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INTRODUCTION

The order Eurotiales consists of the families Trichocomaceae and 
Elaphomycetaceae. Most species belonging to the Trichocomaceae 
are saprobic filamentous ascomycetes, which in nature grow 
predominantly in soil or on decaying plant material. The 
Elaphomycetaceae entails a family of underground, saprobic or 
mycorrhiza-forming fungi. The family Trichocomaceae includes the 
well-known genera of Penicillium and Aspergillus. Aspergilli are found 
throughout the world in almost all ecosystems and are well-known for 
their ability to degrade different complex plant polymers. Despite the 
fact that some Aspergillus species have evolved additional lifestyles, 
for example as human or plant pathogens, there seems to be no 
restriction to a specific niche concerning their saprobic lifestyle.

Decaying plant material consists for a major part of plant cell wall 
polysaccharides which can be split into three major groups: cellulose, 
hemicellulose and pectin. L-arabinose and/or D-xylose are the main 
components of the hemicelluloses arabinoxylan and xyloglucan, and 
of pectin. Release of these sugars from polysaccharides as well as 
metabolic conversion of them through the pentose catabolic pathway 
(PCP) has been studied for many years, particularly in Aspergillus 
and the genus Trichoderma belonging to the order Hypocreales 
[reviewed in (de Vries & Visser 2001, de Vries 2003, Stricker et al. 
2008)]. The PCP was first described in Aspergillus niger (Witteveen 
et al. 1989) and shown to consist of a series of reversible reductase/
dehydrogenase steps followed by phosphorylation to D-xylulose-5-
phosphate, which enters the pentose phosphate pathway (PPP). 
In A. niger, the gene encoding D-xylose reductase (xyrA) (Hasper 
et al. 2000), D-xylulokinase (xkiA) (vanKuyk et al. 2001), L-arabitol 
dehydrogenase (ladA) and xylitol dehydrogenase (xdhA) (Seiboth 
et al. 2003, de Groot et al. 2007) have been characterised. For 
Trichoderma reesei, genes encoding L-arabitol dehydrogenase (lad1) 
(Richard et al. 2001) and xylitol dehydrogenase (xdh1) (Seiboth et al. 

2003) have been described. In A. niger, induction of pentose release 
and the PCP occurs in the presence of L-arabinose and/or D-xylose 
(Witteveen et al. 1989). In the presence of D-xylose, the xylanolytic 
transcriptional activator XlnR (van Peij et al. 1998b) regulates the 
expression of genes encoding extracellular polysaccharide degrading 
enzymes, as well as the expression of xyrA [reviewed in (de Vries 
2003)]. L-arabinose induction of the PCP is not mediated via XlnR. 
The genes of the L-arabinose catabolic pathway are co-regulated 
with the genes encoding extracellular arabinanolytic enzymes (α-L-
arabinofuranosidase and endoarabinanase) (Flipphi et al. 1994, de 
Vries et al. 1994) and L-arabitol is most likely the inducer (de Vries 
et al. 1994, vanKuyk et al. 2001). Analysis of A. niger arabinanolytic 
regulatory mutants, araA and araB, demonstrated an antagonistic 
effect between XlnR and the L-arabinose/L-arabitol responsive 
regulation (de Groot et al. 2003). 

In this study, we report the identification and characterisation 
of the L-arabinose catabolic pathway specific regulator (AraR) 
in A. niger and demonstrate that this regulator is only present in 
the order Eurotiales. These fungi have evolved a fine-tuned two-
regulator activating system for pentose release and catabolism 
compared to other filamentous ascomycetes that only contain XlnR 
or have neither of the regulators.

MATERIALS	AND	METHODS

Strains,	media	and	growth	conditions

The A. niger strains used in this study are listed in Table 1 and are 
all derived from A. niger CBS 120.49. Aspergillus niger strains were 
grown in Minimal Medium (MM) or Complete Medium (CM) with 
addition of a carbon source at 30 °C. MM contained (per liter): 6 
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g NaNO3, 1.5 g KH2PO4, 0.5 g KCL, 0.5 g MgSO4·7 H2O and 200 
μl trace elements solution (Vishniac & Santer 1957), pH 6.0. CM 
= MM supplemented with (/L): 2 g peptone, 1 g casamino acids, 
1 g yeast extract and 0.5 g yeast ribonucleic acids, pH 6.0. For 
growth on solid media, 1.5 % agar was added to the medium. When 
necessary, the medium was supplemented with 0.2 g/L arginine, 
0.2 g/L leucine, 0.2 g/L uridine and/or 1 mg/L nicotinamide.

In transfer experiments, all the strains were pre-grown in CM 
containing 2 % D-fructose. After 16 h of incubation, the mycelium 
was harvested without suction over a filter, washed twice with MM 
without a carbon source and transferred to 50 mL MM containing 
the appropriate carbon source and supplements. The mycelium 
was harvested with suction over a filter and culture samples were 
taken after 2 and 4 h of incubation. The mycelium samples were 
dried between tissue paper and directly frozen in liquid nitrogen.

Molecular	biology	methods

Molecular biology methods were performed according to standard 
procedures (Sambrook et al. 1989), unless stated otherwise. 
All PCR reactions were performed using Accutaq™ LA DNA 
Polymerase (Sigma-Aldrich) according to the manufacturer’s 
instruction. The flanking regions of the araR gene were amplified 
with 5’primers and 3’-primers (see online Supplemental Table 1) 
by PCR to generate the 5’ flank with the HindIII/SphI site and 3’ 
flank with a KpnI/BamHI site, respectively, to enable deletion of 
the complete coding region of araR by replacing it with the argB 
selection marker. The functional construct was obtained using 
PCR with the extreme 5’- end 3’-primers (see online Supplemental 
Table 1) for complementation of araR. The araR disruption cassette 
(containing the argB gene for selection for arginine prototrophy) 
was transformed to the A. niger strain NW249 (pyrA6, leuA1, 
nicA1, ΔargB). The xlnR gene was amplified with the extreme 
5’-primer and 3’-primer by PCR (see online Supplemental Table 1) 
The PCR fragment was ligated into pGEM-T-easy (Promega) from 
which the NsiI/PstI restriction sites were removed. The construct 
was digested with SalI/EcoRI to remove most of the coding region 
including the DNA binding domain and ligated with the A. oryzae 
pyrA gene that was digested with BamHI (made blunt with Klenow 
fragment) and SalI. The xlnR disruption cassette was transformed 
to A. niger strains NW249 (pyrA6, leuA1, nicA1, ΔargB) and UU-
A033.21 (pyrA6, leuA1, nicA1, ΔaraR). All A. niger transformations 
were carried out as described previously (Kusters-van Someren et 
al. 1991). 

The primers used to generate the probes for Southern and 
Northern analysis are listed in online Supplemental Table 1. The 

probes were DIG-labelled using the PCR DIG Probe Syntheses Kit 
(Roche Applied Science) according to the supplier’s instructions. A 
cDNA library (de Groot et al. 2007) or genomic DNA (obtained from 
N402) was used as a template in the PCR reactions for synthesis 
of the probes.

Expression	analysis

Total RNA was isolated from mycelium that was ground in a 
microdismembrator (B Braun) using a standard RNA isolation 
method with the TRIzol Reagent (Invitrogen). In the Northern 
analysis, 3 μg total RNA was transferred to a Hybond-N+ membrane 
(Amersham Biosciences). The Minifold II slot blot apparatus 
(Schleicher & Schuell) was used for Slot blot analysis. Equal 
loading was determined by soaking the blot for 5 min in 0.04 % 
methylene blue, 0.5 M acetate pH 5.2 solution. 

Hybridisation of the DIG-labeled probes to the blot was 
performed according to the DIG user’s manual (www.roche-
applied-science.com). All the blots were incubated overnight at  
50 °C. The blots were exposed for 25 min up to 24 h to a Lumi-Film 
Chemiluminescent Detection Film (Roche Applied Science). Micro 
array analysis was performed as described previously (Levin et al. 
2007).

Phylogenetic	analysis

The amino acid sequences of AraR, XlnR, LadA, XdhA, XyrA and 
XkiA were used as queries in a local Blast against the protein files 
of 38 fungal genomes (see online Supplemental Table 2) with a 
expect value cut-off of 1E-10. The resulting ORFs were aligned 
using ClustalX and a Maximum Parsimony tree (1 000 bootstraps) 
was produced using MEGA (v. 4.0).

Enzyme	assays

Extracellular enzyme activity was measured using 0.01 % 
p-nitrophenol linked substrates, 10 μL of the culture samples, 25 
mM sodium acetate pH 5.0 in a total volume of 100 μL. Samples 
were incubated in microtiter plates for 120 min at 30 °C. Reactions 
were stopped by addition of 100 μL 0.25 M Na2CO3. Absorbance 
was measured at 405 nm in a microtiter platereader (Biorad Model 
550). The extracellular enzyme activity was calculated using a 
standard curve ranging from 0 to 80 nmol p-nitrophenol per assay 
volume. 

To measure intracellular enzyme activity, cell free extract was 
prepared by adding 1 mL extraction buffer (50 mM K2HPO4, 5 mM 

Table	1.	Strains used in this study.
Strain Genotype Reference
N402 cspA1 Bos et al. (1988)

N572 cspA1, fwnA1, pyrA6, xkiA1, nicA1 vanKuyk et al. (2001)

NW249 cspA1, ΔargB, pyrA6, nicA1, leuA1 Jalving et al. (2000)
UU-A049.1 cspA1, pyrA6, nicA1, leuA1, ΔargB::pIM2101(argB+) This study

UU-A033.21 cspA1, pyrA6, nicA1, leuA1, ΔargB:: pIM2101(argB+), ΔaraR This study
UU-A054.4 cspA1, pyrA6, nicA1, leuA1, ΔargB:: pIM2101(argB+), ΔaraR::araR This study
UU-A062.10 cspA1, ΔargB, nicA1, leuA, pyrA6:: A. oryzae pyrA,ΔxlnR This study

UU-A063.22 cspA1, nicA1, leuA1, ΔargB:: pIM2101(argB+), This study
ΔaraR, pyrA6::A. oryzae pyrA, ΔxlnR
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MgCl2, 5 mM 2-mercaptoethanol, 0.5 mM EDTA) to powdered 
mycelium. The mixtures were centrifuged for 10 min at 12000 RPM 
at 4 °C. The L-arabitol and xylitol dehydrogenase activities were 
determined using 100 mM glycine pH 9.6, 0.4 mM NAD+ and 1 
M L-arabitol or xylitol, respectively. L-arabinose reductase and 
D-xylose reductase activities were determined using 50 mM Tris-
HCL pH 7.8, 0.2 mM NADPH and 1 M L-arabinose or D-xylose, 
respectively. L-arabinose reductase (ArdA) and D-xylose reductase 
(XyrA) both convert D-xylose to xylitol and L-arabinose to L-arabitol, 
but have a higher activity on their primary substrate (de Groot et 
al. 2003). As a result, the measured activity is the sum of the two 
enzymes. To be able to discriminate between the two enzymes, the 
ratio of the activity on L-arabinose and on D-xylose was calculated 
that allows us to extrapolate the relative activities of ArdA and XyrA. 
An increase in the ratio indicates a relative increase in ArdA or 
decrease in XyrA, while a reduction in the ratio indicates a relative 
increase in XyrA or decrease in ArdA.

Absorbance changes were measured at 340 nm using a 
spectrometer (Spectronic Unicam UV1). L-arabinose and D-xylose 
reductase activity and L-arabitol and D-xylitol dehydrogenase 
activity was calculated using the molar coefficient for NADPH and 
NADH (both ε = 6.22 mM-1cm-1) and the following formula: 

Activity (U/mL) = [(A/min-Abl/min)* d * v] / (l * a * ε).

Abl/min = decrease absorbance per minute before adding substrate. 
A/min = decrease absorbance per minute after adding substrate. 
a = sample volume (mL). d = sample dilution. v= total volume 
cuvet. l = lightpath (cm). Protein concentrations of intracellular and 
extracellular samples were determined using a BCA protein assay 
kit (Pierce).

RESULTS	

Identification	and	analysis	of	araR

Blast analysis of XlnR against the A. niger genome (Pel et al. 
2007) revealed 3 homologues with expect values smaller than 
e-30 (An04g08600, An11g00140, An11g06290). Expression 
analysis of these genes revealed that the closest xlnR homologue 
(An04g08600) was specifically induced in the presence of 
L-arabinose or L-arabitol, while only low constitutive expression 
was observed for An11g06290 and no expression for An11g00140 
(Fig. 1A). In order to study its possible role in L-arabinose utilisation, 

a disruption strain for An04g08600 (referred to as araR) was 
constructed and verified by Southern analysis (data not shown). 
The disruption strain showed poor growth on L-arabitol, whereas 
complementation with araR restored growth again (Fig. 1B). 

The araR gene consists of 2552 bp interrupted by a single 
intron of 53 bp. Within the 1000 bp promoter region of araR putative 
six binding sites for the carbon catabolite repressor protein CreA 
(Kulmburg et al. 1993) and two binding sites for the xylanolytic 
regulator XlnR (van Peij et al. 1998b, de Vries et al. 2002) can be 
found. The AraR protein contains a Zn(2)Cys(6) binuclear cluster 
domain (amino acids 36-73, Pfam00172) and a Fungal specific 
transcription factor domain (amino acids 386-532, Pfam04082). An 
amino acid motif Arg-Arg-Thr-Leu-Trp-Trp is found at position 493 
to 498. This motif differs in only one amino acid from a conserved 
motif of unknown function found in Zn(2)Cys(6) family members 
(Arg-Arg-Arg-Leu-Trp-Trp), first described in the UaY regulator in 
Aspergillus nidulans (Suarez et al. 1995). AraR shows 32 % identity 
to XlnR, with the highest homology in the C-terminal part of the 
proteins. The sequence between the 2nd and the 3rd Cysteine in 
the Zn(2)Cys(6) region was previously shown to be important in 
DNA binding specificity of this class of regulators (Marmorstein et 
al. 1992, Marmorstein & Harrison 1994), but differs significantly 
between AraR (C2HSRRVRC3) and XlnR (C2NQLRTKC3). Between 
the third and the fourth Cysteine, the Proline residue can be found 
that is essential for correct folding of the DNA binding domain 
(Marmorstein et al. 1992) and is highly conserved in all the fungal 
zinc binuclear transcriptional regulators.

The	presence	of	AraR	in	the	genome	is	restricted	
to	Eurotiales	and	possibly	to	Trichocomaceae

BlastP analysis of both AraR and XlnR against 38 fungal 
genome sequences (see online Supplemental Table 2) identified 
homologues for both proteins in all 11 analysed species of the family 
Trichocomaceae of the order Eurotiales (Aspergillus clavatus, A. 
flavus, A. fumigates, A. nidulans, A. niger, A. oryzae, A. terreus, 
Neosartorya fischeri, Penicillium chrysogenum, P. marneffei, 
Talaromyces stipitatus), but neither of them was found in three 
representatives of Onygenales (Coccidioides immitis, Histoplasma 
capsulatum, Uncinocarpus reesei) (Fig. 2). XlnR was also found 
in the genomes of all other filamentous ascomycetes used in this 
study. No XlnR and AraR homologues were found in ascomycete 
yeasts, basidiomycetes or zygomycetes. 

In addition, a BlastP analysis was performed with the amino 
acid sequence of four genes of the A. niger pentose catabolic 

Fig.	1.	A.	Expression analysis of the three XlnR homologues (An04g08600 (araR), An11g00140 and An11g06290) on D-fructose (1), L-arabinose (2), L-arabitol (3), D-xylose (4) 
and xylitol (5). B. Growth of the reference (UU-A049.1), ΔaraR (UU-A033.21) and ΔaraR::araR (UU-A054.4) on D-glucose and L-arabitol.	
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A. flavus AFL2G03188.2

A. oryzae AO090012000267

A. terreus ATEG02432.1

A. nidulans AN7610.3

A. niger An15g05810

A. clavatus ACLA074570

N. fischeri NFIA090850

A. fumigatus Afu2g15620

P. chrysogenum Pc21g02790

P. marneffei PMAA_036650

T. stipitatus TSTA_055480

B. fuckeliana BC1G03074.1

N.crassa NCU06971.3

P. anserina CAP67293

M. oryzae MGG01414

V. albo-atrum VDBG_01258

T. reesei AAO33577.1

T. virens Trive1|58714

N. haematococca NHA12000190

F. oxysporum FOXG06395

G. moniliformis FVEG04245.3

M. graminicola MGA-e-gw.8.33.1

M. fijiensis Mycfi1|64278

T. stipitatus TSTA_014910

P. marneffei PMAA_057340

P. chrysogenum Pc22g22560

N. fischeri NFIA023070

A. fumigatus Afu1g01590

A. clavatus ACLA032900

A. niger An04g08600

A. nidulans AN0388.3

A. terreus ATEG04909.1

A. oryzae AO090003001292

A. flavus AFL2G01779.2

P. chrysogenum Pc13g12510

A. nidulans AAB63565

A. niger AAB63563

U. reesii UREG04565.1

XlnR

AraR

FacB

Fig.	2.	Bootstrapped (1000 bs) Maximum Parsimony tree of of putative homologues of XlnR and AraR in fungi. Homologues of the A. nidulans acetate regulatory protein (FacB) 
were used as an outgroup.
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pathway (ladA, xyrA, xdhA and xkiA) against the genomes of the 
fungal species that contain XlnR and/or AraR as well as the three 
Onygenales genomes used in this study (see online Supplemental 
Fig. 1). Phylogenetic analysis showed that all genomes contain 
homologues of three genes of the pentose catabolic pathway. 
Homologues for the 4th gene (ladA) were found in all species except 
for Onygenales. 

Influence	of	AraR	and	XlnR	on	growth	of	A. niger 
on	monomeric	and	polymeric	carbon	sources	

In addition to the araR disruptant (UU-A033.21), an xlnR disruptant 
(UU-A062.10) and an araR/xlnR double disruptant (UU-A063.22) 
were generated, as described in Materials and Methods. The 
utilisation of several monomeric and polymeric carbon sources 
was analysed in all strains (including the reference) to determine 
the effect of the single disruption of the araR gene and the double 
disruption of araR and xlnR (Fig. 3). Polymeric sugars containing 
L-arabinose residues (arabinan, Arabic gum, arabinogalactan 
and apple pectin) and D-xylose residues (birchwood xylan) were 
included in the analysis. Guar gum was used as a control; it is a 
galactomannan and contains no L-arabinose or D-xylose residues.

Disruption of araR resulted in reduced growth on L-arabinose, 
xylitol, arabinan, Arabic gum, arabinogalactan and apple pectin and 
poor growth on L-arabitol (Fig. 3). Disruption of xlnR resulted in 
reduced growth on birchwood xylan, while growth was unaffected 
on D-xylose, xylitol and the other carbon sources. Disruption of both 
regulators resulted in a similar phenotype as disruption of araR for 
L-arabitol, Arabic gum, arabinan and arabinogalactan and a similar 
phenotype as disruption of xlnR for birchwood xylan. In contrast 
to the single disruptants, no growth was observed on D-xylose 
for the double disruptant, only residual growth on L-arabitol and 
L-arabinose, and reduced growth on xylitol.

AraR	and	XlnR	control	L-arabinose	and	D-xylose	
release	and	catabolism

The reference, ΔaraR, ΔxlnR and ΔaraR/ΔxlnR strains were pre-
grown in complete medium containing D-fructose. After 16 h of 
growth, equal amounts of mycelium were transferred for 2 and 4 h to 
minimal medium containing 25 mM D-fructose, 25 mM L-arabinose 
or 25 mM D-xylose. Extracellular α-L-arabinofuranosidase (Abf) 
and intracellular PCP enzyme activities (Ard, Xyr, Lad, Xdh) were 
analysed. Activity of α-L-arabinofuranosidase (Abf), L-arabitol 
dehydrogenase (Lad) and xylitol dehydrogenase (Xdh) was 
strongly reduced in the ΔaraR and ΔaraR/ΔxlnR strain compared 
to the reference strain when grown on L-arabinose (Fig. 4A). On 
D-xylose, Lad and Xdh activity was reduced in ΔaraR and ΔaraR/
ΔxlnR. For L-arabinose reductase (ArdA) and D-xylose reductase 
(XyrA), the ratio of the activity on L-arabinose and on D-xylose 
was calculated that allowed extrapolation of the relative activities 
of ArdA and XyrA (see Materials and Methods). The ratio in the 
ΔaraR strain became less than 1.0 after 4 h growth in the presence 
of L-arabinose, while the ratio of the reference strain was around 
1.5, which suggests that the ArdA activity was reduced in the 
ΔaraR strain (Fig. 4A). The Ard/Xyr ratio in the wild type and ΔaraR 
disruptant grown on D-xylose were both around 1. In the absence 
of both regulators, no Ard and Xyr activities were detected (data 
not shown). Xylitol dehydrogenase activity (Xdh) was reduced in 
the ΔaraR strain on L-arabinose and to a lesser extent on D-xylose 
compared to the reference strain (Fig. 4). All the measured activities 

after 2 h of growth on L-arabinose and D-xylose in the ΔxlnR are 
similar to those published previously (de Groot et al. 2003). After 
4 h, the difference in activity between the reference and ΔxlnR is 
similar to that observed after 2 h of growth, except for Xdh and Abf. 
Xdh activity in the ΔxlnR became similar to that in the reference 
strain after 4 h on D-xylose, whereas the Abf activity increased at 
this point. No activity for any of the enzymes was detected during 
growth of D-fructose.

In addition, expression levels were determined using micro array 
analysis for genes involved in release (abfA, abfB) and catabolism 
(ladA, xdhA, xyrA, xkiA) of L-arabinose and D-xylose. No gene 
expression was observed for any of the genes discussed in this 
section during growth on 25 mM D-fructose (data not shown). 
Expression profiles of all the genes in Table 2, except for araR and 
xlnR, were confirmed by Northern analysis (see online Supplemental 
Fig. 1). Expression of araR and xlnR was below detection levels for 
Northern analysis in these samples. Disruption of araR resulted in 74, 
6, 10, 2 and 13-fold reduced expression levels of abfA, abfB, ladA, 
xdhA and xkiA, respectively, after 2 h of growth on L-arabinose (Table 
2). Disruption of xlnR did not significantly reduce expression levels 
of any of the tested genes, except for xyrA for which expression 
reduced 2-fold after 2 h of growth on D-xylose. Disruption of araR 
did not affect xdhA, xkiA and xyrA expression on D-xylose, while 
none of the genes were affected on L-arabinose by disruption of xlnR 
(see online Supplemental Fig. 1). None of the tested genes were 
expressed in the ΔaraR/ΔxlnR strain, except for abfB (see online 
Supplemental Fig. 1). Expression of xlnR was not affected in the 
ΔaraR on L-arabinose, whereas araR expression showed a 3-fold 
increase in the ΔxlnR on D-xylose compared to the reference.

DISCUSSION

Previously, it has been shown that the pentose catabolic pathway is 
under control of the D-xylose specific transcriptional activator (XlnR) 
and a second, unidentified L-arabinose specific transcriptional 
activator regulator (de Groot et al. 2007). In this study, we identified 
the gene encoding the L-arabinose responsive regulator, AraR, 
and confirmed its role in the release and catabolism of L-arabinose 
and D-xylose. AraR is a member of the Zn(2)Cys(6) family of 
transcriptional regulators and a close homologue of the xylanolytic 
transcriptional activator XlnR from A. niger. Functional analysis of 
AraR and XlnR as described in this study confirm the previously 
published antagonistic relation of the two regulatory systems 
involved in pentose catabolism (de Groot et al. 2003). 

Expression levels of abfA, abfB, ladA as well as the corresponding 
enzyme activities (Abf and Lad) were strongly reduced in the ΔaraR 
strain on L-arabinose, indicating that they are only controlled by 
AraR. Gene expression levels of xdhA and xkiA are reduced in 
the ΔaraR strain after 2 h of growth on L-arabinose. On D-xylose, 
xdhA expression is up-regulated in the ΔxlnR strain compared to the 
reference strain, which confirms data published previously (de Groot 
et al. 2007). An increase in xkiA expression was observed in the 
ΔxlnR strain on L-arabinose. These results indicate that both AraR 
and XlnR are involved in regulating the expression of xdhA and xkiA. 
The stronger effect in the ΔaraR strain, suggests that AraR has a 
larger influence on xdhA and xkiA expression than XlnR. 

Expression of the AraR regulated genes on D-xylose and 
reduction of the expression in the araR disruptant can be explained 
by the presence of a small amount of L-arabinose in the D-xylose 
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Fig.	4.	Comparison of intracellular and extracellular enzyme activities in reference and disruption strains. The reference strains (UU-A049.1), ΔaraR (UU-A033.21), ΔxlnR (UU-
A062.10) and ΔaraR/ΔxlnR (UU-A063.22) were transferred for 2 and 4 h on 25 mM L-arabinose or 25 mM D-xylose. Extracellular α-L-arabinofuranosidase (Abf), the ratio of 
intracellular L-arabinose reductase (ArdA) and D-xylose reductase (XyrA) activity, and the intracellular activities of xylitol dehydrogenase (Xdh) and L-arabitol dehydrogenase 
(Lad). Black bars: L-arabinose, 2 h; grey bars: L-arabinose, 4 h; dashed bars: D-xylose, 2 h; white bars: D-xylose, 4 h.

Fig.	3.	Growth of the reference strain (Ref., UU-A049.1), and the ΔaraR (UU-A033.21), ΔxlnR (UU-A062.10) and ΔaraR/ΔxlnR (UU-A063.22) strains on a selection of mono- and 
polysaccharides. Concentrations of the substrates were 25 mM for D-glucose, D-xylose, L-arabinose, L-arabitol, xylitol and glycerol, and 1 % for birchwood xylan, Arabic gum, 
guar gum, arabinan, arabinogalactan and apple pectin. 

preparation from SIGMA (R.P. de Vries, unpubl. data). This is 
supported by a reduction in the expression of these genes on 
D-xylose at 4 h compared to 2 h.

The discrepancies between some of the expression and activity 
data can be explained by the substrate specificities of the enzymes. 
The L-arabinose and D-xylose reductases are both active on both 
pentoses, so under conditions where both are expressed, the 
measured activity is the result of the combined activity of the two 
enzymes. Although xylitol dehydrogenase is (almost) not active on 

L-arabitol, the L-arabitol dehydrogenase is active on xylitol (de Groot 
et al. 2007), indicating that the measured xylitol dehydrogenase can 
also consist of two components depending on the condition used.

Previously, it has been shown that the expression of xyrA 
was only reduced and not absent in the ΔxlnR on D-xylose (de 
Groot et al. 2003) and it was suggested that in addition to XlnR 
another unknown inducing factor is involved. Our results confirm 
this observation. The reason why there is no reduction in growth 
of the ΔxlnR strain on D-xylose can be explained by the fact 
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that xyrA expression/activity was not absent combined with the 
compensatory regulation by AraR for xkiA and xdhA expression. 
No growth was observed for the double disruptant on D-xylose, 
suggesting both regulators are necessary for growth on D-xylose. 
The strong growth reduction of the ΔxlnR strain on xylan, similar to 
growth of the double disruptant, indicates that D-xylose release is 
mainly dependent on XlnR. 

Only residual growth was observed for the double disruptant on 
L-arabinose and L-arabitol, demonstrating the importance of AraR and 
XlnR for growth on these substrates. Strongly reduced growth was 
observed for the ΔaraR strain and the ΔaraR/ΔxlnR strain on arabinan, 
indicating that release of L-arabinose residues depends only on AraR. 

The absence of AraR orthologues in fungal genomes 
except for those of the aspergilli and penicillia and its similarity 
to XlnR suggests that this regulator has originated by a gene 
duplication of xlnR after Eurotiales split from the other filamentous 
ascomycetes. All genomes available from Eurotiales are of the 
family Trichocomaceae, while currently none are available for the 
other family of this order, Elaphomycetaceae. At this point we can 
therefore not determine whether this gene duplication may have 
occurred even later, when Elaphomycetaceae and Trichocomaceae 
split into two different families.

The regulatory system controlling pentose release and utilisation 
in this group of fungi likely evolved to become a highly interactive 
two-regulator system. Whether this implies that in the other 

ascomycete fungi XlnR is responsible for L-arabinose and D-xylose 
induced expression remains to be studied. It suggests there are 
large evolutionary differences in regulation of the pentose catabolic 
pathway. Afterthe Onygenales split from Eurotiales it seems to 
have lost both XlnR and AraR regulators. Homologues for three of 
the A. niger genes of the pentose catabolic pathway (xdhA, xyrA 
and xkiA) are present in the other fungal genomes. The L-arabitol 
dehydrogenase encoding gene (ladA) appears to have been lost in 
Onygenales, but is present in all species that contain XlnR. This may 
suggest that loss of L-arabinose utilisation has proceded further in 
Onygenales than just loss of the regulatory systems.

Data from our study was combined with the previously reported 
data on XlnR (van Peij et al. 1998a, de Groot et al. 2003) to construct 
a regulatory model for release and utilisation of L-arabinose and 
D-xylose in the A. niger (Fig. 5). This model correlates not only 
well with the expression profiles of the pentose-related genes but 
also with the growth comparison of the disruptant strains and the 
reference. It indicates that XlnR and AraR control distinct sets of 
genes in response to the presence of D-xylose and L-arabinose, 
respectively. However, in the absence of one of the regulators the 
other can partially compensate for this loss. Although the data 
supporting this model comes from A. niger, we postulate that this 
model applies to all Eurotiales, since we have demonstrated in this 
study that the presence of AraR is conserved among all species of 
Eurotiales studied so far.

Fig.	5.	Regulatory model for release and utilisation of D-xylose and L-arabinose in A. niger. ArdA = L-arabinose reductase; LadA = L-arabitol dehydrogenase; LxrA = L-xylulose 
reductase; XdhA = xylitol dehydrogenase; XyrA = D-xylose reductase; XkiA = D-xylulose kinase; AbfA, AbfB = α-L-arabinofuranosidase A and B; AbnA= endo-1,5-alpha-L-
arabinanase; AxhA = arabinoxylan arabinofuranohydrolase; XlnB, XlnC = endoxylanases B and C; XlnD = β-xylosidase. The square depicts the fungal cell wall. AraR regulated 
genes are in blue. XlnR regulated genes are in yellow. Genes regulated by AraR and XlnR are in green. Inclusion of axhA, abnA, xlnB, xlnC, xlnD was based on co-regulation 
with the other genes as reported previously (Gielkens et al. 1997, van Peij et al. 1998a, de Groot et al. 2003).
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Table	 2.	 Expression analysis of genes encoding extracellular L-arabinose releasing enzymes and PCP enzymes. abfA, abfB = α 
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Reference ΔaraR Ratio Reference ΔxlnR Ratio
2	h	L-ara 2	h	L-ara ref/	ΔaraR 2	h	D-xyl 2	h	D-xyl ref/	ΔxlnR

abfA 6622 ± 919 89 ± 9 74.4 5827 ± 545 7578 ± 748 0.8
abfB 4985 ± 516 901 ± 143 5.5 869 ± 4 2176 ± 150 0.4
ladA 4224 ± 417 414 ± 12 10.1 2229 ± 24 3482 ± 8 0.6
xdhA 5013 ± 661 2281 ± 417 2.2 4344 ± 315 6567 ± 377 0.7
xyrA 4808 ± 641 4048 ± 685 1.2 6248 ± 587 3655 ± 66 1.7
xkiA 2690 ± 402 211 ± 18 12.7 2588 ± 34 1843 ± 102 1.4
araR 100 ± 28 1 ± 0 100 20 ± 1 65 ± 5 0.3
xlnR 145 ± 21 185 ± 41 0.8 157 ± 9 3 ± 0 52.3
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SupplemenTary InformaTIon
Supplemental Table 1. Primers used in this study.

Primer 5’ to 3’ 
gene dw up 
araR 5’ 
flank

GGTACCCTTTGATGTTAGTTG GGATCCATCGCGGGGAAAC

araR 3’ 
flank

GCATGCTTAAATTATCTTCCGCC AAGCTTTCAATTTTTGTGTCTGGAG 

xlnR CTTGGTTGGTCTCCGTCTG GGGAAGTGCGGAGGGAGTG 
abfA AGGGTGGCAACTCATCCAG GCCAGCACCGTCAACTTG 
abfB ACCCGCGCCCTATACAGC CTGCTTCGTGCCATCGTTG 
ladA AGATCTCTACCGCAACTGTTCTCG CTGCAGTTTAAATCTTCTGACCAG 
xdhA AGATCTGCACCCAGAACACCAACG CTGCAGAATTCTATGAATCGACACC 
xyrA AACAGCGGCTACGACATGC TCTGCTTCAACCGCTGAGG 
xkiA CATCGGCTTCGACCTCTC CAGTGCTTCCCTTCCTGG 
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fig. 1. Maximum Parsimony bootstrap tree (1000 bootstraps) of pentose catabolic pathway genes. XDH = xylitol dehydrogenase, LAD = L-arabitol dehydrogenase, XKI = 
D-xylulose kinase, XYR = D-xylose reductase.

Supplemental Figure 1. Maximum Parsimony bootstrap tree (1000 bootstraps) of pentose catabolic pathway
genes. XDH = xylitol dehydrogenase, LAD = L-arabitol dehydrogenase, XKI = D-xylulose kinase, XYR = 
D-xylose reductase.SupplemenTary InformaTIon
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fig. 1. (Continued).

Supplemental Figure 1. Maximum Parsimony bootstrap tree (1000 bootstraps) of pentose catabolic pathway
genes. XDH = xylitol dehydrogenase, LAD = L-arabitol dehydrogenase, XKI = D-xylulose kinase, XYR = 
D-xylose reductase.
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