy.stats.linregress and visualized the data and regression
line using Seaborn 0.9 regplot.

Simulation of gamma-Poisson-binomial process. We wrote Python scripts to
create a Poisson-binomial model of the contributions of semiconservative DNA
replication and mitotic segregation to the overdispersion of mutations in individual
yeast (Fig3ef.py, ExFig6.py) and human cells (Fig3ghij.py) depicted in Fig. 3 and

Supplementary Fig. 6. For yeast simulations, we determined the amount of
unmasked DNA on each chromosome in the repeat-masked genome and then
divided these values by the total length of unmasked DNA in the haploid genome.
The rate of mismatches per haploid genome (69 mismatches/haploid genome/
division for pol3-01/pol3-01 msh6Δ/msh6Δ cells) was then multiplied in each case
by these fractions to obtain the per chromosome rate of mismatch formation.
These values were used as input for scipy.stats.poisson.rvs to simulate the number
of errors per chromosome in a single division. We created two independent entries
per chromosome to model the diploid genome. To mimic the binomial process of
mitotic segregation, we then multiplied the number of simulated errors on each
chromosome by a randomly chosen 1 or 0. Finally, we summed the mutation
counts from all chromosomes to obtain the total number of new mutations per cell
division. To create a gamma-Poisson-binomial model, we selected a value for
lambda at each division from the gamma distribution described in Fig. 2 rather
than using a constant rate for mismatch formation. As a control we performed the
above simulation without the binomial process, using the mutation rate per haploid
genome (34.5 mutations/haploid genome/division). We used the same approach
for the human simulations except that we multiplied the fraction of each human
chromosome of the total genome (GRCh38) by a mismatch rate comparable to that
observed with pol3-01/pol3-01 msh6Δ/msh6Δ yeast: 69 mismatches/ haploid yeast
genome/division × (3.03 × 109 bp/human haploid genome/11 × 107 bp/yeast hap-
loid genome)= 1900 mismatches/human haploid genome/division. We compared
the resulting distribution to that from a Poisson distribution with λ equal to 950
mutations/haploid genome. To simulate the diversity in mutation burdens that this
process generates, we summed the simulated mutation counts for individual lines
from 30 divisions.

Data availability
Sequence data used to generate the findings of this study have been deposited in the
NCBI Sequence Read Archive (SRA), BioProject accession: PRJNA586886. Source data
for graphs and charts can be found in Supplementary Data 1 and Supplementary Data 2.
All data files are available upon request to the corresponding author.

Code availability
Scripts used to generate figures and perform statistical tests have been deposited to
github: https://github.com/idowsett/Asymmetric-segregation-of-polymerase-errors-and-
rate-volatility-diversify-mutation-burden (DOI: 10.5281/zenodo.4272887).45 A custom
sequence analysis bash script eex_yeast_pileline utilizes established tools including BWA
(0.7.17), Samblaster (v.0.1.24), Picard-tools (2.2.2), Samtools (1.8), GATK (4.0.6.0),
Varscan (2.3.9), and a Python 2 script (Variant_deSNPer2013a.py) written to remove
single nucleotide polymorphisms in our strain background from the variant calls. A
Python 2 script (JLSlineage_caller.py) calls shared variants in our lineages. Figures and
Supplementary figures generated using code are provided as standalone Python 3.6.5 or R
v3.5.3.
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