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Several methods have been proposed in open literatures for detecting changes in disease outbreak or incidence. Most of these
methods are likelihood-based as well as the direct application of Shewhart, CUSUM and EWMA schemes. We use CUSUM,
EWMA and EWMA-CUSUM multi-chart schemes to detect changes in disease incidence. Multi-chart is a combination of
several single charts that detects changes in a process and have been shown to have elegant properties in the sense that they are
fast in detecting changes in a process as well as being computationally less expensive. Simulation results show that the multi-
CUSUM chart is faster than EWMA and EWMA-CUSUM multi-charts in detecting shifts in the rate parameter. A real
illustration with health data is used to demonstrate the efficiency of the schemes.

1. Introduction

In this era of bioterrorism, outbreak of diseases and surge in
disease incidence; statisticians, epidemiologists, informati-
cians and surveillance scientists are designing algorithms to
detect changes in disease occurrence or outbreak in order
to avert any possible public health pandemonium. Most of
these models or algorithms are modifications of the statistical
process control (SPC) schemes, namely Shewhart, CUmula-
tive SUM (CUSUM) and Exponentially Weighted Moving
Average (EWMA) statistics.

Biosurveillance in the context of human health (health
surveillance) is a term for the science and practice of manag-
ing health-related data and information for early warning of
threats and hazards, early detection of events and rapid char-
acterization of the event so that effective actions can be taken
to mitigate adverse health effects [1]. Biosurveillance systems
have two main purposes: to support health situational aware-
ness and for early event/outbreak detection. In the past two
or three decades, many biosurveillance systems have been
developed. Bravata et al. [2] in their review identified 115
health surveillance systems and 9 syndromic surveillance
systems. Most of these surveillance systems have been devel-

oped and are in use in countries like US, UK, China and
Japan among others.

Statistical methods or algorithms have been widely
applied to solve biosurveillance problems. These statistical
methods or algorithms for monitoring bioterrorism, inci-
dence, or outbreak of diseases can be categorized into tempo-
ral (see, for example, Reis [3] and Brookmeyer and Stroup
[4]), spatio (Waller and Gotway [5] and Lawson and Klein-
man [6]), spatio-temporal (Diggle [7] and Fricker [8]), mul-
tivariate temporal (see Vial [9]), multivariate spatial
monitoring (see, for example, Corberán-Vallet [10]), multi-
variate spatio-temporal (Quick et al. [11]), and Bayesian
(Tzala [12]). Multivariate monitoring methods are extension
of the univariate methods.

Several methods have been proposed in literatures, for
example, Farrington et al. [13] proposed a robust statistical
algorithm to process weekly reports of infections received at
the Communicable Disease Surveillance Centre. The algo-
rithm calculates suitable thresholds and organisms exceeding
their thresholds are then flagged for further investigation. Le
Strat and Carrat [14] proposed a hidden markov model to
monitor epidemiologic surveillance data. A rule-based
method was also proposed by Wong [15] to solve a surveil-
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lance classification problem. Many Point Process Models
(PPM) were also discussed by Brookmeyer and Stroup [4].
Shmueli et al. [16] proposed a wavelet-based automated algo-
rithm for detecting disease outbreaks in temporal syndromic
data. Their method improves upon the Goldenberg et al. [17]
algorithm on a diverse set of real syndromic data from mul-
tiple data sources and multiple geographical locations. Sebas-
tiani et al. [18] proposed a Bayesian dynamic model to
monitor influenza surveillance data. They integrated differ-
ent data sources into a dynamic model, which identified in-
children and infants pediatric emergency departments with
respiratory syndromes as an early indicator of impending
influenza morbidity and mortality. Their findings show that
dynamic Bayesian networks could be suitable modeling tools
for developing epidemic surveillance systems. Forsberg et al.
[19] also proposed the so-called distance-based method
where they assessed possible disease clusters based on M
-statistic on the distribution of the pairwise distance between
cases. Fricker [20] and Joner et al. [21] also considered
Directional Multivariate Exponentially Weighted Moving
Average (DMEWMA) and Multivariate CUmulative SUM
(MCUSUM) schemes. Fricker et al. [22] proposed
CUSUM-based methods with adaptive regression. Fricker
and Chang [23] considered Repeated Two-sample Rank
(RTR)-based methods. Their proposed method is spatio-
temporal and can subsequently be used to track the spread
of an outbreak. Lu et al. [24] proposed the Markov switching
model to detect disease outbreak. Cowling et al. [25] devel-
oped a statistical algorithm using sentinel surveillance data
for early detection of the annual influenza peak season in
Hong Kong. Bédubourg and Le Strat [26] compared and
evaluated using the simulation of several statistical methods
for early temporal detection of outbreaks. Even though many
methods have been developed and proposed in literature,
there is still the need for more concerted efforts to develop
and improve methods that will detect changes in disease inci-
dence or outbreak and monitor bioterrorism.

Many researchers have used a Poisson process to monitor
changes in disease outbreak or incidence. Rossi et al. [27]
used CUSUM charts to monitor changes in disease occur-
rence after the transformation of the Poisson data into
approximately normal random variables. Mei et al. [28] pro-
posed a weighted CUSUM chart placing more weight on
recent observations and compared their method with other
common CUSUM techniques. Jiang et al. [29] compared
the performance of several CUSUMmethods subject to Pois-
son distribution. Richards et al. [30] proposed an invariant
Poisson control charting scheme and applied it to monitor
the number of emergency arrivals observed at the Baltimore
Veterans Affairs Medical Center. Most of these models or
schemes monitor one variable or disease at a time. Even in
cases where two or more diseases are monitored, MCUSUM
and MEWMA schemes have been used widely. Multi-charts
have been shown in literature to be very powerful to detect
changes in random events. They are different from MCU-
SUM (see Crosier [31], Golosnoy [32], and Raji et al. [33]),
MEWMA (see Lowry et al. [34], Hussain et al. [35] and Ajadi
and Riaz [36]), and multi-hypothesis testing (see Baum
and Veeravalli [37] and Lai [38]) in terms of methodology.

For example, multi-chart schemes can tell which of the charts
triggered detection, a property that falls short of multivariate
charts (MCUSUM and MEWMA). Multi-chart consists of
several single charts with different reference values that are
used simultaneously to detect and monitor process changes.
CUSUMmulti-chart scheme has been shown to be more effi-
cient than the EWMA multi-chart scheme in detecting
changes in a random process (Han et al. [39]). Multi-chart
schemes have elegant properties in the sense that they are fast
in detecting changes in a process and computationally less
expensive than sister charts like Generalized Exponential
Weighted Moving Average (GEWMA) by Han and Tsung
[40] and the CUSUM-like control chart by Siegmund and
Venkatraman [41].

Multi-chart schemes have rarely been used in the field of
biosurveillance and health monitoring. A wealth of research
is ongoing in disease surveillance and these methods are
implemented in health surveillance systems to detect abnor-
mal changes in disease occurrences. The ability to detect
abnormal changes in disease occurrence is of uttermost con-
cern to the public health workers for them to trigger public
awareness and education. It is in this light that we applied
the methodology of multi-chart schemes to detect changes
in disease incidence and also evaluate the efficiency of the
methods. Many researchers have proposed charting perfor-
mance indices (for example, Overall Charting Performance
Index (OCPI), Relative Mean Index (RMI) among others)
to evaluate the performance of CUSUM and EWMA
schemes. In the computation of these indices, we need the
optimal ARL (ARL∗) which is found subject to normal distri-
bution (continuous distribution). The CUSUM ARLs with
reference values as charting statistic subject to Poisson distri-
bution are not optimal as we are dealing with discrete distri-
bution; hence, we also propose new measures (called
Expectation of the Time for Detecting mean shifts (ETD)
and Expectation of the Time for Detecting mean shifts with
Equal weights of shifts (ETDE)) to evaluate the efficiency of
the schemes.

Basically, the objectives of this study are to monitor
tuberculosis disease based on multi-chart schemes and also
evaluate the efficiency of the methods using a new perfor-
mance index. Generally, we only know the possible post-
change region but rarely know the exact magnitude of mean
shift of a process before it is detected; we therefore use a range
of known shifts in the rate parameter. The main contribution
of our paper is as follows: we present a new performance index
measure to evaluate the performance of the charts.

The article is organized as follows: materials and methods
are presented in section 2, subsection 2.1, presents the multi-
chart schemes subject to Poisson distribution for detecting
changes in disease incidence. Subsection 2.2 presents the per-
formance index measures, while subsection 2.3 gives a theo-
retical performance comparison of the multi-chart schemes
with that of single charts and subsection 2.4 gives the proce-
dural description of multi-chart schemes. Results and discus-
sion are presented in section 3, where these theoretical results
are compared by numerical simulations in subsections 3.1,
3.2, 3.3, and 3.4, while subsection 3.5 gives a real example
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based on tuberculosis data from Ghana. Section 4 concludes
and gives remarks.

2. Materials and Methods

2.1. Multi-chart Schemes. Generally in health care monitor-
ing, the observations are counts and let's assume they follow
the Poisson distribution. The Poisson distribution is usually
used to describe the number of events that occurred in a unit
time interval or within a unit space.

Let's assume Xi~PoissonðλÞ, where λ is the average count
of a disease occurring in a week or in a month. Usually, at
some time period ν, the probability distribution of Xi
changes from Poissonðλ0Þ to PoissonðλνÞ. We generally refer
to ν as a change point. In general, ν = 1, 2, 3,⋯,∞, but in this
article, we assume ν = 1, which means the first time there is a
change in distribution. Intuitively, the mean of Xi undergoes
a shift of size λi(λ0), where λ0 is known and assumed to be 1.
In biosurveillance problems or health surveillance, we nor-
mally monitor for upward change in distribution, since the
increment in disease counts pose challenges to the public
health workers. For the Poisson distribution, the mean is
equal to the variance; hence, developing a chart to monitor
the mean jointly monitors both the mean and the variance
simultaneously.

Mathematically, the prechange distribution with mean
(λ0 = 1) is given by

X1, X2,⋯, Xν−1~Pλ0
Xkð Þ = λ

xk
0 e

−λ0

xk!
ð1Þ

And also the postchange distribution with mean (λ ≠ 1) is
given by

Xν, Xν+1,⋯, Xn~Pλ Xkð Þ = λxke−λ

xk!
ð2Þ

The log-likelihood ratio ðγkÞ for ν ≤ k ≤ n is given by

γk = ln
Pλ Xkð Þ
Pλ0

Xkð Þ

( )
= Xk ln

λ

λ0
+ λ0 − λ

� �
ð3Þ

So we define a single upward CUSUM chart as

Tμi
=min n : max

1≤k≤n
〠
n

j=n−k+1
Xk ln

μi
λ0

+ λ0 − μi

� �
> di

( )

ð4Þ

where di is the width of the control limit and μi are some ref-
erence values satisfying λ0 = a < μ1 < μ2<,⋯ ,<μm ≤ b. We
assumed that the possible range of the rate parameter shifts
is ða, bÞ:

Let Δm = fμi : 1 ≤ i ≤mg and Wm = fwi : 1 ≤ i ≤mg be a
set of numbers (known reference values) where μi > 1,m ≥ 2,
and 0 <wi ≤ 1. Also, let Dm = fdi : 1 ≤ i ≤mg and Hm =
fhi : 1 ≤ i ≤mg be a set of numbers (width of control

limit) where di > 0 which usually depends on μi and hi > 0
also depends on wi.

We define a single upward exponential weighted moving
average (EWMA) chart as

TEi
wi, hið Þ =min n : 〠

n−1

k=0
wi 1 −wið ÞkXn−k > hi

( )
ð5Þ

Let us define the one-sided CUSUM and EWMA multi-
charts as TCMðΔm,DmÞ and TEMðWm,HmÞ, respectively,
where

TCM Δm,Dmð Þ = min
μi∈Δm

Tμi
μi, dið Þ

n o
ð6Þ

TEM Wm,Hmð Þ = min
1≤i≤m

TEi
wi, hið Þ� �

ð7Þ

We also define the one-sided EWMA-CUSUM mixed
charts as TEC where

TEC = min
1≤i≤m

TEi
wi, hið Þ orTμi

μi, dið Þ
n o

ð8Þ

2.2. Charting Performance Index. The most widely used mea-
sure to determine which control chart performs better is the
average run length (ARL). Ultimately, we force all the charts
to have the same in-control average run length ARL0 then for
a desired shift in the parameter of interest, the chart with the
lowest out-of-control average run length (ARLλ) has the
greatest ability to determine the prespecified shift. The ARL
used in evaluating chart performance is weak due to the fact
that its performance will deteriorate if the actual size of a
mean shift is significantly different from the assumed size.
To help address this problem, a number of novel charting
performance indices have been proposed in the literature.
For example, Han et al. [39] proposed the Overall Charting
Performance Index (OCPI). Other charting performance
measures include but not limited to Relative Mean Index
(RMI) [42], Charting Performance Index (CPI) [43], etc. In
the computation of these indices, we need the optimal A
RL (ARL∗) which is found subject to normal distribution
(continuous distribution). The CUSUM ARLs with reference
values as charting statistic subject to Poisson distribution are
not optimal as we are dealing with discrete distribution;
hence, we also propose new measures (called Expectation of
the Time for Detecting mean shifts (ETD) and Expectation
of the Time for Detecting mean shifts with Equal weights of
shifts (ETDE)) as performance index measures to evaluate
the efficiency of the schemes.

We define the ETD of a chart ðTÞ for a range of shifts in
the rate parameter ða, bÞ by

ETD Tð Þ = 〠
l

i=1
wiARLλi Tð Þ ð9Þ

wherewi = λi/∑
l
j=1 λj, λ1 < λ2<⋯<λl are real rate parameters

and l is the number of shifts considered in the study.
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When wi = 1/l, we consider

ETDE Tð Þ = 1
l
〠
l

i=1
ARLλi Tð Þ ð10Þ

where ETDEðTÞ is the expectation of the time for detecting
mean shifts when the ARLλi are assigned equal weights of
the inverse of the number of shifts considered in the study.
Different forms of the weights can be studied, but here, we
restrict it to these two scenarios. The chart with the smallest
ETD and ETDE performs better.

2.3. Comparison of the Multi-chart Schemes with Its
Constituent Charts. Without loss of generality, let P0ð·Þ and
E0ð·Þ represent the probability and expectation that there is
no change in the rate parameter, respectively. Let Pλð·Þ and
Eλð·Þ represent the probability and expectation when there
is a change in the true rate parameter ðλÞ at change point
ν = 1, respectively. Normally for a stopping time T , we use
out-control average run length ðARLλÞ to judge which
chart is performing better. All the charts were designed with
a common ARL0 and for a shift in the rate parameter;
we adjudge a chart with smaller ARLλ to be the best per-
forming. Intuitively, we define ARL0ðTÞ = E0ðTÞ and AR
LλðTÞ = EλðTÞ. Let's also assume that the rate parameter
λ ≥ 1 and we choose some reference values satisfying
λ0 = a < μ1 < μ2<⋯<μm ≤ b, where m is the number of
charts. Let d1, d2,⋯, dm be the width of the individual con-
trol limits. We take the multi-chart control limits; d1′ , d2′ ,⋯
, dm′ such that di′> di, for 1 ≤ i ≤m.

We can compare the multi-chart ðTCMÞ = TCMðd1′ , d2′ ,
⋯, dm′ Þ with its constituent charts Tμi

ðdiÞ. If we choose

d1′ , d2′ ,⋯, dm′ according to the restrictions

L0 = ARL0 T μ1, d1ð Þð Þ ≈ ARL0 T μ2, d2ð Þð Þ
≈⋯ ≈ ARL0 T μm, dmð Þð Þ: ð11Þ

That is if we force the in-control average run lengths
of all the single CUSUM charts to be approximately equal.
Similarly, to construct EWMA multi-chart, we force the
in-control average run lengths of all the single EWMA
charts to be approximately equal.

Preposition 1. Under the condition (11) and for large L0,
we have

ETD TCMð Þ ≤ ETD Tμi

� �
for 1 ≤ i ≤m ð12Þ

ETDE TCMð Þ ≤ ETDE Tμi

� �
for 1 ≤ i ≤m ð13Þ

By inequalities (12) and (13), CUSUM multi-chart has
better detection performance than single CUSUM charts.
The proofs of these prepositions are in the Appendix.

Usually, it is difficult to predetermine the exact size of the
mean shift before it is detected. Instead, a range of shift sizes
of interest could be considered. We can compare the perfor-
mances of these single charts with the average of these charts.
We define the average CUSUM chart, average EWMA chart
and average EWMA-CUSUM chart respectively as

Average CUSUM Chart =
1
m
〠
m

i=1
ARLλi Tμi

μi, dið Þ
� �

ð14Þ

Average EWMAChart =
1
m
〠
m

i=1
ARLλi TEi

wi, hið Þ� 	 ð15Þ

Average EWMA − CUSUM Chart =
1
m
〠
m

i=1
ARLλi TECð Þ

ð16Þ
2.4. Procedural Description of Multi-chart Schemes. This sec-
tion provides a detailed description of the simulation proce-
dure used for the computation of ARL at each shift (λ),
computation of ETD and ETDE for the comparison of the
charts. We used Monte Carlo simulations for the computa-
tion of the ARLs. Simulation analyses were carried for a
10,000-repetition experiment. We generally set the in-
control rate parameter ðλÞ = 1:

2.4.1. Computation of the CUSUM Multi-chart Statistic

(1) Determine the number of charts to be used for the
CUSUMmultichart. Sparks [44] suggested that three
or more single charts are needed to achieve an effi-
cient multi-chart scheme

(2) Determine the reference parameters μ1, μ2,⋯, μk
(3) Generate a random sample of size 1 at each step

(denoted by Xk) from the Poisson distribution with
the specified reference value

(4) Determine the in-control ðARL0Þ of the single charts
say ARL0 ≈ 200 or 500 and use Monte Carlo simula-
tions to find the control limits (d1, d2,⋯, dk) of the
single charts using equation (4)

(5) Normally to arrive at an in-control ARL of CUSUM
multi-chart ðTCMÞ of approximately 200 or 500, we
had to choose the single charts to have approximately
equal in-control ARL0 = L0. Set L0 and use step (4) to
determine the control limits; (d1′ , d2′ ,⋯, dk′). Adjust di′
until the in-control ARL0 of CUSUM multi-chart is
arrived at

(6) Compute the ARLs of the single charts and CUSUM
multi-chart using charting statistic (4) and (6),
respectively. Compute the ARLs of the average
CUSUM chart by equation (14)

(7) Compute the ETD and ETDE of the CUSUM charts,
average CUSUM, and CUSUM multi-chart using
equations (9) and (10)
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2.4.2. Computation of the EWMA Multi-chart Statistic

(1) Determine the number of charts to be used for the
EWMA multi-chart. Generally, for the sake of com-
parison, we use the same number of charts as in the
CUSUM setting

(2) Determine the smoothing parameters w1,w2,⋯,wk

(3) Generate a random sample of size 1 at each step from
the Poisson distribution

(4) Determine the in-control ðARL0Þ of the single charts
say ARL0 ≈ 200 or 500 and use Monte Carlo simula-
tions to find the control limits (h1, h2,⋯, hk) of the
single charts using equation (5)

(5) Normally to arrive at an in-control ARL of EWMA
multi-chart ðTEMÞ of approximately 200 or 500, we
had to choose the single charts to have approximately
equal in-control ðARL0Þ = L0. Set L0 and use step (4)
to determine the control limits; (h1′ , h2′ ,⋯, hk′). Adjust
the hi′ until the in-control ARL0 of EWMA multi-
chart is arrived at

(6) Compute the ARLs of the single charts and EWMA
multi-chart using charting statistics (5) and (7),
respectively. Compute the ARLs of the average
EWMA chart by equation (15)

(7) Compute the ETD and ETDE of the single EWMA
charts, average EWMA chart and EWMA multi-
chart using equations (9) and (10)

2.4.3. Computation of the EWMA-CUSUM Multi-chart
Statistic

(1) Determine the number of charts to be used for the
EWMA-CUSUMmulti-chart. Generally, for the sake
of comparison, we use the same number of charts as
in the EWMA and CUSUM setting

(2) Determine the smoothing parameters w1,w2,⋯,wk
and reference values μ1, μ2,⋯, μk

(3) Generate a random sample of size 1 at each step from
the Poisson distribution

(4) Determine the in-control ðARL0Þ of the single
charts say ARL0 ≈ 200 or 500 and use Monte Carlo
simulations to find the control limits
(h1, h2,⋯, hk ; d1, d2,⋯, dk) of the single charts
using charting statistics (5) and (4).

(5) Normally to arrive at an in-control ARL of EWMA-
CUSUM multi-chart ðTECÞ of approximately 200 or
500, we had to choose the single charts to have
approximately equal in-control ðARL0Þ = L0. Set L0
and use step (4) to determine the control limits;
(h1′ , h2′ ,⋯, hk′ ; d1′ , d2′ ,⋯, dk′). Adjust the hi′and di′until
the in-control ARL0 of EWMA-CUSUM multi-chart
is arrived at

(6) Compute the ARLs of the single charts and EWMA-
CUSUM multi-chart using charting statistic (5) and
(8), respectively. Compute the ARLs of the average
EWMA-CUSUM chart by equation (16).

(7) Compute the ETD and ETDE of the single EWMA-
CUSUM charts and EWMA-CUSUM multi-chart
using equations (9) and (10).

3. Simulation Results and Discussion

In this section, we shall present and discuss the numerical
results of the CUSUM and multi-CUSUM chart in subsec-
tion 1, present and discuss results for EWMA and EWMA
multi-chart in subsection 2, discuss results for EWMA-
CUSUM multi-chart in subsection 3, and compare results
in subsection 4.

3.1. Simulation Results of CUSUM and Multi-CUSUM Chart.
Simulation analyses were carried out for a 10,000-repetition
experiment. We analyzed the simulation results for ten mean
shifts in the rate parameter (λ1 = 1:25,λ2 = 1:50, λ3 = 1:75,
λ4 = 2:00, λ5 = 2:25, λ6 = 2:50, λ7 = 2:75, λ8 = 3:00, λ9 =
3:25, and λ10 = 3:50) with change point ν = 1 that is the first
time there is signal or change. For comparison sake, the in-
controlARLðARL0Þ of all the charts were assumed to be equal
and was taken to be 200 and 500, respectively. The reference
values μi were chosen to be μ1 = 1:5, μ2 = 2:0, and μ3 = 2:5,
where μ1 is termed as a small mean shift in the rate parame-
ter, μ2 is a medium mean shift, and μ3 is a large mean shift in
the rate parameter, respectively. The simulation results for
the out-control average run length ðARLλÞ of the Poisson
CUSUM charts with parameter μ1, μ2, μ3, average CUSUM
chart and multi-chart ðTCMÞ were listed in column two, col-
umn three, column four, column five, and column six,
respectively. The parameter di and di′ are the width of the
control limits for the single CUSUM charts and CUSUM
multi-chart, respectively. We chose three separate CUSUM
charts because as suggested by Sparks [40], three or more sin-
gle charts are needed to achieve an efficient multi-chart
scheme. The control limits were obtained using Monte Carlo
simulations. To arrive at an in-control ARL of CUSUM
multi-chart ðTCMÞ of approximately 200, we had to choose
ARL0ðT1ðμ1ÞÞ = 279:86 with d1′ = 2:914062, ARL0ðT2ðμ2ÞÞ
= 280:86 with d2′ = 3:59375, and ARL0ðT3ðμ3ÞÞ = 280:62
with d3′ = 3:749023. Similarly, to arrive at an in-control ARL
of CUSUM multi-chart ðTCMÞ of approximately 500, we
had to choose ARL0ðT1ðμ1ÞÞ = 740:57 with d1′ = 3:794189,
ARL0ðT2ðμ2ÞÞ = 740:86 with d2′ = 4:47998, and ARL0ðT3ðμ3Þ
Þ = 741:11 with d3′ = 4:744361. In other words, we force all
theARL0 of the single charts tobeapproximately equal toguar-
antee anARL0 ofmulti-chart to be approximately 200 and500,
respectively.

Tables 1 and 2 show that each of the schemes has its
merits and demerits over a range, and perhaps, it is conflict-
ing to compare the charts in relation to the average run
length ðARLÞ. Ultimately, the ETD and ETDE enable us to
compare the charts over the whole range of shifts. CUSUM
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multi-chart ðTCMÞ has the smallest ETD and ETDE followed
by CUSUM chart Tμ2

ðd2Þ, Tμ1
ðd1Þ, and Tμ3

ðd3Þ, respectively,
for ARL0 = 200. Also, CUSUM multi-chartðTCMÞ has the
smallest ETD and ETDE for the range of shifts followed
by chart Tμ1

ðd1Þ, Tμ2
ðd2Þ, and Tμ3

ðd3Þ, respectively, for
ARL0 = 500.

Each of the single CUSUM charts has its main strength.
For example, T1ðμ1Þ is tuned to detect small shifts of the rate
parameter, and it is the fastest for detecting (λ = 1:25 and
1:50). Chart T2ðμ2Þ is the fastest for detecting medium shifts
in the rate parameter (λ = 2:00 and 2:25) while chart T3ðμ3Þ
is the fastest for detecting large shifts in the rate parameter
(λ = 2:50,2:75,3:00,3:25 and 3:50). The CUSUM multi-chart
is also faster in detecting shifts in the mean than the average
of the three single CUSUM charts.

3.2. Simulation Results of EWMA and EWMA Multi-chart.
Tables 3 and 4 show the simulation analyses for EWMA

single charts and EWMA multi-chart for an ARL0 of 200
and 500, respectively. The simulation analyses for EWMA
and EWMA multi-charts were carried out for a 10,000-rep-
etition experiment. We analyzed the simulation results for
ten mean shifts in the rate parameter (λ1 = 1:25, λ2 = 1:50,
λ3 = 1:75, λ4 = 2:00, λ5 = 2:25, λ6 = 2:50, λ7 = 2:75, λ8 =
3:00, λ9 = 3:25, and λ10 = 3:50) with change point ν = 1 that
is the first time there is signal or change. We chose values
of the smoothing parameter wi to be w1 = 0:1, w2 = 0:5, and
w3 = 0:9: The simulation results for the out-control average
run length ðARLλÞ of the EWMA and EWMA multi-charts
were listed on Tables 3 and 4, respectively. The parameter
hi and hi′ are the width of the control limits for the single
EWMA charts and EWMA multi-chart, respectively. We
chose three separate EWMA charts similar to the CUSUM
simulation setting.

The control limits were obtained using Monte Carlo
simulations. To arrive at an in-control ARL of EWMA

Table 1: ARLs with their SDRL (in bracket) for the CUSUM and multi-CUSUM chart with ARL0 ≈ 200.

Shifts in λð Þ T1 μ1ð Þ T2 μ2ð Þ T3 μ3ð Þ Average CUSUM TCM μ1, μ2, μ3ð Þd1 = 2:609375 d2 = 3:238342 d3 = 3:453125
1.00 202.53 (192.35) 204.21 (203.3) 203.86 (202.29) 203.53 (199.31) 200.91 (194.15)

1.25 45.44 (37.36) 51.29 (46.61) 58.45 (56.17) 51.73 (46.71) 48.11 (41.63)

1.50 20.64 (14.18) 21.77 (18.01) 24.25 (21.58) 22.22 (17.92) 20.90 (15.07)

1.75 12.79 (8.96) 12.67 (8.70) 13.50 (10.94) 12.99 (9.53) 12.61 (7.75)

2.00 9.17 (6.71) 8.71 (4.92) 8.95 (5.62) 8.94 (5.75) 8.85 (5.44)

2.25 7.26 (4.05) 6.59 (3.89) 6.71 (3.65) 6.85 (3.86) 6.74 (3.98)

2.50 6.03 (3.08) 5.41 (2.98) 5.25 (2.91) 5.56 (2.99) 5.47 (3.01)

2.75 5.15 (2.55) 4.51 (2.37) 4.29 (2.31) 4.65 (2.41) 4.60 (2.50)

3.00 4.47 (2.12) 3.93 (2.06) 3.72 (1.94) 4.04 (2.04) 3.91 (1.98)

3.25 4.01 (1.77) 3.51 (1.73) 3.27 (1.64) 3.60 (1.71) 3.45 (1.69)

3.50 3.59 (1.49) 3.15 (1.44) 2.92 (1.41) 3.22 (1.45) 3.07 (1.42)

ETD 8.971 8.898 9.389 9.086 8.692

ETDE 11.855 12.154 13.131 12.380 11.771

Table 2: ARLs with their SDRL (in bracket) for the CUSUM and multi-CUSUM chart with ARL0 ≈ 500.

Shifts in λð Þ T1 μ1ð Þ T2 μ2ð Þ T3 μ3ð Þ Average CUSUM TCM μ1, μ2, μ3ð Þd1 = 3:430471 d2 = 4:090408 d3 = 4:331055
1.00 500.54 (490.24) 501.72 (492.04) 501.17 (495.91) 501.14 (492.73) 500.17 (485.63)

1.25 70.77 (58.68) 88.97 (83.20) 102.39 (99.86) 87.38 (80.58) 75.69 (63.93)

1.50 27.66 (18.25) 30.87 (24.72) 36.28 (32.23) 31.60 (25.07) 28.81 (19.96)

1.75 16.54 (9.14) 16.75 (11.80) 18.06 (14.48) 17.12 (11.81) 16.41 (10.24)

2.00 11.79 (5.67) 10.99 (6.84) 11.45 (8.25) 11.41 (6.92) 11.23 (6.53)

2.25 9.28 (4.13) 8.13 (4.45) 8.02 (5.12) 8.48 (4.57) 8.51 (4.80)

2.50 7.55 (3.25) 6.48 (3.38) 6.30 (3.79) 6.78 (3.47) 6.68 (3.65)

2.75 6.48 (2.65) 5.42 (2.70) 5.14 (2.79) 5.68 (2.71) 5.51 (2.86)

3.00 5.65 (2.23) 4.71 (2.23) 4.39 (2.24) 4.92 (2.23) 4.69 (2.40)

3.25 5.03 (1.90) 4.10 (1.89) 3.89 (1.90) 4.34 (1.90) 4.05 (2.02)

3.50 4.52 (1.65) 3.65 (1.61) 3.46 (1.61) 3.88 (1.62) 3.60 (1.75)

ETD 12.176 12.566 13.590 12.779 11.783

ETDE 16.527 18.007 19.938 18.159 16.518
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multi-chart ðTEMÞ of approximately 200, we had to choose
ARL0ðTE1

ðw1ÞÞ = 360:65 with h1′ = 1:59916, ARL0ðTE2
ðw2ÞÞ

= 360:27 with h2′ = 3:00625, and ARL0ðTE3
ðw3ÞÞ = 359:26

with h3′ = 4:51543. Similarly, to arrive at an in-control ARL
of EWMA multi-chart ðTEMÞ of approximately 500, we
had to choose ARL0ðTE1

ðw1ÞÞ = 899:40 with h1′ = 1:711293
, ARL0ðTE2

ðw2ÞÞ = 900:53 with h2′ = 3:00625, and ARL0ðTE3
ð

w3ÞÞ = 900:22 with h3′ = 4:689937. In other words, we force
all the ARL0 of the single charts to be approximately equal to
guarantee an ARL0 of multi-chart to be approximately 200
and 500, respectively.

Tables 3 and 4 show that each of the schemes has its
merits and demerits over a range, and perhaps, it is conflict-
ing to compare the charts in relation to the average run
length ðARLÞ. We use the ETD and ETDE to compare the

charts over the whole range of shifts. EWMA multi-chart
ðTEMÞ has the smallest ETD and ETDE followed by
EWMA chart TE2

ð0:5Þ, TE3
ð0:9Þ, and TE1

ð0:1Þ, respectively,
for ARL0 = 200. Also, EWMA multi-chart ðTEMÞ has the
smallest ETD and ETDE followed by chart TE1

ð0:1Þ, TE2
ð0:5

Þ and TE3
ð0:9Þ, respectively, for ARL0 = 500. The EWMA

multi-chart is also faster in detecting shifts in the mean than
the average of the three single EWMA charts.

3.3. Simulation Results of CUSUM-EWMA-CUSUM Charts.
Tables 5–8 show the simulation analyses for EWMA-
CUSUM single charts and EWMA-CUSUM multi-chart for
an ARL0 of 200 and 500, respectively. The simulation analy-
ses were carried out for a 10,000-repetition experiment. We
analyzed the simulation results for ten mean shifts in the rate
parameter (λ1 = 1:25, λ2 = 1:50, λ3 = 1:75, λ4 = 2:00, λ5 =

Table 3: ARLs with their SDRL (in bracket) for the EWMA chart and EWMA multichart with ARL0 ≈ 200.

Shifts in λð Þ TE1
0:1ð Þ TE2

0:5ð Þ TE3
0:9ð Þ Average EWMA TEMh1 = 1:517578 h2 = 2:815918 h3 = 3:806445

1.00 201.51 (180.30) 200.89 (198.31) 199.37 (194.44) 200.59 (191.02) 201.30 (191.34)

1.25 51.92 (35.82) 66.89 (63.94) 76.04 (76.97) 64.95 (58.91) 54.83 (44.98)

1.50 27.19 (14.17) 30.43 (27.86) 35.04 (34.94) 30.89 (25.66) 25.93 (18.08)

1.75 18.47 (8.01) 17.20 (14.83) 19.79 (18.99) 18.49 (13.94) 16.22 (10.57)

2.00 14.05 (5.34) 11.10 (8.85) 12.25 (11.33) 12.47 (8.51) 11.30 (7.25)

2.25 11.39 (3.98) 7.94 (5.98) 8.47 (7.62) 9.27 (5.86) 8.57 (5.49)

2.50 9.69 (3.15) 6.14 (4.36) 6.34 (5.45) 7.39 (4.32) 6.74 (4.36)

2.75 8.41 (2.63) 4.94 (3.15) 4.90 (4.04) 6.08 (3.27) 5.49 (3.53)

3.00 7.48 (2.23) 4.13 (2.58) 3.97 (3.17) 5.19 (2.66) 4.59 (2.93)

3.25 6.74 (1.96) 3.58 (2.16) 3.31 (2.48) 4.54 (2.20) 3.97 (2.48)

3.50 6.13 (1.75) 3.15 (1.81) 2.88 (2.05) 4.05 (1.87) 3.42 (2.08)

ETD 12.837 11.091 12.121 12.016 10.454

ETDE 16.147 15.550 17.299 16.332 14.106

Table 4: ARLs with their SDRL (in bracket) for the EWMA charts and EWMA multichart with ARL0 ≈ 500.

Shifts in λð Þ TE1
0:1ð Þ TE2

0:5ð Þ TE3
0:9ð Þ Average EWMA TEMh1 = 1:641053 h2 = 3:102122 h3 = 4:599133

1.00 500.94 (484.69) 501.15 (500.08) 501.23 (496.67) 501.11 (493.81) 501.97 (492.12)

1.25 82.02 (61.84) 138.95 (136.88) 163.51 (162.92) 128.16 (120.55) 95.57 (82.52)

1.50 35.52 (20.29) 54.14 (53.46) 72.77 (71.59) 54.14 (48.45) 37.43 (25.96)

1.75 22.22 (10.15) 27.86 (25.25) 37.67 (36.63) 29.25 (24.01) 21.23 (13.16)

2.00 16.54 (6.44) 16.56 (14.17) 22.99 (21.50) 18.70 (14.04) 14.37 (8.78)

2.25 13.04 (4.67) 11.19 (8.98) 14.90 (13.57) 13.04 (9.07) 10.47 (6.36)

2.50 10.82 (3.54) 8.14 (6.07) 10.61 (9.44) 9.86 (6.35) 8.17 (5.14)

2.75 9.44 (2.96) 6.31 (4.46) 7.99 (6.95) 7.91 (4.79) 6.52 (4.19)

3.00 8.27 (2.48) 5.19 (3.40) 6.11 (5.02) 6.52 (3.63) 5.37 (3.44)

3.25 7.47 (2.19) 4.36 (2.75) 5.13 (4.02) 5.65 (2.99) 4.54 (2.90)

3.50 6.76 (1.91) 3.78 (2.23) 4.20 (3.15) 4.91 (2.43) 3.92 (2.48)

ETD 16.121 18.637 23.458 19.404 14.653

ETDE 21.210 27.648 34.588 27.814 20.759
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2:25, λ6 = 2:50, λ7 = 2:75, λ8 = 3:00, λ9 = 3:25, and λ10 =
3:50) with change point ν = 1 that is the first time there
is signal or change. For comparison sake, the in-control
ARLðARL0Þ of all the charts were assumed to be equal
and was taken to be 200 and 500, respectively. We consid-
ered one EWMA chart and two CUSUM charts. We chose
values of the smoothing parameter wi, to be w1 = 0:1 and
reference parametersμ1 = 1:5 and μ2 = 2:5 for TEC1

and
w1 = 0:1, μ1 = 1:5 and μ2 = 2 for TEC2

. The simulation
results for the out-control average run length ðARLλÞ of
the EWMA-CUSUM multi-charts were listed on
Tables 5–8, respectively.

The control limits were obtained using Monte Carlo sim-
ulations. To arrive at an in-control ARL of EWMA-CUSUM
multi-chart ðTEC1

Þ of approximately 200, we had to choose

ARL0ðTE1
ðw1ÞÞ = 304:92 with h1′ = 1:575862, ARL0ðT1ðμ1ÞÞ

= 304:31 with d1′ = 3:828079, and ARL0ðT2ðμ2ÞÞ = 305:31

with d2′ = 4:825815. Similarly, to arrive at an in-control ARL
of EWMA-CUSUM multi-chart ðTEC1

Þ of approximately

500, we had to choose ARL0ðTE1
ðw1ÞÞ = 819:18 with h1′ =

1:699961, ARL0ðT1ðμ1ÞÞ = 819:22 with d1′ = 3:900391, and
ARL0ðT2ðμ2ÞÞ = 820:04 with d2′ = 4:825815.

Also, to arrive at an in-control ARL of EWMA-CUSUM
multi-chart ðTEC2

Þ of approximately 200, we had to

choose ARL0ðTE1
ðw1ÞÞ = 270:8328 with h1′ = 1:559829,

ARL0ðT1ðμ1ÞÞ = 269:995 with d1′ = 2:87793, and ARL0ðT2
ðμ2ÞÞ = 270:5916 with d2′ = 3:545212. Similarly, to arrive at
an in-control ARL of EWMA-CUSUM multi-chart ðTEC1

Þ
of approximately 500, we had to choose ARL0ðTE1

ðw1ÞÞ =
740:0857 with h1′ = 1:687119, ARL0ðT1ðμ1ÞÞ = 739:1194 with
d1′ = 3:803393, and ARL0ðT2ðμ2ÞÞ = 740:4778 with d2′ =
4:482666.

Table 5: ARLs with their SDRL (in bracket) for the CUSUM-EWMA-CUSUM charts with ARL0 ≈ 200.

Shifts in λð Þ TE1
0:1ð Þ T1 μ1 = 1:5ð Þ T2 μ2 = 2:5ð Þ Average EWMA-CUSUM TEC1h1 = 1:517578 d1 = 2:609375 d2 = 3:453125

1.00 201.51 (180.30) 202.53 (192.35) 203.86 (202.29) 202.63 (191.65) 200.20 (190.23)

1.25 51.92 (35.82) 45.44 (37.36) 58.45 (56.17) 51.94 (43.12) 47.14 (39.18)

1.50 27.19 (14.17) 20.64 (14.18) 24.25 (21.58) 24.03 (16.64) 21.66 (15.37)

1.75 18.47 (8.01) 12.79 (8.96) 13.50 (10.94) 14.92 (9.30) 13.15 (8.58)

2.00 14.05 (5.34) 9.17 (6.71) 8.95 (5.62) 10.72 (5.89) 9.19 (5.66)

2.25 11.39 (3.98) 7.26 (4.05) 6.71 (3.65) 8.45 (3.89) 7.08 (4.21)

2.50 9.69 (3.15) 6.03 (3.08) 5.25 (2.91) 6.99 (3.05) 5.57 (3.22)

2.75 8.41 (2.63) 5.15 (2.55) 4.29 (2.31) 5.95 (2.50) 4.66 (2.65)

3.00 7.48 (2.23) 4.47 (2.12) 3.72 (1.94) 5.22 (2.10) 3.96 (2.19)

3.25 6.74 (1.96) 4.01 (1.77) 3.27 (1.64) 4.67 (1.79) 3.46 (1.90)

3.50 6.13 (1.75) 3.59 (1.49) 2.92 (1.41) 4.21 (1.55) 3.11 (1.62)

ETD 12.837 8.971 9.389 10.398 8.821

ETDE 16.147 11.855 13.131 13.710 11.898

Table 6: ARLs with their SDRL (in bracket) for the CUSUM-EWMA-CUSUM charts with ARL0 ≈ 500.

Shifts in λð Þ TE1
0:1ð Þ T1 μ1 = 1:5ð Þ T2 μ2 = 2:5ð Þ Average EWMA-CUSUM TEC1h1 = 1:641053 d1 = 3:794189 d2 = 4:744361

1.00 500.94 (484.69) 500.54 (490.24) 501.17 (495.91) 500.88 (490.28) 501.78 (486.69)

1.25 82.02 (61.84) 70.77 (58.68) 102.39 (99.86) 85.06 (73.46) 76.35 (62.88)

1.50 35.52 (20.29) 27.66 (18.25) 36.28 (32.23) 33.15 (23.59) 29.13 (19.82)

1.75 22.22 (10.15) 16.54 (9.14) 18.06 (14.48) 18.94 (11.26) 17.05 (10.40)

2.00 16.54 (6.44) 11.79 (5.67) 11.45 (8.25) 13.26 (6.79) 11.52 (6.74)

2.25 13.04 (4.67) 9.28 (4.13) 8.02 (5.12) 10.11 (4.64) 8.67 (5.04)

2.50 10.82 (3.54) 7.55 (3.25) 6.30 (3.79) 8.22 (3.53) 6.75 (3.78)

2.75 9.44 (2.96) 6.48 (2.65) 5.14 (2.79) 7.02 (2.80) 5.54 (2.99)

3.00 8.27 (2.48) 5.65 (2.23) 4.39 (2.24) 6.10 (2.32) 4.71 (2.44)

3.25 7.47 (2.19) 5.03 (1.90) 3.89 (1.90) 5.46 (2.00) 4.12 (2.10)

3.50 6.76 (1.91) 4.52 (1.65) 3.46 (1.61) 4.91 (1.72) 3.65 (1.77)

ETD 16.121 12.176 13.590 13.960 11.955

ETDE 21.21 16.527 19.938 19.223 16.749
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In other words, we force all the ARL0 of the single charts
to be approximately equal to guarantee an ARL0 of multi-
chart to be approximately 200 and 500, respectively.

Tables 5–8 show that each of the schemes has its merits
and demerits over a range, and perhaps, it is conflicting
to compare the charts in relation to the average run length
ðARLÞ. We use the ETD and ETDE to compare the charts
over the whole range of shifts. EWMA-CUSUM multi-
chart ðTEC1

Þ has the smallest ETD and ETDE and hence
better detection performance than ðTEC2

Þ.

3.4. Comparison of Results. The CUSUMmulti-chart is better
on the whole in detecting various mean shifts in the rate
parameter than EWMA multi-chart and EWMA-CUSUM
multi-chart. Furthermore, the EWMA multi-chart is better
on the whole in detecting various mean shifts than EWMA-

CUSUM multi-chart. We subsequently used CUSUM
multi-chart to monitor the real data. Also, the simulation
results support the theoretical analysis.

3.5. An Illustration with Health Surveillance Data. We use
monthly tuberculosis (TB) data (see Supplementary Mate-
rials) from the northern regional health directorate of the
Ghana Health Service, spanning the period of 2010 to 2017
to illustrate the implementation of a multi-CUSUM scheme
for monitoring health data. The tuberculosis data consists
of mainly monthly cases of three types of tuberculosis,
namely tuberculosis arthritis (TB arthritis), tuberculosis
meningitis (TB meningitis), and tuberculosis miliary (TB
miliary). Tuberculosis is basically an infectious disease
caused by a bacterial microorganism called mycobacterium
tuberculosis. The disease mostly affects the lungs but can
affect or spread to other parts of the body as well. TB is

Table 7: ARLs with their SDRL (in bracket) for the CUSUM-EWMA-CUSUM charts with ARL0 ≈ 200.

Shifts in λð Þ TE1
0:1ð Þ T1 μ1 = 1:5ð Þ T2 μ2 = 2:0ð Þ Average EWMA-CUSUM TEC2h1 = 1:517578 d1 = 2:609375 d2 = 3:453125

1.00 201.51 (180.30) 202.53 (192.35) 204.21 (203.3) 202.75 (191.98) 199.58 (192.24)

1.25 51.92 (35.82) 45.44 (37.36) 51.29 (46.61) 49.55 (39.93) 46.76 (38.31)

1.50 27.19 (14.17) 20.64 (14.18) 21.77 (18.01) 23.20 (15.45) 21.45 (15.34)

1.75 18.47 (8.01) 12.79 (8.96) 12.67 (8.70) 14.64 (8.56) 12.80 (8.03)

2.00 14.05 (5.34) 9.17 (6.71) 8.71 (4.92) 10.64 (5.66) 9.18 (5.46)

2.25 11.39 (3.98) 7.26 (4.05) 6.59 (3.89) 8.41 (3.97) 7.00 (3.86)

2.50 9.69 (3.15) 6.03 (3.08) 5.41 (2.98) 7.04 (3.07) 5.76 (3.10)

2.75 8.41 (2.63) 5.15 (2.55) 4.51 (2.37) 6.02 (2.52) 4.84 (2.41)

3.00 7.48 (2.23) 4.47 (2.12) 3.93 (2.06) 5.29 (2.14) 4.20 (2.02)

3.25 6.74 (1.96) 4.01 (1.77) 3.51 (1.73) 4.75 (1.82) 3.70 (1.68)

3.50 6.13 (1.75) 3.59 (1.49) 3.15 (1.44) 4.29 (1.56) 3.35 (1.47)

ETD 12.837 8.971 8.898 10.233 8.892

ETDE 16.147 11.855 12.154 13.383 11.904

Table 8: ARLs with their SDRL (in bracket) for the CUSUM-EWMA-CUSUM charts with ARL0 ≈ 500.

Shifts in λð Þ TE1
0:1ð Þ T1 μ1 = 1:5ð Þ T2 μ2 = 2:0ð Þ Average EWMA-CUSUM TEC2h1 = 1:641053 d1 = 3:430471 d2 = 4:090408

1.00 500.94 (484.69) 500.54 (490.24) 501.72 (492.04) 501.07 (488.99) 501.25 (492.97)

1.25 82.02 (61.84) 70.77 (58.68) 88.97 (83.2) 80.59 (67.91) 74.70 (62.12)

1.50 35.52 (20.29) 27.66 (18.25) 30.87 (24.72) 31.35 (21.09) 29.24 (19.67)

1.75 22.22 (10.15) 16.54 (9.14) 16.75 (11.80) 18.50 (10.36) 16.84 (10.09)

2.00 16.54 (6.44) 11.79 (5.67) 10.99 (6.84) 13.11 (6.32) 11.65 (6.54)

2.25 13.04 (4.67) 9.28 (4.13) 8.13 (4.45) 10.15 (4.42) 8.79 (4.68)

2.50 10.82 (3.54) 7.55 (3.25) 6.48 (3.38) 8.28 (3.39) 7.02 (3.50)

2.75 9.44 (2.96) 6.48 (2.65) 5.42 (2.70) 7.11 (2.77) 5.86 (2.83)

3.00 8.27 (2.48) 5.65 (2.23) 4.71 (2.23) 6.21 (2.31) 5.04 (2.35)

3.25 7.47 (2.19) 5.03 (1.90) 4.10 (1.89) 5.53 (1.99) 4.44 (2.00)

3.50 6.76 (1.91) 4.52 (1.65) 3.65 (1.61) 4.98 (1.72) 3.98 (1.72)

ETD 16.121 12.176 12.566 13.620 12.081

ETDE 21.210 16.527 18.007 18.581 16.756
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contagious and normally spreads into the air through sneez-
ing, talking, and coughing of a person with TB of the lungs or
throat. Symptoms of TB in the lungs may include bad cough
that lasts three weeks or longer, weight loss, loss of appetite,
coughing up blood or mucus, weakness or fatigue, fever,
and night sweats. TB can be deadly if it is not treated well.
Normally patients can take antibiotics like rifampicin
through the supervision of a medical doctor [45].

Tuberculosis (TB) is one of the top ten causes of death
worldwide [46]. In 2017, there were more than 10 million
cases of active TB which resulted in 1.6 million deaths includ-
ing 0.3 million among people with HIV. New infections
occur in about 1% of the population each year and about
25% of the world’s population is thought to be infected with
TB [42]. More than 95% of deaths occurred in developing
countries, and more than 50% in India, China, Indonesia,
Pakistan, and the Philippines [46]. In Ghana, the total cases
of notified tuberculosis in 2017 were about 14,550 [47].

Tuberculosis arthritis is a joint inflammation caused by
the invasion of the joint by tuberculosis bacilli that have
migrated from a primary infection, usually in the chest. The
most common joints affected include the wrists, ankles,
knees, hips, and spine [45].

Tuberculosis meningitis is a disease that affects the tis-
sues covering the brain and spinal cord. Tuberculosis menin-
gitis is caused by mycobacterium tuberculosis. The bacterial
spreads to the brain and spine from other parts of the body
usually the lungs [45].

Miliary tuberculosis is another form of tuberculosis where
the disease or infection spreads through the entire body. This
type of tuberculosis is normally associated with people whose
immune system has already been compromised. This is also
caused by mycobacterium tuberculosis [45].

Figure 1 shows the box plot of the count of TB arthritis,
TB meningitis, and TB miliary between the years of 2010 to
2017. The average count of TB Arthritis seems to be greater
than the average of TB miliary and the average of TB menin-
gitis. Also, the annual average incidence of the diseases varied
from year to year as shown in (Figure 2). The means of the
diseases seem to be dynamic, so we seek to detect changes
in the average counts of the diseases. Many researchers have
developed statistical methods for detecting changes in disease
incidence or rates (see Mei et al. [28], Jiang et al. [29] and
Richards et al. [30]). We proposed the multi-CUSUM chart
for detecting changes in disease incidence. We consider the
disease incidence as an i:i:d. random sequence, and we mon-
itor the three tuberculosis diseases, namely tuberculosis
arthritis, tuberculosis meningitis, and tuberculosis miliary.
We applied the chi-square goodness-of-fit test to ascertain
whether the data; fYi : i = 1, 2,⋯, 96g is indeed coming
from the Poisson distribution. The hypothesis of interest is
H0: The form of the distribution for the data is Poisson;
verses H1: The form of the distribution for the data is
not Poisson. We control the test at a significance level of
α = 0:05. If the p value of the goodness-of-fit test is greater
than the specified significance level ðαÞ, we fail to reject
H0 and conclude that the data is indeed Poisson i:i:d:
We performed the chi-square goodness-of-fit test for the
three diseases counts.

The p-values for the chi-square goodness-of-fit test are
p value (TB arthritis) = 2:977376 × 10−22, p value (TB
miliary) = 1:393786 × 10−13, and p value(TB meningitis) =
2:534261 × 1009. We therefore reject the assertion that the
diseases are Poisson i:i:d:′s since the p values are less than
the specified significance level. We consequently transformed
the data by {Yij/

ffiffiffiffi
λi

p
: i = 1,⋯,m and j = 1, 2,⋯, 96}.

To detect changes in the tuberculosis diseases using the
multi-CUSUM chart, we obtain estimates of the reference
values of the diseases using data before 2013 as phase I data
to estimate the rate parameters. The in-control reference
values are μ0i = ðμ01, μ02, μ03Þ, where say μ01 = median or
mean of the in-control data, μ02 = third quarter of the in-
control data, and μ03 = max of the in-control data; thus, we

Figure 1: Box plot of count of TB arthritis, TB meningitis, and TB
miliary between the years of 2010 to 2017.
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Figure 2: Annual average incidence of the diseases.
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choose the reference values such that 1 < μ01 < μ02 < μ03. We
then purpose to determine the detection capability of the
multi-CUSUM chart to detect changes in the diseases start-
ing from 2013.

We briefly expound the procedural steps for implement-
ing the multi-CUSUM scheme for detecting changes in the
tuberculosis disease incidence:

(1) Standardized your observations {Yij/
ffiffiffiffi
λi

p
: i = 1,⋯,m

and j = 1, 2,⋯, n}

(2) Determine the in-control values of the reference
parameters ðμ01, μ02, μ03Þ, Normally the in-control
values are unknown; hence, we estimate them from
the phase I historical data (e.g., estimate from data
before 2013, say μ01 = median or mean of in-
control data, μ02 = third quarter of in-control data,
and μ03 = max of in-control data)

(3) Determine the in-control ðARL0Þ of the individual
charts say ðARL0Þ ≈ 50 and use Monte Carlo simula-
tions to find the control limits of single charts

(4) Assume some in-control ðARL0Þ of the multi-
CUSUM charts say ðARL0Þ ≈ 50, then use Monte
Carlo simulations to arrive at the control limits of
the multi-CUSUM charts

(5) Establish the multi-CUSUM chart then monitor new
observations over time

Table 9 presents numerical results for monitoring TB
arthritis, TB meningitis, and TB miliary starting from the
37th month (January 2013). According to Table 9, the in-
control rate parameter ðλ0Þ = 1. We use the same range of
shifts in the rate parameter ða, bÞ and number of shifts ðlÞ
as in the simulation setting. The in-control ARL0 ≈ 50means

the expected number of false alarms for monitoring in
phase II.

CUSUM multi-chart ðTCMÞ was the quickest to detect
changes in TB arthritis, since it has the smallest ETD and
ETDE for detecting shifts in a range. Chart Tμ2

ðd2Þ also out-
performed chart Tμ3

ðd3Þ and chart Tμ1
ðd1Þ in that order,

respectively.
For TB meningitis and TB miliary disease, CUSUM

multi-chart ðTCMÞ was the quickest to detect changes, since
it has the smallest ETD and ETDE for detecting shifts in a
range followed by chart Tμ3

ðd3Þ, Tμ2
ðd2Þ, and Tμ1

ðd1Þ in that
respective order. In general, CUSUM multi-chart is faster in
detecting changes in the diseases (TB arthritis, TB meningi-
tis, and TB miliary) than the single charts.

4. Conclusion

Basically, this study seeks to monitor tuberculosis diseases
based on multi-chart schemes and also evaluate the efficiency
of the proposed scheme. To achieve this purpose we carried
out a simulation study for CUSUM multi-chart, EWMA
multi-chart and EWMA-CUSUM multi-chart subject to the
Poisson distribution. The chart with the smallest expectation
of the time for detecting mean shifts (ETD) and the smallest
expectation of the time for detecting mean shifts when the
ARLλi are assigned equal weights (ETDE) is better. The sim-
ulation results show that CUSUM multi-chart had the smal-
lest ETD and ETDE; hence, CUSUM multi-chart has better
detection performance than EWMA multi-chart and
EWMA-CUSUM multi-chart. Also, the average of the
CUSUM charts performed less better than CUSUM multi-
chart likewise the average of the EWMA charts performed
less better than EWMA multi-chart.

We subsequently used CUSUM multi-chart to monitor
tuberculosis (TB) disease from the northern region of Ghana

Table 9: CUSUM and Multi-CUSUM chart results for monitoring TB arthritis, TB meningitis, and TB miliary with ARL0 ≈ 50.

Control chart T1 μ1ð Þ T2 μ2ð Þ T3 μ3ð Þ TCM μ1, μ2, μ3ð Þ
TB arthritis

Control limit d1 = 0:72 d2 = 1:54 d3 = 1:1919 d′ = 0:8367187,1:75,2:28125ð Þ
Reference values μ01 = 1:1609 μ02 = 1:5142 μ03 = 2:1199
ETD 5.512 5.119 5.122 5.071

ETDE 6.832 6.443 6.556 6.405

TB meningitis

Control limit d1 = 1:046875 d2 = 1:657812 d3 = 1:964062 d′ = 1:1375,1:817188,2:179652ð Þ
Reference values μ01 = 1:2632 μ02 = 1:6168 μ03 = 2:0211
ETD 5.254 5.175 5.085 5.041

ETDE 6.542 6.537 6.478 6.372

TB miliary

Control limit d1 = 0:7148438 d2 = 1:504687 d3 = 2:354688 d′ = 0:9222656,1:889893,2:591463ð Þ
Reference values μ01 = 1:1597 μ02 = 1:5126 μ03 = 3:0252
ETD 5.505 5.105 4.954 4.878

ETDE 6.805 6.420 6.370 6.228
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spanning the period of 2010 to 2017. The tuberculosis dis-
eases were TB arthritis, TB meningitis, and TB miliary. We
used the data before 2013 as phase 1 historical data for esti-
mating reference values then starting from the 37th month
(January 2013) we seek to monitor changes in disease inci-
dence. CUSUMmulti-chart ðTCMÞ was the quickest to detect
changes followed by chart Tμ2

ðd2Þ, Tμ3
ðd3Þ, and Tμ1

ðd1Þ in
that order, respectively, for TB arthritis disease. For TB men-
ingitis and TB miliary disease, CUSUM multi-chart ðTCMÞ
was the quickest to detect changes followed by chart Tμ3
ðd3Þ, Tμ2

ðd2Þ, and Tμ1
ðd1Þ in that respective order. Appar-

ently, the size of shift in TB arthritis disease was medium,
while the size of the shift was pretty large for TB menin-
gitis and TB miliary.

Early detection of upward abrupt changes in the diseases
could send warning signals to public health workers to trigger
public awareness, education, and general control of tubercu-
losis in the northern region as well as other regions of Ghana.
Further research can consider how the procedures consid-
ered in the article may be modified or adapted using non-
parametric monitoring methods and also methods that will
account for dependence among the diseases in case there
are strong correlations among the diseases. Also, other distri-
butions like the negative binomial can be considered to
account for the possible effect of overdispersion.

Appendix

Proofs of Theorems and Propositions

Proof of Proposition 1. For any real mean λj where 1 ≤ j ≤ l,
we can take some reference value μi0 depending on λj

such that

λj ln μi0 + 1 − μi0

h i
> λ j ln μi + 1 − μi
� �

∨0 ðA:1Þ

for all i ≠ i0, where x∨0 denotes maxðx, 0Þ.
It follows from Theorem 3.1 and Lemma 3.2 in Han and

Tsung [43] that for large L0 we have

dj′/dj ≈ 1,

Eλ j
TCMð Þ ≈ dj′

Eλ j
ln Pμi0

X1ð Þ/Pλ0
X1ð Þ

n o
≈

dj

λj ln μi0 + 1 − μi0

h i
∨0

≈ Eλ j
Tμi0

� � ðA:2Þ

Eλ j
Tμi

� �
≈

dj

λj ln μi + 1 − μi
� �

∨0
ðA:3Þ

for 1 ≤ j ≤ l and 1 ≤ i ≤m, where λ0 = 1.

Hence, by (A.1), (A.2), and (A.3), we have

ETD TCMð Þ = 〠
l

j=1

�λjEλ j
TCMð Þ ≤ 〠

l

j=1

�λjEλ j
Tμi

� �
≈ ETD Tμi

� �
ðA:4Þ

for 1 ≤ i ≤m, where �λ j = λ j/∑
l
k=1 λk and ∑l

j=1
�λj = 1 for 1 ≤ j

≤ l. This proves (12).
Similarly, we can prove (13).
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