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A B S T R A C T   

Background: Exclusion criteria that are treatment effect modifiers (TEM) decrease RCTs results generalisability 
and the potentials of effectiveness estimation. In “augmented RCTs”, a small proportion of otherwise-excluded 
patients are included to allow for effectiveness estimation. In Hodgkin Lymphoma (HL) RCTs, older age and 
comorbidity are common exclusion criteria, while also TEM. We simulated HL RCTs augmented with age or 
comorbidity, and explored in each scenario the impact of augmentation on effectiveness estimation accuracy. 
Methods: Simulated data with a population of HL individuals initiating drug A or B was generated. There were 
drug-age and drug-comorbidity interactions in the simulated data, with a greater magnitude of the former 
compared to the latter. Multiple augmented RCTs were simulated by randomly selecting patients with increasing 
proportions of older, or comorbid patients. Treatment effect size was expressed using the between-group 
Restricted Mean Survival Time (RMST) difference at 3 years. For each augmentation proportion, a model esti-
mating the “real-world” treatment effect (effectiveness) was fitted and the estimation error measured (Root Mean 
Square Error, RMSE). 
Results: In simulated RCTs including none (0%), or the real-world proportion (30%) of older patients, the 
interquartile range of RMST difference was 0.4–0.5 years and 0.2–0.3 years, respectively, and RMSE were 0.198 
years (highest possible error) and 0.056 years (lowest), respectively. Augmenting RCTs with 5% older patients 
decreased estimation error substantially (RMSE = 0.076 years). Augmentation with comorbid patients proved 
less useful for effectiveness estimation. 
Conclusion: In augmented RCTs aiming to inform the effectiveness of drugs, augmentation should concern in 
priority those exclusion criteria of suspected important TEM magnitude, so as to minimie the proportion of 
augmentation necessary for good effectiveness estimations.   

1. Introduction 

Pre-authorization randomized controlled trials (RCTs) remain a gold 
standard to assess drug efficacy for clinical research and for regulatory 
approval of a new therapy. However, they often include a highly 
selected population poorly representative of patients who will receive 
the intervention in routine clinical practice [1–4] hence the risk for an 
efficacy-to-effectiveness gap [5]. This issue is increasingly recognized by 

regulators [6] and health technology assessment bodies [7] that call for 
broadening eligibility criteria [8]. On the other hand, exclusion criteria 
are often chosen to protect the safety of patients participating in clinical 
trials and minimize the risk of treatment effect dilution. Broadening a 
trial population is not always feasible and therefore, the use of predic-
tive modeling techniques is an appealing option to predict effectiveness 
using data generated by the pre-authorization RCT and extrapolate its 
results to the real world [9,10]. However, when eligibility criteria lead 
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to totally excluding specific patient phenotypes and to modifying the 
distribution of key treatment effect modifiers (TEM) [11], predictive 
modeling techniques may be of limited use. 

The “RCT augmentation” is a trial simulation technique that provides 
a compromise between totally excluding patients based on exclusion 
criteria that are also well-known or suspected TEM on the one hand, and 
totally including them on the other hand. Through trial simulation, 
various proportions of patients with the exclusion criteria of interest in 
the RCT are “re-included”. Then, the impact of broadening these criteria 
is evaluated in regards to treatment effect size – and statistical power – 
and the ability of RCT data to inform on the real-world effect of the 
investigational therapy. The principle of an augmented RCT is to include 
a small proportion of patients with the exclusion criteria of interest in 
the RCT. This proportion should be small to minimize the risk incurred 
by completely allowing patients into the trial, but yet sufficient for 
effectiveness prediction purposes. 

Before implementing this methodology in a genuine RCT, we set-out 
to test its potentials and characteristics through different case studies. A 
first case study used observational data from a cohort of schizophrenia 
patients. Multiple RCTs comparing two antipsychotic drugs were 
simulated using this dataset, and augmented with increasing pro-
portions of patients having specific characteristics often used as exclu-
sion criteria (e.g., history of suicide attempt, alcohol use disorder). RCTs 
augmented with 10–20% patients having these characteristics allowed 
for good effectiveness prediction, highlighting the relevance of this 
methodology to better predict treatments effectiveness. The results of 
this case study also suggested the possibility to augment a trial popu-
lation while also maintaining statistical power [12]. 

In the present study we conducted a second case study on the “RCT 
augmentation” method, to explore in more details how the magnitude of 
treatment effect modification impacts the proportion of patients to re- 
include and the estimation accuracy of the model. We thus used fully- 
simulated data to set different magnitudes of treatment effect modifi-
cation to the exclusion criteria used. 

2. Material and methods 

2.1. General methodology 

For simplicity, we will call the estimated comparative effect from 
data similar to a traditional RCT “efficacy” while the observed 
comparative effect in real world will be called “effectiveness”. 

The RCT augmentation methodology is a step-by-step process start-
ing at the trial design stage when one or several exclusion criteria need 
to be applied (e.g., for safety, or ethical reasons) although they are 
known or suspected TEM. The general methodology is explained below 
and the specific example used in the present case study is depicted in 

Fig. 1. In a first step, a preferably large real-world dataset (e.g., obser-
vational cohort, electronic healthcare records) is used to estimate the 
effectiveness of the investigational treatment considered as the target 
measure for estimation. Second, from this real-world dataset patients 
who fulfil the RCT eligibility criteria are randomly selected. From this, 
multiple augmented RCTs are simulated by re-including patients who 
would otherwise be excluded at different proportions of augmentation. 
In these simulated RCTs, patients who would otherwise be totally 
excluded owing to specific characteristics are re-included in the RCT at 
different proportions of augmentation. Third, a predictive model is 
trained on each simulated augmented RCT and tested on real-world 
data. Estimation accuracy is then measured, thus providing an estima-
tion of the smallest necessary proportion of patients that would be 
necessary to augment the RCT so as to allow for good estimation of 
effectiveness. Ultimately, following the conduct of the genuine 
augmented RCT, the actual RCT data can be used, not only to measure 
the efficacy of the investigational treatment, but also to estimate its 
effectiveness. 

2.2. Scope of the case study 

Oncology was chosen for the present case study because oncology 
trials often use restrictive eligibility criteria [13–19] and initiatives have 
been taken recently to tackle this issue [20]. Namely, older age, frailty 
and the presence of severe comorbidity are commonly used as exclusion 
criteria while also being TEM. 

We used the example of adult patients suffering from relapsed/re-
fractory Hodgkin’s Lymphoma (rrHL) at a stage III or IV in the Ann 
Arbor Staging Classification [21]. They initiated either standard therapy 
(Adriamycin, Bleomycin, Vinblastine and Dacarbazine), thereafter 
called drug A, or the investigational combination of a monoclonal 
antibody with chemotherapy, thereafter called drug B. 

2.3. Study population 

A simulated dataset of N = 106 patients suffering from rrHL was 
generated, using the Python programming language (Python Software 
Foundation, https://www.python.org/) [22] (details in the Supple-
mental material). Patients’ characteristics were generated at a 
patient-level using information on their distribution as found in the 
literature (Table S1): age [23–26] (categorized into 5 groups), gender 
[27], disease stage (III vs. IV) [28], severe comorbidity (vs. none) [23]. 
The correlation between age and comorbidity was taken into account 
[23]. We purposely used a simple framework (directed acyclic graph, 
Fig. S1) in which patients were randomly allocated to either of the two 
therapeutic options (drug A or B) with a 1:1 ratio. Patients’ character-
istics were not associated with treatment choice, that is, there was no 

Fig. 1. Predictive modeling using augmented RCT 
data and providing an estimation of the statistic in the 
real world, and error made (RMSE) when compared 
with the “true” statistic 
rrHL, relapsed/refractory Hodgkin’s Lymphoma; 
RMST, Restricted Mean Survival Time; RMSE, Root 
Mean Square Error 
1: Augmented RCTs are simulated by extracting 1000 
random samples of 1200 patients from the simulated 
real-world population; for each set of simulations, 
RCTs are including increasing % older patients (or 
patients with severe comorbidity) 
2: An exponential Cox model is trained using the RCT 
dataset, providing model parameters 
3: The model is tested on the real-world population 
4: The estimated statistics are compared with the 
“real” statistics; estimation accuracy is measured 
using the RMSE 

* A practical use of the methodology requires a large real-world dataset.   
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confounding by indication. 
The endpoint of interest was Progression-Free Survival (PFS). Rele-

vant confounders and TEM were selected based on the literature. Effect 
modifiers used as exclusion criteria of interest (and criteria for 
augmentation) for the case study were older age (age≥60 vs. <60 years 
old) and severe comorbidity (any vs. none). Finally, each simulated 
patient’s PFS was generated using the Cox survival model with time 
independent hazard function defined by (Equation 1): 

λ= λ0
(
λdrug

)drug( λage
)age( λstage

)stage
(λcom)

com (
λdrug age

)drug×age( λdrug com
)drug×com 

λ0 being the hazard when all covariates are 0 and λk being the as-
sociation related to covariate k, i.e., the multiplier of the hazard when 
the covariate increases by one unit. In this model, a covariate has no 
effect when λk = 1. Equation 1 is equivalent to the more commonly used: 
λ = λ0eβage×age with λage = eβage . 

Constraints were used, based on information from the literature to 
find realistic parameters because these are not directly available in the 
literature. In turn, these lambda parameters were used to generate in-
dividual PFS values [25,28–32]. The values of lambda parameters in 
Equation 1 are provided in Supplemental material. The drug-age inter-
action parameter was λdrug_age = 1.43 and the drug-comorbidity inter-
action parameter was λdrug_com = 1.25. However, because age had 5 
possible categories and comorbidity only 2, the magnitude of interaction 
with age was in fact substantially more important than the one with 
comorbidity. The characteristics and median PFS in the simulated pa-
tients populations initiating drugs A or B are summarized in Table 1. 

2.4. Simulation of augmented RCTs 

From the simulated dataset of real-world patients, a sample of n =
600 patients in each therapeutic arm was randomized in a 1:1 ratio 
(typical sample size for oncology Phase-3 RCTs [29]). Follow-up lasted 3 
years. No loss to follow-up was considered because dropping out from 
oncology trials is infrequent [29]. No patient died prior to cancer pro-
gression or end of follow-up. The primary endpoint was PFS. The main 

statistic of interest was the between-arm difference in Restricted Mean 
Survival Time (RMST) at 3 years, expressed in years and thereafter 
called the RMST difference. RMST remains valid for non-proportional 
hazards [33] and is now often recommended as a primary endpoint in 
clinical trials [34–36]. It represents the average survival from Time 0 to 
a specified point in time (here, 3 years) and may be estimated as the area 
under the survival curve up to that point; the RMST difference is RMST 
under treatment B minus RMST under treatment A, at 3 years. The 
hazard ratio (HR) was used as an alternative statistic of interest. 

In order to explore the impact of different magnitudes of TEM on 
estimation accuracy we used the two exclusion criteria separately: when 
age≥60 was the exclusion criteria used in the simulation, the presence of 
severe comorbidity was not (i.e., patients with severe comorbidity were 
not excluded) and vice versa. The augmentation consisted in increasing 
the heterogeneity of the RCT population by re-including increasing 
proportions p of patients with either of the two exclusion criteria of 
interest thereby creating a series of augmented RCTs. The augmentation 
of an RCT with these specific patients was made while preserving a 
constant trial size: when older patients were added, younger ones were 
removed randomly. The same applied for severe comorbidity. The RCT 
population was augmented from pmin = 0% (i.e., no augmentation) to 
pmax (proportion of older/severely comorbid patients in the simulated 
real-world population, i.e., exclusion criteria not applied). The pro-
portions of older patients used to augment the RCT were successively: 
0%, 1%, 2%, 3%, 4%, 5%, 6%, 8%, 10%, 15%, 20% and 30%. The 
proportions of severely comorbid patients used to augment the RCT 
were successively: 0%, 1%, 2%, 3%, 4%, 5%, 6%, 8%, 10%, 15%, 20% 
and 29.7%. 

All simulations were performed with R software [37]. The R script 
and libraries used are provided in Supplemental material. 

2.5. Analyses and modeling 

The simulation process is described in Fig. 1 and detailed in Sup-
plemental material. For each simulation of an augmented RCT, the 
process was repeated 1000 times to minimize sampling error. In each 
simulated RCT, an exponential Cox model was trained and ridge regu-
larization was used [38]. The model was then tested in the simulated 
dataset thus providing estimated RMST difference and HR. 

The error made using the model was measured using the Root Mean 
Square Error (RMSE) [39], i.e., the mean distance between the real value 
of the statistic and the estimated statistics, 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
K

∑K

j=1

(
ŝj − s

)2

√
√
√
√

where K is the number of estimated statistics (here, K = 1000), the real 
value of the statistic and ̂sj the estimated statistics. RMSE was computed 
for each percentage p of augmentation. It decreases as estimation ac-
curacy improves, i.e., as the estimated statistics approach the actual 
statistic in the simulated dataset. No statistical test was performed to 
compare RMSE. 

2.6. Added value of predictive modeling 

We called the “standard RCT reading” the simple reading of the 
augmented RCT results, that is, without any predictive modeling 
(Fig. 2). When using the standard RCT reading, results obtained in an 
augmented RCT differ from those in a traditional, non-augmented RCT 
only because the populations are different. The standard RCT reading 
was explored to highlight the added value of predictive modeling. We 
anticipated that (i) standard RCT reading would be as good as predictive 
modeling to estimate effectiveness when p = pmax, and (ii) predictive 
modeling would provide better estimation of effectiveness for p < pmax. 

Table 1 
Characteristics of the simulated real-world population suffering from rrHL and 
effect of drugs A and B in this population.   

Simulated real-world population 

N = 1,000,000  

%a 

Age (years) 
15–29 29% 
30-44 22% 
45-59 19% 
60-74 19% 
75-90 11% 

Male sex 58.5% 
Disease stage 

Stage III 36% 
Stage IV 64% 

Number of comorbidities 
0 70% 
≥1 30% 

Initiates drug B (vs. A)b 50% 
Median PFSc, in years 

In patients initiating drug Ad 1.37 
In patients initiating drug B 1.94 

rrHL, relapsed/refractory Hodgkin’s Lymphoma; PFS, Progression-Free 
Survival: 

a Numbers are not provided due to the population size; 
b Drug B is the investigational drug compared to drug A; 
c The difference in median PFS between patients initiating drug A or B is solely 

due to the drug effect since as there is no difference in population characteristics; 
d In the simulated population, 50% of patients initiated drug A (n = 500,000), 

same for drug B. 
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3. Results 

By design, 57.6% of patients from the simulated population were 
eligible to a traditional, non-augmented RCT; 30.0% of patients were 
ineligible due to age≥60 years old and 29.7% due to having severe 
comorbidities. The RMST at 3 years in the entire patient population, and 
then stratified by age and severe comorbidity are provided in Table 2. 
Drug B was more effective than drug A overall (RMST difference = 0.26 
years), more effective than drug A in patients <60 years old (RMST 
difference = 0.46 years) but less effective in patients aged ≥60 years 
(RMST difference = − 0.21 years), illustrating the impact of a strict 
application of exclusion criteria in the presence of TEM. 

3.1. RCT augmentation with older patients 

In terms of effect size, the standard RCT reading of 1000 simulated 
RCTs augmented with p = 0%, p = 5% and p = 30% of older patients 
provides an estimation of the (distribution of) RMST difference that 
would be obtained directly from RCT data (drug B efficacy, Fig. 3a): 
simulated RCTs totally excluding older patients yielded RMST differ-
ences around 0.4–0.5 years (interquartile range, IQR), compared with 
IQR of 0.2–0.3 years when including 30% of older patients. RCTs 
augmented with 5% of older patients (e.g., 30 older patients replace 30 
younger ones in each treatment arm) yielded RMST difference very close 

to the RMST difference obtained from RCTs totally excluding older pa-
tients. In turn, when the same augmented RCTs are used to estimate drug 
B effectiveness (Fig. 3b), the results (IQR of RMST difference) obtained 
with an RCT augmented with only 5% of older patients are very close to 
those obtained in an RCT not excluding older patients (p = 30%). In 
other words, the data obtained from an RCT augmented with 5% of older 
patients would provide a good estimation of effectiveness. This latter 
point is also illustrated by Table 3 and Fig. 4a showing the error (RMSE) 
made in estimating the effectiveness using data from RCTs augmented 
with p = 0%, p = 1%, p = 10% and p = 30% of older patients. In RCTs 
totally excluding older patients, the error made in estimating the RMST 
difference in the real world was at maximum for both standard RCT 
reading (RMSE = 0.209 years) and predictive modeling (RMSE = 0.198 
years). In RCTs allowing 30% of older people, the error made in esti-
mating the RMST difference in the real world was at minimum for both 
standard RCT reading (RMSE = 0.060 years) and predictive modeling 
(RMSE = 0.056 years). Predictive modeling did not add information to 
standard reading for this proportion of augmentation and in both cases, 
the remaining error (i.e., RMSE>0) was due to sampling variance. Be-
tween those two extremes (p = 0% and p = 30%), the accuracy of 
predictive modeling improved rapidly as p increased (Fig. 4a). For 
instance with 5% of older patients in the RCT, RMSE = 0.076 years 
which is close to the RMSE = 0.056 years with 30% of augmentation. For 
proportions of augmentation >5%, the accuracy of predictive modeling 
did not improve in a relevant manner. 

To summarise, in an RCT augmented with 5% of older patients, the 
RMST difference is very close to this obtained in a traditional RCT 
(standard reading, Fig. 3a). In addition, predictive modeling using data 
from this augmented RCT would allow for accurate estimation of 
effectiveness (Fig. 3b). 

3.2. RCT augmentation with severely comorbid patients 

RCTs augmented with 0%, 5% and 30% of comorbid patients would 
provide treatment effect size (RMST difference) that are shown in 
Fig. 5a. RCTs augmented with 5% vs. 0% would generate data allowing 
for predictive modeling of similar accuracy (Fig. 5b). 

Errors (RMSE) of standard RCT reading and of predictive modeling in 
estimating the effectiveness, with augmented RCTs are displayed in 
Table 3 and Fig. 4b. When the RCTs allowed patients of any age but 
totally excluded patients with severe comorbidity (e.g., no augmenta-
tion with severe comorbidity), predictive modeling provided a better 
estimation of the RMST differences compared to standard RCT reading, 
with RMSE = 0.093 years and RMSE = 0.148 years, respectively. This 
result suggests that the model can learn on the comparative effectiveness 
of the two therapies even in the total absence of comorbid patients. 
Further augmenting the RCT yielded moderate accuracy improvement. 

The results on hazard ratio (HR), as an alternative metric to RMST for 
survival, and the complete results of estimation errors (RMSE) are pro-
vided in Supplemental material. 

Fig. 2. Standard RCT reading providing an estima-
tion of the statistic, and error made (RMSE) when 
compared with the “true” statistic 
rrHL, relapsed/refractory Hodgkin’s Lymphoma; 
RMST, Restricted Mean Survival Time; RMSE, Root 
Mean Square Error 
1: Augmented RCTs are simulated by extracting 1000 
random samples of 1200 patients from the simulated 
real-world population; for each set of simulations, 
RCTs are including increasing % older patients (or 
patients with severe comorbidity) 
2: The results of the RCTs are calculated in a standard 
manner to estimate the statistics of interest 
3: The estimated statistics are compared with the 
“real” statistics; the error made is measured using the 
RMSE.   

Table 2 
Treatment effect of drugs A and B expressed in terms of RMST at 3 years, in 
patients from the entire real-world population, and then stratified by age (< vs 
≥ 60 years old) and presence of severe comorbidity (none vs ≥ 1).   

Entire 
population (N 
= 1,000,000) 

Real-world 
population 
stratified by age 

Real-world 
population 
stratified by 
severe 
comorbidity 

<60 
years 
old 

≥60 
years 
old 

None ≥1 

% of the entire 
population 

100% 70.0% 30.0% 70.3% 29.7% 

RMST1 at 3 years (in years) 
Patients 
initiating drug A1 

1.55 1.74 1.10 1.67 1.27 

Patients 
initiating drug B 

1.81 2.20 0.90 2.06 1.22 

Difference in 
RMST2 (drug B 
vs. A), in years 

0.26 0.46 − 0.21 0.39 − 0.05 

RMST, Restrictive Mean Survival Time; 1Drug B is the investigational drug 
compared to drug A; in the simulated population, 50% of patients initiated drug 
A (n = 500,000); 2The difference in RMST between patients initiating drug A or 
B is solely due to the drug effect since as there is no difference in population 
characteristics. 
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3.3. Interpretation 

RCTs augmented with older participants (while severe comorbidity 
is not an exclusion criterion) revealed that [1] the absence of older pa-
tient in the RCT does not allow for satisfactory effectiveness estimation 
using RCT data, and [2] the inclusion of just 1–5% older patients is 
sufficient to improve estimation accuracy. Although the real-world 
proportion of older patients (30%) is similar to that of comorbid ones 
(29.7%), results are different regarding comorbidity: [1] in the absence 
of comorbid patient in the RCT, predictive modeling already enables a 
good effectiveness estimation, and [2] the augmentation of RCTs with 
comorbid patients improves estimation accuracy in a less meaningful 
manner than with older ones. In other words, allowing a few older pa-
tients in the RCT is more important for effectiveness estimation than 
allowing a few comorbid patients. There are two underlying reasons for 
this: the correlation between age and comorbidity, and the larger 
magnitude of the magnitude of the drug-age interaction than this of the 
drug-comorbidity interaction. In the absence of comorbid patients, the 

proportion of older patients is reduced due to correlation: out of 30% 
older patients, 18% remain. This has a strong impact on standard RCT 
reading, which therefore provides poor effectiveness estimation. In 
addition, because of the magnitude of the drug-age interaction, the 
estimation of effectiveness through predictive modeling depends mainly 
on age, and good estimation accuracy can be achieved. Since the 
drug-comorbidity interaction is of smaller magnitude, the absence of 
comorbid patients in the RCT has a smaller impact on estimation ac-
curacy. Likewise, adding more patients with comorbidity results in 
smaller gains. 

3.4. Impact on statistical power 

Post-hoc analyses were conducted to explore the impact on the sta-
tistical power of augmenting an RCT with 5% older patients, using the 
RMST difference. The criterion “older age” was chosen because of the 
high magnitude of the drug-age interaction, and potential impact on 
statistical power. We chose 5% of augmentation because this percentage 
was found sufficient for prediction purposes and thus, there would be no 
reason to include a higher percentage of older people. We computed the 
1000 p-values of the tests on the RMST difference in the 1000 simulated 
RCTs (standard RCT reading). The number of p-values<0.05 (α = 0.05) 
is an estimation of the statistical power. We found that for the 1000 
simulated RCTs with 5% of older patients, the highest p-value found was 
<0.0002, meaning that the statistical power was close to 100%. 

4. Discussion 

In the present case study we simulated RCTs augmented with pa-
tients meeting relevant and carefully chosen exclusion criteria, so as to 
find the smallest possible proportion of patients with a particular cri-
terion to include for effectiveness prediction purposes. 

4.1. Key findings 

The main result of our study is that the magnitude of the expected 

Fig. 3. RMST differences (in years) obtained from 
1000 simulated RCTs augmented with p = 0%, p =
5% and p = 30% older patients, when using the 
standard RCT reading (Fig. 3a) or predictive 
modeling of effectiveness (Fig. 3b) 
Boxplot providing the median (central black line), 
interquartile range (square), minimal and maximal 
values of 1000 Restricted Mean Survival Time 
(RMST) differences; the red horizontal line is the true 
RMST difference on a population with no older pa-
tients (3a) and the full population (3b); the X-axis is 
the proportion of augmentation with older patients; 
the Y-axis is the RMST difference, in years.   

Table 3 
Error, expressed as RMSE (in years) in estimating real-world between-arm dif-
ference in RMST (primary trial endpoint), as obtained from 1000 simulated 
RCTs that include increasing proportions of older, or comorbid patients.  

Proportion of 
augmentation 
(broadening of 
eligibility criteria) 

Augmentation with older 
patients 

Augmentation with 
comorbid patients 

Standard 
RCT 
reading 

Predictive 
modeling 

Standard 
RCT 
reading 

Predictive 
modeling 

RMSE in 
years 

RMSE in 
years 

RMSE in 
years 

RMSE in 
years 

0% 0.2091 0.1981 0.1482 0.0931 
1% 0.2007 0.1209 0.1432 0.0818 
5% 0.1737 0.0763 0.1248 0.0690 
10% 0.1456 0.0653 0.1064 0.0619 
30% 0.0597 0.0563 0.0626 0.0549 

RMSE, Root Mean Square Error, expressed in years. 
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effect modification between the investigational treatment and the 
exclusion criterion is a key element to take into account when consid-
ering the use of the RCT augmentation methodology and the choice of 
eligibility criteria to be relaxed. A higher magnitude of effect modifi-
cation not only makes the exclusion criterion more relevant to relax, but 
also provides the possibility to augment the population by a very small 
proportion and remarkably increase learnings about the investigational 
treatment’s future effectiveness. For the example with older age, we 
demonstrated that the replacement of 6–30 younger patients per arm in 
a two-arm trial of 1200 patients (corresponding to 1%–5% proportion of 
patients) by the same number of older ones in the RCT was sufficient to 
generate data for sound effectiveness predictions. This result is in line 
with our previous simulation study [12] suggesting the benefit of aug-
menting the RCT being mostly gained from re-including the first few 
real-world patients. The inclusion of this small number of patients is 

likely to minimize the risk of safety issues and of treatment effect dilu-
tion. Moreover, these patients replace others, keeping the trial sample 
size constant thus adding minimal operational costs. 

To our knowledge this methodology is the first to propose the 
augmentation of a pre-authorization RCT for the purpose of conducting 
effectiveness predictive modeling using RCT data. Recently, Liu et al. 
[40] have presented an innovative methodology using artificial intelli-
gence and aiming at optimizing the choice of inclusion criteria in RCTs. 
Contrary to our methodology the choice of which criterion to relax is 
automatized whereas we minimize the number of modifications to be 
made to a standard RCT in recommending that exclusion criteria are 
carefully chosen a priori using scientifically-based hypotheses. More-
over, unlike Liu et al.‘s our methodology does not aim at increasing or 
decreasing the investigational treatment effect size (although it could be 
a consequence). Rather, it provides the possibility to generate evidence 

Fig. 4. Error (RMSE) in the estimation of the real-world between-arm difference in RMST using data from 1000 simulated RCTs that include increasing proportions of 
older patients (4a) or comorbid patients (4b) 
RMSE, Root Mean Square Error; RMST, Restricted Mean Survival Time. 
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on its effectiveness in a robust manner. Of note, in Karcher et al. [12] the 
re-inclusion of a few recently-diagnosed schizophrenia patients, classi-
cally excluded from pre-authorization trials, enabled the prediction of 
an improved treatment effect once this would be prescribed in routine 
clinical practice. Finally, augmenting a pre-authorization RCT and being 
able to provide estimations of treatment effectiveness using RCT data 
may benefit both regulatory approval and access to broader population 
for market authorization. 

The present simulation study assessing an RCT with an augmentation 
of 5% of older patients shows that the RCT statistical power is close to 
100%. This is due to the large effect size of drug B vs A and a rather large 
number of patients in the RCT. Measuring decrease in statistical power 
would be more relevant in a context with smaller treatment effect size. 

4.2. Limitations of the method 

Several limitations need to be pointed out. First, we used the same 
exponential Cox model to generate the PFS in the generated dataset as in 
the predictive modeling phase. The model was therefore already 
partially adapted to the data, which may have yielded overly optimistic 
results. Second, because our primary focus was to gauge how the 
magnitude of treatment effect modification impacted predictive model 
accuracy, we used the two exclusion criteria one at the time to compare 
two different cases. We did not explore the case in which older age and 
severe comorbidity are simultaneously used as exclusion criteria. This 
type of simulation introduces additional statistical questions and re-
quires further exploration. Finally, further studies are needed to explore 
the question of statistical power. 

4.3. Perspective for the implementation of the methodology 

The possible implementation of the RCT augmentation methodology 
in a pre-authorization setting raises several practical questions, in 
addition to technical ones. 

4.3.1. Do I need to design an augmented RCT? Is the trial feasible? 
Conducting an augmented RCT may present advantages over a 

conventional RCT in very specific situations, namely when some 
exclusion criteria cannot be removed entirely (e.g., for safety reasons) 
although their strict application would lead to totally excluding specific 
patient phenotypes and to modifying the distribution of key TEM (hence 
a risk for biased treatment effect estimation). The relevance of con-
ducting an augmented RCT has to be appraised in the light of the risk of 
selection bias and of stakeholders expressing concerns about an efficacy- 
to-effectiveness gap. The first step is thus to explore whether specific 
exclusion criteria are also possible TEM. The feasibility of this meth-
odology is related to the availability of adequate real-world data source 
(s). In the present study fully-generated data were used for illustrating 
and further exploring specific aspects of the methodology. In a real sit-
uation, one should use a large real-world dataset, e.g., electronic med-
ical records, containing information on the interaction between 
treatment and key eligibility criteria. Because the treatment of interest 
might not been launched yet (e.g., first pre-approval Phase 3 RCT), in-
formation on treatment effect modification may be estimated using real- 
world data on the treatment as prescribed in another indication or on a 
similar treatment or a treatment of the same class, if this is sensible to 
believe that treatment effect modification will be similar to that of the 
investigational treatment. In the absence of adequate data, it is still 
reasonable to consider a priori that augmenting the RCT with 1–5% 
otherwise-excluded patients will provide sufficient information for 
effectiveness prediction purposes. This is important to note also that the 
smallest necessary proportion of patients allowing good effectiveness 
prediction depends not only on the magnitude of the drug-variable 
interaction, but also on the RCT sample size and the complexity of the 
predictive model used. 

4.3.2. Will my augmented phase 3 RCT be accepted by regulators, payers 
and patients? 

The population to be included in a pre-authorization RCT is typically 

Fig. 5. RMST differences (in years) obtained from 1000 simulated RCTs augmented with p = 0%, p = 5% and p = 30% comorbid patients, when using the standard 
RCT reading (Fig. 5a) or predictive modeling of effectiveness (Fig. 5b) 
5a. RMST differences obtained using standard RCT reading 5b. RMST differences obtained using predictive modeling of effectiveness. 
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discussed with regulatory authorities, sometimes payers and patients, 
while designing the trial. Regulatory bodies are now explicitly encour-
aging the broadening of trial populations and the use of adaptive trial 
designs or trial enrichment [8]. The RCT augmentation methodology 
could be an option to meet stakeholders’ expectations although the 
acceptability of the methodology by stakeholders is still to be explored. 

5. Conclusion 

Augmenting RCTs with a few patients of relevant characteristics 
provides the possibility to generate accurate predictive models of 
effectiveness with the data they generate. When planning to augment an 
RCT, the choice of the most relevant exclusion criteria to relax should 
take into account the suspected importance of treatment effect 
modification. 
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