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Mitochondrial diseases are an unusually genetically and phenotypically heterogeneous group of disorders, which are
extremely challenging to treat. Currently, apart from supportive therapy, there are no effective treatments for the vast
majority of mitochondrial diseases. Huge scientific effort, however, is being put into understanding the mechanisms
underlying mitochondrial disease pathology and developing potential treatments. To date, a variety of treatments have
been evaluated by randomized clinical trials, but unfortunately, none of these has delivered breakthrough results. Increased
understanding of mitochondrial pathways and the development of many animal models, some of which are accurate
phenocopies of human diseases, are facilitating the discovery and evaluation of novel prospective treatments. Targeting
reactive oxygen species has been a treatment of interest for many years; however, only in recent years has it been
possible to direct antioxidant delivery specifically into the mitochondria. Increasing mitochondrial biogenesis, whether by
pharmacological approaches, dietary manipulation or exercise therapy, is also currently an active area of research. Modulating
mitochondrial dynamics and mitophagy and the mitochondrial membrane lipid milieu have also emerged as possible
treatment strategies. Recent technological advances in gene therapy, including allotopic and transkingdom gene expression
and mitochondrially targeted transcription activator-like nucleases, have led to promising results in cell and animal models of
mitochondrial diseases, but most of these techniques are still far from clinical application.
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Introduction
Recently, the term mitochondrial disorders has become very
popular, finding its place in reference to many metabolic

diseases, Alzheimer’s disease, Parkinson’s disease, type 2 dia-
betes and aging (Patti and Corvera, 2010; Coskun et al., 2012;
Bratic and Larsson, 2013). In this review, the term mitochon-
drial diseases denotes a group of inborn errors affecting the
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oxidative phosphorylation (OXPHOS) system of the mito-
chondrion. Mitochondrial diseases have a prevalence of
approximately 1 in 5000 (Thorburn, 2004). They are a
common and unusually heterogeneous group of metabolic
disorders, which may present in patients of any age and
virtually with any symptoms (Munnich et al., 1992). The
most important function of OXPHOS is to produce ATP, and
therefore, it is not surprising that any defects in this system
will be most evident in tissues with high energy demands, for
example, the skeletal muscle, brain, liver or heart.

A mitochondrial disorder is part of the differential diag-
nosis in individuals presenting with myopathy, cardiomyo-
pathy, peripheral neuropathies, stroke-like episodes, seizures,
external ophthalmoplegia, sensorineural hearing loss (SNHL),
exercise intolerance, diabetes, liver failure, Fanconi syndrome
or gastrointestinal symptoms such as nausea, vomiting,
pseudo-obstruction, severe dysmotility and faltering growth.
These symptoms can occur in isolation or be part of a mul-
tisystemic disease presentation (Rahman and Hanna, 2009;
Vafai and Mootha, 2012). Currently, there are no effective
treatments for the vast majority of mitochondrial disorders
and there is an urgent need to develop and evaluate novel
therapies. This article discusses the challenges to developing
treatment strategies for these complex disorders; models for
assessing efficacy of candidate therapies; current therapeutic
approaches and the results of previous clinical trials; and the
most promising treatments on the horizon, including phar-
macological and other strategies for stimulating mitochon-
drial biogenesis, antioxidant approaches and gene therapy for
mitochondrial DNA (mtDNA) and nuclear DNA-encoded
mitochondrial disorders.

Mitochondrial biology and disease

The mitochondrial respiratory chain (RC) and
OXPHOS system
The OXPHOS system is composed of five multimeric com-
plexes (complexes I–IV comprise the RC and complex V is the
ATP synthase), which are embedded in the mitochondrial
inner membrane. The complexes are composed of multiple
subunits, encoded by mtDNA or nuclear DNA. Overall, the
RC is composed of approximately 90 proteins. Thirteen of
these proteins are encoded by mtDNA, a circular double-
stranded DNA molecule, ∼16.6 kb long. Additionally, the
mtDNA also encodes 2 rRNAs and 22 tRNAs, which are
required for the intramitochondrial synthesis of these 13
proteins. The remaining proteins are translated in the cytosol
and transported through the TIM/TOM complex in their pre-
cursor form. Once in the correct mitochondrial compart-
ment, the precursor is assembled to form the final protein
(Wiedemann et al., 2004).

The purpose of the RC is to generate a proton-motive
force (complexes I, III and IV are proton-pumping enzymes)
across the mitochondrial inner membrane, which is utilized
to power ATP synthase, allowing it to produce ATP from ADP
and inorganic phosphate – the final step of OXPHOS. Elec-
trons in the form of NADH and FADH2, which are derived
from the Krebs cycle and β-oxidation, provide the free energy
required to pump protons across the membrane. Complex I

(NADH : ubiquinone oxidoreductase) oxidizes NADH to
NAD+ and H+ and passes two electrons to ubiquinone (coen-
zyme Q10, CoQ10) reducing it to ubiquinol. Simultaneously,
complex II (succinate : ubiquinone oxidoreductase), the
enzyme that links the Krebs cycle to OXPHOS, oxidizes FADH
to FAD+ and H+ and reduces ubiquinone, while also oxidizing
succinate to fumarate, both of which are intermediates of the
Krebs cycle. From ubiquinol, electrons are transported
to complex III (ubiquinol : cytochrome c oxidoreductase),
which facilitates the transfer of electrons to cytochrome c,
which in turn reduces complex IV (cytochrome c oxidase,
COX). Finally, electrons are donated to molecular oxygen and
water is formed (Wallace et al., 2010) (Figure 1).

Mitochondrial genetics and disease
Mitochondrial disorders may be caused by mutations in the
mtDNA or in the nuclear DNA. Disorders originating from
mtDNA mutations follow a uniparental mode of inheritance,
and can only be transmitted from the mother to the child.
Disorders caused by mtDNA mutations are complicated by
the phenomenon of heteroplasmy (coexistence of mutant
and wild-type mtDNA), which arises because of the high copy
number of mtDNA. For each mutation, a specific critical
threshold of mutation load exists, above which RC function
is impaired and disease ensues (Taylor and Turnbull, 2005).
Generally speaking, lower mutation load is usually associated
with less severe symptoms presenting in adulthood (Rahman
and Hanna, 2009).

Mitochondrial disorders due to nuclear DNA mutations
follow Mendelian inheritance (DiMauro, 1999). The majority
of subunits (∼77), which comprise the mitochondrial RC, are
encoded by nuclear DNA. Many additional proteins required
for correct functioning of the RC are also encoded by nuclear
DNA, which explains why the majority of mitochondrial
disorders are caused by mutations in nuclear DNA. Overall,
1500 genes have been suggested as potential causes of mito-
chondrial disease (Calvo et al., 2006), and so far, more than
130 of these have been linked to various mitochondrial dis-
orders (Vafai and Mootha, 2012; Rahman, 2013). These genes
are involved in a range of functions including assembly of RC
enzyme complexes, maintenance and expression of the
mtDNA, cofactor metabolism and biosynthesis and metabo-
lism of mitochondrial membrane lipids. Wide-scale adoption
of next generation sequencing approaches has led to a rapid
escalation in the number of known disease genes in the last
few years, and it is likely that the number of genes linked
to mitochondrial disease will soon exceed 200. This huge
genetic heterogeneity contributes to the phenotypic hetero-
geneity of mitochondrial diseases, and presents enormous
challenges in devising effective therapies for these disorders.

Challenges in treatment of
mitochondrial diseases

Difficulties in designing and implementing
clinical trials
Development of successful treatments for mitochondrial dis-
eases has proved to be extremely difficult. For other inborn
errors of metabolism, therapeutic options include reduction
of metabolic load (by dietary manipulation), removal of toxic
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metabolites, enzyme replacement, enzyme enhancement and
organ (liver or bone marrow) transplantation. However, the
situation for mitochondrial disorders is rather more complex,
for a number of reasons. The main challenges are caused by
the extreme genetic and phenotypic heterogeneity of mito-
chondrial disorders, as discussed above, making it very diffi-
cult to collect sufficiently large groups of patients to conduct
adequately powered, statistically valid, randomized, double-
blinded, placebo-controlled clinical trials. Ideally, clinical
trials should be conducted on a group of patients with the
same genetic defect, with the same presentation and bio-
chemical findings, at a similar stage of disease progression
and, in the case of mutations in mtDNA, a similar mutation
load. When dealing with mitochondrial patients collecting a
large group of patients that would meet these criteria is vir-
tually impossible in a single centre. Clinical trials that could
satisfy these criteria could only exist in the context of multi-
centre international collaborations (Suomalainen, 2011). A
final challenge in implementing clinical trials for mitochon-
drial disease is a lack of clinically relevant, universally agreed,
validated outcome measures.

Other challenges
Despite enormous progress in understanding mitochon-
drial biology and mitochondrial diseases in recent years,

delivering therapeutic molecules to mitochondria is still
challenging. This is mainly due to the relative inaccessi-
bility of the mitochondrion, so that mitochondrially tar-
geted drugs need to pass across several membranes in order
to reach the matrix (Heller et al., 2012). Some techniques
that allow synthetic molecules to be mitochondrially tar-
geted include utilizing the mitochondrial targeting signal
peptide, which is a short peptide chain that in vivo is
attached to proteins that are translated within the cytosol
but destined for the mitochondria; conjugating lipophilic
cations to small molecules to allow them to accumulate
within mitochondria by utilizing the mitochondrial
membrane potential; and dequalinium-derived vesicles (so-
called DQAsomes) with similar properties to liposomes,
which bind DNA and theoretically may be used to deliver
small DNA molecules into mitochondria (Yamada et al.,
2007).

Recent developments in the therapy of
mitochondrial disorders

Completed clinical trials
Owing to the inherent difficulties in clinical trial design,
few randomized double-blinded placebo-controlled trials for

Figure 1
Mitochondrial OXPHOS system. I, NADH : ubiquinone oxidoreductase; II, succinate : ubiquinone oxidoreductase; III, ubiquinol : cytochrome c
oxidoreductase; IV, COX; V, ATP synthase.
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mitochondrial disease have been completed. These were the
subject of an excellent recent review by Douglas Kerr (Kerr,
2013) and were also critically evaluated in a recently updated
Cochrane systematic review (Pfeffer et al., 2012). Only 12
studies of 1335 abstracts screened fulfilled Cochrane inclu-
sion criteria for well-conducted unbiased clinical trials
(Pfeffer et al., 2012; summarized in Table 1). The treatments
that have been investigated under such conditions include
dichloroacetate (DCA) in five studies and creatine in four
studies, either alone or as a cocktail with CoQ10 and lipoic
acid. Single studies examined the efficacy of CoQ10, dimeth-
ylglycine and whey-based cysteine supplementation. These
clinical trials were mostly conducted in small numbers of
patients (9 of the 12 studies included fewer than 17 subjects)
and in most cases, the patients had different genetic defects.
Dramatic responses were not observed in any of these 12
clinical trials, and no effect was seen in four studies (Table 1).
DCA is a pharmacological inhibitor of pyruvate dehydroge-
nase kinase (PDK), an enzyme that inhibits pyruvate dehy-
drogenase (PDH). Inhibiting PDK results in reduced lactate
levels by maintaining PDH in its active state (Stacpoole et al.,
1997). Differing results were observed in the five clinical trials
of DCA (Table 1) but, importantly, the randomized, con-
trolled clinical trial of DCA in patients with mitochondrial
encephalomyopathy (MELAS) had to be terminated because
of peripheral nerve toxicity (Kaufmann et al., 2006). CoQ10

supplementation increased serum CoQ10 levels and decreased
serum lactate after 1 min of cycle ergometry but other
outcome measures were not significantly changed (Glover
et al., 2010). Combined supplementation with creatine,
CoQ10 and lipoic acid showed a significant reduction in
plasma lactate levels, and slowed the progression of loss of
ankle dorsiflexion strength (Rodriguez et al., 2007). Dimeth-
ylglycine and whey-based cysteine supplementation showed
no significant improvement (Liet et al., 2003; Mancuso et al.,
2010). Much has been learned from these completed clinical
trials regarding optimization of methodological design and
the importance of selecting clinically relevant primary end
points. It is encouraging that there was a trend towards larger
numbers of participants in the studies conducted in more
recent years (Table 1). This is likely to reflect a combination of
factors: improved trial design, increased numbers of patients
receiving a genetic diagnosis of mitochondrial disease and
increased accessibility of clinical trials to patients.

Outcome measures and natural
history studies
When investigating potential therapeutic strategies, the
correct choice of outcome measure(s) is very important. For
mitochondrial disorders, some of the most commonly
measured outcomes include biochemical assessment, such as
plasma lactate and pyruvate, and muscle RC enzyme assays;
histopathological and histochemical assessment; and neuro-
imaging including brain MRI and magnetic resonance spec-
troscopy (MRS) of brain or muscle. However, lactate is not
universally elevated in patients with mitochondrial disease
and is subject to acute variations so may not be a reliable
biomarker in clinical trials. Serial muscle biopsies are inva-
sive; therefore, muscle histology and RC enzyme activities are
not practical biomarkers. Neuroimaging also requires general

anaesthesia in young children and may not be a sufficiently
sensitive method to detect relatively small changes during
the period of a clinical trial. Better biomarkers are clearly
needed. Fibroblast growth factor-21 (FGF21), a serum
cytokine involved in lipid metabolism, has recently been
suggested as a potential biomarker for mitochondrial myopa-
thies. In Deletor mice, FGF21 levels correlated with increased
COX-negative fibres (Tyynismaa et al., 2010), and subse-
quently, FGF21 was found to be elevated in patients with
mitochondrial disorders with skeletal muscle involvement
(Suomalainen et al., 2011). A composite score can be useful in
clinical trials, and wide adoption of the same score would
facilitate comparison of clinical trials. Examples of composite
scores include the Global Assessment of Treatment Efficacy
(GATE) score, which was utilized in two clinical trials of DCA
(Kaufmann et al., 2006; Stacpoole et al., 2006) and the New-
castle paediatric mitochondrial disease scale (NPMDS), which
was used in a study of the novel antioxidant EPI-743
(Phoenix et al., 2006; Martinelli et al., 2012).

Another important recent development is the publication
of natural history data from large national cohorts with
single gene disorders, such as a nationwide prospective study
of nearly 100 Japanese patients with MELAS (Yatsuga et al.,
2012) and a multinational retrospective study of >50 patients
with SURF1 deficiency (Wedatilake et al., 2013). These his-
torical data will be vital comparative data for future clinical
trials.

Development of models for
mitochondrial disease
Animal and cell models play a crucial role in understanding
and developing treatments for many diseases, and especially
so for diseases that are as heterogeneous as mitochondrial
disorders.

Cell models
Initial studies involved cell-based models of mitochondrial
disease. Yeast mitochondrial disease models have been used
in high throughput screening of drug libraries to identify
novel candidate therapies (Schwimmer et al., 2006). Patient-
derived cell lines, especially lymphocytes and fibroblasts,
which can be obtained through relatively non-invasive pro-
cedures, are useful models to study mitochondrial function,
diseases and potential therapies (Robinson et al., 1990).
Although there are many benefits in using these cell lines,
some considerations need to be taken into account. For
example, one of the main drawbacks in using fibroblasts is
that some RC deficiencies are tissue specific, and the defect
might not be detectable in these cells. Additionally, both
fibroblasts and lymphocytes (healthy and diseased) rely on
glycolysis as their main source of energy; therefore, RC assays
may not show significant differences in enzyme activities in
cells obtained from patients compared with controls. In cell
culture, substituting galactose for glucose may be used to help
combat this issue, forcing cells to rely on OXPHOS as their
main source of ATP, thus allowing any enzyme deficiencies to
be more apparent (Robinson, 1996). Myoblasts are also a
useful model to study mitochondrial diseases since they more
closely resemble the affected tissue, but obtaining muscle
tissue does require invasive biopsy and (in children) general
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anaesthesia. An alternative is to use myogenic transdifferen-
tiation of fibroblasts into myoblasts by MyoD transfection
(Bulst et al., 2012). Generation of induced pluripotent stem
cells from patient fibroblasts and reprogramming into neuro-
nal cells will allow the development of more relevant models
for neurological mitochondrial diseases (Cherry et al., 2013).
Further difficulties arise when the cell line is derived from a
patient with a mtDNA mutation. As discussed above (section
‘Mitochondrial genetics and disease’) mtDNA mutations are
often heteroplasmic with at least two subpopulations being
present, one wild type and the other mutated. In patient cell
lines, mtDNA populations often drift towards the wild type,
although the converse (increasing mutant load) may occur in
some instances. Cell lines of higher passage numbers are thus
likely to contain less mutant mtDNA (van de Corput et al.,
1997). Generation of transmitochondrial cybrids with 100%
mutant load can overcome this difficulty; these are created by
fusing enucleated cells containing mutant mtDNA with a ‘ρ
zero’ nuclear donor cell line, which has been depleted of
mtDNA (King and Attardi, 1989) and then selecting for
cybrids with 100% mutated mtDNA.

Animal models
One of the earliest animal models for mitochondrial diseases
was a Drosophila melanogaster with a technical knockout
(TKO) of the gene encoding the mitochondrial ribosomal
protein S12. Detailed phenotypic characterization revealed its
similarity to mitochondrial sensorineural deafness (Toivonen
et al., 2001). Other Drosophila models have been reported
more recently (Fernandez-Ayala et al., 2010; Debattisti and
Scorrano, 2013). Another animal model for mitochondrial
disorders is the nematode Cenorrhabditis elegans but only
limited phenotypes could be studied in this simple organism,
such as biochemical function and effects on survival, motility
and reproduction. One study examined riboflavin supple-
mentation in a C. elegans model of complex I deficiency
(mutation in the nuo-1 orthologue of the human NDUFV1
gene), and showed improved assembly and activity of com-
plexes I and IV, increased ATP production, decreased reactive
oxygen species (ROS) production and improved general meta-
bolic function (Grad and Lemire, 2006). The last few years
have witnessed the development of a plethora of mouse
models for mitochondrial disorders (Table 2), generated by
various strategies including constitutive and conditional gene
KO and mutagenesis with ENU (N-ethyl-N-nitrosourea). Both
mtDNA and nuclear genes have been targeted. Examples of
mouse models with mtDNA mutations include the Mito-
mouse harbouring a heteroplasmic single mtDNA deletion at
high mutation load (Inoue et al., 2000), and a mouse model
of Leber’s hereditary optic neuropathy (LHON) containing
the ND6 P25L human mtDNA mutation (Lin et al., 2012). The
LHON mouse presents similar features to the human pheno-
type (Lin et al., 2012) making it a useful tool to investigate
potential pharmacological and gene therapy treatment
approaches for this disease.

For nuclear genes, mouse models are now available for RC
subunits (e.g. the NDUFS4 and NDUFS6 subunits of complex
I, SDHD subunit of complex II and RISP subunit of complex
III) and assembly factors (e.g. BCS1L for complex III and
COX10, SCO2 and SURF1 for complex IV), and genes
involved in maintenance and expression of the mtDNA

(Table 2). Mice with defects in mtDNA maintenance genes
include KOs of POLG, PEO1 (also known as C10orf2, encoding
the Twinkle helicase), TK2 and RRM2B (Table 2). Some of
these mouse models display embryonic lethality, others rela-
tively little phenotype, but several have clinical phenotypes
similar to the respective human diseases, enabling preclinical
trials to be performed. The results of trials performed in these
mouse models are discussed in the relevant sections below.

Establishment of national mitochondrial
disease consortia
A promising recent advance has been the creation of national
consortia aimed at recruiting large cohorts of patients
affected by mitochondrial disease. These include the UK MRC
Mitochondrial Disease Patient Cohort Study (Nesbitt et al.,
2013); the Nationwide Italian Collaborative Network of Mito-
chondrial Diseases (Mancuso et al., 2013); and the North
American Mitochondrial Disease Consortium (DiMauro,
2013). The existence of these consortia should greatly facili-
tate recruitment into future clinical trials for mitochondrial
disease.

Current treatment strategies for
mitochondrial diseases

Identification of treatable disorders
One of the most important tasks in the management of
mitochondrial disease is the identification of those few dis-
orders that are exquisitely responsive to specific therapies.
These include defects of CoQ10 biosynthesis, which may
present with infantile-onset encephalomyopathy, nephrotic
syndrome, SNHL, ataxia, seizures or isolated myopathy
(Rahman et al., 2012). Early initiation of CoQ10 supplemen-
tation is related to clinical outcome (Montini et al., 2008), but
it should be noted that not all patients respond clinically to
CoQ10 supplementation (Rahman et al., 2001; Duncan et al.,
2009).

Leigh syndrome is almost invariably a devastating pro-
gressive neurodegenerative disorder, but rare treatable causes
include biotinidase deficiency (which responds to doses of
biotin of 5–10 mg·day−1), and also the biotin thiamine
responsive basal ganglia disease (BTBGD), in which much
higher doses of biotin are needed, typically at least
5 mg·kg−1·day−1 (Alfadhel et al., 2013). Patients with BTBGD
may also present with an acute Wernicke-like encephalopa-
thy, and need thiamine as well as biotin for optimal clinical
response, which is not surprising since the gene mutated in
this disorder, SLC19A3, encodes a thiamine transporter
(Fassone et al., 2013).

Recently, we have also observed (secondary) RC enzyme
deficiencies in patients with riboflavin transporter dis-
orders in the Brown Vialetto Van Laere spectrum (Foley et al.,
2013). These patients show clinical improvement following
high-dose riboflavin (vitamin B2) supplementation. Ribofla-
vin has also been reported to be beneficial for patients with
mutations in ACAD9, a gene encoding a flavin-dependent
enzyme, which was originally thought to be involved in fat
oxidation but which now appears to play a more significant
role in complex I assembly (Scholte et al., 1995; Gerards et al.,
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Table 2
Examples of mouse models for mitochondrial diseases

Gene Human phenotype Mouse model Mouse phenotype References

ANT1 ADPEO (cardiomyopathy in only
recessive case reported)

Ant1 (−/−) Ragged-red fibres, mitochondrial proliferation,
cardiomyopathy, very high serum lactate
levels.

Graham et al.,
1997

POLG Alpers disease
ARPEO
ADPEO

Polg (−/−)
Polg (+/−)

Embryonically lethal. Severe mtDNA depletion.
Slight reduction in mtDNA, normal

development.

Hance et al.,
2005

C10orf2
(PEO1)

ADPEO
MDDS (hepatocerebral)

Twinkle ‘Deletor’
mouse

Accumulate multiple mtDNA deletions with
progressive COX deficiency and late-onset
myopathy.

Tyynismaa et al.,
2005

RRM2B ADPEO
MDDS (encephalomyopathic)

Rrm2b (−/−) Normal at birth, at 6 weeks show growth
retardation and die prematurely

Kimura et al.,
2003

TK2 MDDS (myopathic) Tk2 (−/−)
Tk2 (H126N)

Normal at birth, at 7 days show growth
retardation, severe hypothermia, severe
mtDNA depletion in muscle, heart, liver and
spleen. Death at 30 days.

Growth retardation, tremor, ataxic gait and
severe weakness on day 10. MtDNA
depletion.

Akman et al.,
2008; Zhou
et al., 2008

MPV17 MDDS (hepatocerebral) Mpv17 (−/−) Adult mice show nephrotic syndrome and
chronic renal failure.

Weiher et al.,
1990

TFAM None reported to date Tfam (−/−) Embryonically lethal. Severe mtDNA depletion
and no detectable OXPHOS.

Larsson et al.,
1998

ND6 Leigh syndrome Nd6 (P25L) Optic atrophy, reduced complex I and
increased oxidative stress.

Lin et al., 2012

NDUFS4 Leigh syndrome Ndufs4 (−/−) Encephalomyopathy, ataxia at 5 weeks, death
∼7 weeks. Slow growth, lethargy, loss of
motor skills, blindness and high serum
lactate.

Kruse et al.,
2008

NDUFS6 Fatal infantile lactic acidosis Ndufs6 (−/−) Cardiomyopathy at 4 months (males) and
8 months (females) and death.

Ke et al., 2012

SDHD Paraganglioma Sdhd (−/−)
Sdhd (+/−)

Homozygous KO lethal.
Heterozygous KO has a decreased Complex II

activity.

Piruat et al.,
2004

BCS1L GRACILE syndrome (cholestasis
with iron overload, intrauterine
growth restriction, amino aciduria,
lactic acidosis and early death),
complex III deficiency

Bcs1l (S78G) Failure to thrive, liver steatosis, fibrosis and
cirrhosis, tubulopathy, complex III
deficiency, premature death.

Leveen et al.,
2011

SURF1 COX-deficient Leigh syndrome Surf1 (−/−) High rates of embryonic lethality. Reduced
birth weight, reduced complex IV activity
in muscle.

Agostino et al.,
2003

SCO2 Cardio-encephalomyopathy Sco2 (−/−)
Sco2 (E140K)

Homozygous KO lethal.
Complex IV deficiency, no cardiomyopathy

and normal life span.

Yang et al.,
2010; 2010

COX10 Encephalomyopathy with renal
tubulopathy, Leigh syndrome

Cox10 (−/−) Slowly progressing myopathy at 3 months,
severe complex IV deficiency.

Diaz et al., 2005

PDSS2 Encephalomyopathy and nephrotic
syndrome, CoQ10 deficiency

Kd/kd (spontaneous
mutation)

Progressive renal failure. Lyon and Hulse,
1971

COQ9 Fatal multisystem disease with
CoQ10 deficiency

Coq9
(R239X/R239X)

Fatal encephalomyopathy. Garcia-Corzo
et al., 2013

HSP40 None reported to date Hsp40 (−/−) Dilated cardiomyopathy, RC deficiency and
decreased mtDNA levels. Death before
10 weeks.

Hayashi et al.,
2006

ADPEO, autosomal dominant progressive external ophthalmoplegia; ARPEO, autosomal recessive progressive external ophthalmoplegia.
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2011). Although anecdotal reports of benefit from riboflavin
have been reported for patients with other causes of complex
I deficiency (Ogle et al., 1997), and also some patients with
complex II deficiency (Bugiani et al., 2006), so far, no clinical
trials have been performed to evaluate this formally. Ongoing
studies assessing efficacy of riboflavin therapy in two mouse
models of nuclear-encoded complex I deficiency may pave
the way for clinical trials (Rahman and Thorburn, 2013).

Supportive therapy
Despite the many and increasingly sophisticated efforts
towards finding a suitable cure for mitochondrial disease,
currently, most patients are primarily offered symptomatic
treatment. Nevertheless, symptom management is important
for patients with mitochondrial diseases, improving their
quality of life and in some instances prolonging survival
(Rahman and Hanna, 2009).

General supportive measures
Examples of symptom management approaches include anti-
convulsant drugs for mitochondrial seizure disorders
(although sodium valproate should be avoided in patients
with POLG mutations because of the risk of liver failure;
Rahman, 2012); eyelid surgery for ptosis; hearing aids and
cochlear implants for patients with SNHL; pacemakers and
implantable defibrillators for cardiac conduction defects;
medical treatment of cardiomyopathies; pancreatic enzymes
and insulin for pancreatic failure (particularly seen in
patients with Kearns–Sayre syndrome (KSS) and in patients
with maternally inherited diabetes and deafness); thyroxine,
growth hormone and cortisol replacement in patients with
hormonal deficiencies; blood transfusions for patients with
Pearson syndrome and other sideroblastic anaemias; electro-
lyte replacement for patients with significant renal tubular
losses (as in many children and young people with KSS); and
nutritional support (gastrostomy or even parenteral feeding)
for patients with prominent gastrointestinal symptoms
including dysphagia, vomiting, diarrhoea and failure to gain
or maintain weight (Rahman, 2013).

Organ and stem cell transplantation
In situations where the disease targets a single organ such as
the heart or liver, organ transplantation can be considered,
after careful exclusion of significant neurological involve-
ment (DiMauro and Mancuso, 2007; Rahman, 2013). Alloge-
neic haematopoietic stem cell transplantation (AHSCT) is
currently the only effective way to replace thymidine phos-
phorylase activity in patients with mitochondrial neurogas-
trointestinal encephalopathy (MNGIE), and has quickly
become accepted as the ‘standard of care’, although it has not
yet been evaluated in a clinical trial setting. So far, AHSCT for
MNGIE has been associated with ∼50% mortality from disease
progression or transplant-related complications (Halter et al.,
2011). An internationally agreed transplant protocol aims to
reduce toxicity of pre-transplant conditioning (Halter et al.,
2011), and a formal clinical trial is planned (Kerr, 2013).

Cerebral folate deficiency
Other supportive therapies are aimed at replacing metabolites
that appear to be low in specific subgroups of patients with

mitochondrial disease. For example, low CSF levels of the
major transport folate 5-methyltetrahydrofolate (5-MTHF)
have been documented in several patients with KSS over the
last 30 years (Allen et al., 1983). The underlying pathogenic
mechanisms are debated, but are likely to involve impair-
ment of active transport of 5-MTHF into the CSF, either
because of ATP insufficiency or through ROS-mediated
damage to the choroid plexus cells responsible for folate
transport (Hyland et al., 2010; Spector and Johanson, 2010;
Serrano et al., 2012). Cerebral folate deficiency (CFD) in KSS is
associated with cerebral white matter changes, seizures and
learning and behavioural difficulties. Treatment with folinic
acid led to clinical and radiological improvement in an
affected patient (Pineda et al., 2006). Further studies are
needed to determine which mitochondrial disease patients
are at risk of CFD, understand the mechanisms underpinning
CFD, and optimize therapeutic protocols for folinic acid
replacement and monitoring in these patients.

Amino acid supplementation
The amino acids L-arginine, citrulline and taurine have been
proposed as potential therapeutic agents in the syndrome of
MELAS. Strokes in this condition are thought to result from
vascular endothelial dysfunction. The observation of low cit-
rulline levels in some affected patients led to the hypothesis
that disturbed nitric oxide homeostasis contributes to the
pathogenesis of MELAS (Naini et al., 2005) It was therefore
suggested that supplementation with arginine, which is
required for nitric oxide synthesis, might stabilize vascular
function in these patients. A series of open-label studies per-
formed by a Japanese group demonstrated reduced frequency
and severity of stroke-like episodes in MELAS patients with
the common m.3243A>G mutation (Koga et al., 2005; 2006;
2010). More recently, a group at Baylor College has provided
preliminary evidence that citrulline may be even more effec-
tive than arginine in MELAS (El-Hattab et al., 2012). Finally,
an open-label study of two Japanese subjects showed amelio-
ration of epilepsy and prevention of strokes following
high-dose oral taurine administration over a 9 year period
(Rikimaru et al., 2012). The authors suggested that providing
exogenous taurine reduces the aminoacylation defect associ-
ated with the m.3243A>G mutation. Formal double-blinded
randomized clinical trials are needed to confirm all of these
findings, but are difficult to design and implement because of
the episodic and highly unpredictable occurrence of strokes
in MELAS.

Therapies still in development

Despite the disappointing results obtained from the clinical
trials performed so far in mitochondrial disease, there are
many ongoing studies (in vitro and in vivo) that provide hope
that some pharmacological approaches may be beneficial to
subgroups of patients.

Strategies for increasing
mitochondrial biogenesis
An approach that has attracted considerable attention is
stimulation of mitochondrial biogenesis, with the intention
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of increasing mitochondrial function simply by having a
greater mitochondrial mass. However controversy exists
regarding whether increasing biogenesis of damaged as well as
normal mitochondria will ultimately be beneficial or harmful.
Mitochondrial biogenesis is under complex regulatory
control, requiring coordinated transcription of multiple pro-
teins encoded in two cellular compartments. This allows
mitochondrial function to be tailored in vivo according to
nutrient and oxygen availability, hormonal signals, differing
metabolic demands and rate of cell proliferation. The tran-
scriptional co-activator PPAR-γ co-activator 1-α (PGC-1α)
coordinates mitochondrial biogenesis via a cascade of
nuclear-encoded hormone receptors, transcription factors
and transcriptional co-activators, including PPARs, oestrogen-
related receptors, thyroid hormone receptors, nuclear respira-
tory factors NRF1 and 2 and the transcription factors CREB
and YY1 (see Andreux et al., 2013; Dominy and Puigserver,

2013) (Figure 2). In recent years, this signalling cascade has
become an attractive therapeutic target to manipulate
mitochondrial function, and several methods to increase
mitochondrial biogenesis have been explored, including
pharmacological strategies, dietary manipulation and exercise
therapy.

Pharmacological approaches
Bezafibrate. PGC-1α overexpression was shown to amelio-
rate mitochondrial disease in two murine models of COX
deficiency: a muscle-specific Cox10 KO (Wenz et al., 2008)
and a constitutive Surf1 KO (Viscomi et al., 2011). Following
these proof of principle experiments, bezafibrate, a synthetic
ligand of PPARα, was used to treat the same mouse models
(Wenz et al., 2008; Viscomi et al., 2011) and also a third
mouse model, the Deletor mouse containing a dominant
mutation in the Twinkle helicase (Yatsuga and Suomalainen,

Figure 2
Schematic representation of pathways regulating mitochondrial biogenesis. External factors (exercise, calorie restriction, stress or small molecules
such as bezafibrate, resveratrol or AICAR) up-regulate the expression of PGC-1α, which in turn activates NRF1/2, PPAR, YY1 and ERR transcription
factors. These are required for up-regulation of key mitochondrial genes including those that encode OXPHOS subunits, Krebs cycle enzymes, fatty
acid β oxidation and proteins involved in mitochondrial protein import and assembly.
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2012). The results of bezafibrate treatment differed in these
three mouse models. COX activity improved in the muscle-
specific Cox10 KO mice but not in the Surf1 KO or Deletor
mice (Wenz et al., 2008; Viscomi et al., 2011; Yatsuga and
Suomalainen, 2012). Similarly, there was evidence of
increased mitochondrial biogenesis in the Cox10 KO mice but
not in the Deletor mice (Wenz et al., 2008; Yatsuga and
Suomalainen, 2012). A problem with the mouse models is
that mice develop abnormal lipid metabolism and hepato-
megaly in response to bezafibrate (Viscomi et al., 2011;
Yatsuga and Suomalainen, 2012). However, this appears to be
a rodent-specific effect since bezafibrate has been used safely
to treat hyperlipidaemia in hundreds of thousands of people
(Prescribing and Primary Care Services and Health and Social
Care Information Centre, 2012). Taken together, the results of
these studies are promising and suggest that bezafibrate may
be beneficial in some mitochondrial disorders. An open-label
clinical trial of bezafibrate in the fatty acid oxidation disorder
carnitine palmitoyl transferase 2 (CPT2) deficiency was asso-
ciated with increased physical activity and reduced muscle
pain (Bonnefont et al., 2010). In view of these encouraging
preliminary results, it seems likely that clinical trials in
patients with primary mitochondrial diseases will follow in
the near future.

Resveratrol. Other potential targets to increase mitochon-
drial biogenesis are the sirtuins, which are NAD+-dependent
protein deacetylases whose substrates include PGC-1α and
the mitochondrial transcription factor TFAM. Resveratrol
activates the sirtuin SIRT1 and has been shown to improve
mitochondrial fatty acid oxidation in fibroblasts with defects
in CPT2 and very long-chain acylCoA dehydrogenase (Bastin
et al., 2011). In endothelial cell culture studies resveratrol
increased mitochondrial mass and mtDNA content as well
the expression of PGC-1α, NRF-1 and TFAM (Csiszar et al.,
2009). Recently, a phase I trial of a novel SIRT1 activator,
SRT2104, appeared to show improved mitochondrial func-
tion in healthy elderly human volunteers (Libri et al., 2012).
However, efficacy of this novel molecule has not yet been
investigated in mitochondrial disease states. Ongoing trials
include an open-label study of resveratrol in Friedreich’s
ataxia at the Murdoch Children’s Research Institute in Mel-
bourne, Australia (Delatycki, 2012). Friedreich’s ataxia is an
autosomal recessive degenerative disorder caused in most
cases by a GAA triplet expansion in the FRDA gene encoding
frataxin. Frataxin is involved in regulating mitochondrial
iron transport, and FRDA mutations result in secondary defi-
ciencies of mitochondrial iron-sulphur cluster containing
enzymes (Rötig et al., 1997).

AICAR. AMP activated PK (AMPK) is a cellular energy
sensor (Hardie, 2007) that is another attractive target for
modifying mitochondrial bioenergetics in mitochondrial
disease. AMPK is activated at high AMP/ATP ratios (i.e. rela-
tive energy deficiency states) and acts to phosphorylate
several enzymes involved in stimulating catabolism (e.g. by
increasing glucose transport and fatty acid oxidation) and
inhibiting anabolism (e.g. by reducing glycogen synthesis
and lipogenesis). Chronic AMPK activation has also been
implicated in transcriptional up-regulation of mitochondrial
biogenesis, again via the PGC-1α signalling cascade (Jager

et al., 2007) since AMPK increases NAD+ levels that increase
SIRT1 activity (Beher et al., 2009; Canto et al., 2009), which
up-regulates PGC-1α as discussed above. The AMPK activator
5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)
increased mitochondrial biogenesis and ATP levels and
decreased ROS in human complex I deficient fibroblasts
(Golubitzky et al., 2011) and has also shown promise in
mouse models of COX deficiency (Viscomi et al., 2011).

Dietary approaches
The ketogenic diet (KD) has also received a lot of attention in
recent years as a possible treatment for mitochondrial dis-
eases. The KD is a high-fat, low-carbohydrate diet that
appears to have a number of effects. Fatty acid utilization by
mitochondrial β-oxidation is stimulated by the KD, leading to
formation of ketone bodies, which provide an alternative
energy source for the brain, heart and skeletal muscle. Ketone
bodies are metabolized to acetyl-CoA, which feeds into the
Krebs cycle and thence to the RC and OXPHOS system to
ultimately generate ATP, at least partially bypassing complex
I. Increased ketone bodies have also been associated with
increased expression of OXPHOS genes, possibly via a similar
response to starvation. Starvation causes stress to the cell,
which results in activation of many transcription factors
and cofactors (including SIRT1, AMPK,PGC-1α) that ulti-
mately increase mitochondrial biogenesis (Nunnari and
Suomalainen, 2012). The KD has been investigated in both
mitochondrial disease cellular and mouse models. Initial
studies reported promising preliminary results: KD reduced
mutation load of a heteroplasmic mtDNA deletion in a cybrid
model (Santra et al., 2004), increased the expression levels
of uncoupling proteins in mice (Sullivan et al., 2004),
up-regulated genes involved in mitochondrial biogenesis
(Bough et al., 2006) and increased mitochondrial glutathione
levels (Jarrett et al., 2008) in rats. A preclinical trial in the
Deletor mouse revealed slowing of mitochondrial myopathy
progression in mice treated with the KD (Ahola-Erkkila et al.,
2010). In humans, there are anecdotal reports of (often tran-
sient) benefit of the KD in mitochondrial disease (Malojcic
et al., 2004; Laugel et al., 2007), particularly in patients with
epilepsy (Kang et al., 2007). The KD has yet to be tested in a
randomized, double-blinded clinical trial.

Exercise therapy
Exercise therapy was initially explored as a method for ‘het-
eroplasmy shifting’, that is, to reduce the relative proportion
of mutant to wild-type mtDNA in patients with heteroplas-
mic mtDNA deletions and point mutations (Taivassalo et al.,
1999). However, open-label clinical studies of aerobic exercise
in patients with heteroplasmic mtDNA mutations resulted in
a mild increase or no change in mutant mtDNA, yet were
associated with clinical benefit in terms of increased exercise
tolerance and improved quality of life (Taivassalo et al., 2001;
2006). A study of resistance training showed increased muscle
strength, again without any significant change in mtDNA
mutation load (Murphy et al., 2008). A long-term randomized
crossover clinical trial is in progress (Haller, 2009). The
mechanisms underlying efficacy of exercise in mitochondrial
disease are not completely understood. The prevailing
hypothesis is that exercise stimulates mitochondrial biogen-
esis but evidence to support this is currently lacking in mito-
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chondrial disease patients. In one study, there was a baseline
increased expression of PGC-1α in patients with mitochon-
drial myopathies but no further increase was observed fol-
lowing a period of endurance training (Adhihetty et al.,
2007). This study did demonstrate increased expression of the
antioxidant enzyme Mn-superoxide dismutase following
training, as well as increases in a mitochondrial import
protein and in cytochrome c, suggesting that increased anti-
oxidant defence and electron transport may contribute to the
adaptive responses following exercise in mitochondrial
disease (Adhihetty et al., 2007).

It is important to bear in mind that all of the above
strategies to increase mitochondrial biogenesis are interre-
lated as they all converge on PGC-1α and its downstream
signalling cascade. Thus, a combination of pharmacological
interventions, diet and exercise may be needed to combat
mitochondrial disease. However, evaluating such a complex
multifactorial intervention in a clinical trial would clearly be
extremely challenging.

Antioxidant approaches
The mitochondrion is the main site of ROS production
within the cell. ROS are physiologically important in cell
signalling, and in healthy individuals, this is a tightly regu-
lated process. In patients with defects in the RC, however,
inefficient transfer of electrons between the four RC com-
plexes results in accumulation of electrons. These can react
with O2 to form superoxide anions (O2

•−) (Wallace et al.,
2010). Depending on the precise genetic defect, a defective
RC will often lead to increased ROS production, which will
further damage the RC complexes. For example, in cultured
human astrocytes, complex IV deficiency led to decreased
complex II+III activity (Hargreaves et al., 2007), which would
further exacerbate ROS production. It has been suggested that
increased ROS levels are one of the most important factors
underlying the development of a phenotype in patients with
mitochondrial diseases. The importance of this is highlighted
by the observation of severe phenotypes in some patients
with relatively mild RC defects, which would not be expected
to result in a significant decrease in ATP synthesis. Accord-
ingly, inhibition of the RC increased superoxide formation
prior to impairment of cellular energy metabolism in an
astrocyte model (Jacobson et al., 2005).

As a result of increased ROS levels, GSH levels will also
decrease. GSH is the main antioxidant present within mito-
chondria and functions to metabolize hydrogen peroxide and
prevent peroxidation of phospholipids such as cardiolipin
(Mari et al., 2009). Decreased mitochondrial GSH levels will
result in even higher ROS levels and more damage to the RC,
resulting in yet more ROS production forming a vicious cycle.
Complex IV activity is directly related to the levels of mito-
chondrial GSH (Heales et al., 1996). Increased ROS levels and
GSH depletion will result in peroxidation of cardiolipin. Car-
dolipin is an unsaturated phospholipid, which is important
for the formation of supercomplexes as well as the retention
of cytochrome c within the mitochondrial inner membrane.
Supercomplex formation is necessary for the RC enzymes
to function effectively (Schagger and Pfeiffer, 2000), while
retention of cytochrome c within the inner membrane is
crucial in the prevention of cellular apoptosis (Orrenius and
Zhivotovsky, 2005). In skeletal muscle samples with complex

I and/or complex IV deficiency, cytosolic cytochrome c levels
were found to be higher than in controls (Oppenheim et al.,
2009). We have demonstrated low GSH in skeletal muscle
(Hargreaves et al., 2005) and plasma (Salmi et al., 2012)
samples from patients with RC deficiencies.

Understanding the importance of ROS in the context of
mitochondrial disease opens many doors to potential treat-
ments. N-acetylcysteine, a drug currently approved and com-
monly used in treatment of paracetamol overdose could be
beneficial. N-acetylcysteine promotes GSH synthesis by
increasing the availability of cysteine, which is rate-limiting
for GSH biosynthesis (Ferreira et al., 2011). Addition of GSH
to skeletal muscle homogenate, even in the presence of oxi-
dizing peroxynitrate, prevented cardiolipin oxidation (Pope
et al., 2008). A similar finding was observed with the use of
Trolox (vitamin E analogue) (Heales et al., 1994; Pope et al.,
2008). Melatonin has also been shown to inhibit cardiolipin
oxidization and reduce cytochrome c release (Petrosillo et al.,
2009).

Various antioxidants have been used to treat mitochon-
drial disease. CoQ10 is the most commonly prescribed anti-
oxidant in mitochondrial disease, although a randomized
placebo-controlled double-blind crossover clinical trial did
not reveal dramatic efficacy of this agent (Glover et al., 2010)
as discussed above. A phase III clinical trial in children with
RC deficiencies is ongoing (Stacpoole et al., 2012). Several
modifications of the CoQ10 molecule have also been investi-
gated. Idebenone has a shorter isoprenyl chain length and is
said to have better blood–brain penetrance than CoQ10.
Several clinical trials have evaluated idebenone in Friedreich’s
ataxia and there is a suggestion that it may slow neurological
progression in this disorder (see Kerr, 2013). A study in LHON
did not show a significant change in the primary outcome
measure (best eye recovery) but there was a suggestion of
improvement in a subgroup (Klopstock et al., 2011). A phase
IIa (dose-finding) randomized placebo-controlled double-
blind trial of idebenone in MELAS is ongoing. MitoQ is CoQ10

conjugated to the lipophilic cation triphenylphosphonium,
so that it acts as a mitochondria-targeted antioxidant (Kelso
et al., 2001). MitoQ has been used in mouse models of disor-
ders associated with secondary mitochondrial dysfunction
including Parkinson’s and Alzheimer’s diseases but has not
been used in primary mitochondrial diseases.

EPI-743 is a structurally modified variant of CoQ10 with
bis-methyl groups replacing the bis-methoxy groups on the
quinone ring, and a chain length of three isoprenyl units
rather than ten. This synthetic molecule was found to be the
most potent antioxidant of several hundred structurally
modified CoQ10 molecules screened in a cell model system,
with 1000-fold increased antioxidant properties compared
with native CoQ10 (Enns et al., 2012). EPI-743 was subse-
quently evaluated in a series of open-label trials in an end-
of-life setting in several centres in the United States (Enns
et al., 2012) and in Rome, and was reported to slow disease
progression compared with historical natural history data
(Martinelli et al., 2012). However, the extremely unpre-
dictable natural history of Leigh syndrome creates great
challenges in interpreting data from such open-label studies.
A formal randomized double-blind crossover clinical trial of
EPI-743 in children with Leigh syndrome is in progress
(Klein, 2012).
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Targeting mitochondrial dynamics
and mitophagy
The increasing recognition of mitochondria as highly
dynamic organelles has led to a new focus for targeting novel
therapeutic strategies (Andreux et al., 2013). Mitochondrial
mass and morphology results from a delicate balance of
several interrelated processes, fission/fusion and biogenesis/
mitophagy (Figure 2), and modifying each of these processes
may have a role in the treatment of different mitochondrial
disorders (reviewed by Andreux et al., 2013; Stetler et al.,
2013). Genetically defined disorders of mitochondrial
dynamics include defects of mitochondrial fusion caused by
mutations in MFN2 or OPA1, presenting as Charcot-Marie-
Tooth type 2A and autosomal dominant optic atrophy,
respectively (Alexander et al., 2000; Delettre et al., 2000;
Zuchner et al., 2004), and impaired mitochondrial fission
caused by mutations in DRP1 and MFF (Waterham et al.,
2007; Shamseldin et al., 2012). The recent discovery of spe-
cific inhibitors of mitochondrial fusion (M-hydrazone) and
fission (MDIVI-1 and P110) may provide therapeutic poten-
tial for these disorders (Cassidy-Stone et al., 2008; Wang et al.,
2012; Andreux et al., 2013; Qi et al., 2013) but preclinical
studies are first needed to investigate efficacy and possible
adverse effects. These novel agents may also be useful to
modify mitophagy in other mitochondrial disorders not pri-
marily caused by fission/fusion defects (Andreux et al., 2013).

Mitochondrial membrane lipids as
therapeutic targets
Mitochondrial membrane fluidity and plasticity is intimately
related to its lipid content. The first disorder linked to abnor-
mal mitochondrial lipid metabolism was Barth syndrome of
dilated cardiomyopathy associated with cyclical neutropenia,
growth retardation and 3-methylglutaconic aciduria (Clarke
et al., 2013). Barth syndrome is caused by abnormal metabo-
lism of cardiolipin (Schlame and Ren, 2006), the most specific
phospholipid component of the mitochondrial membrane.
Recently four other disorders have been linked to abnormali-
ties of mitochondrial phospholipid biosynthesis or remodel-
ling (Lamari et al., 2013): rhabdomyolysis associated with
mutations in LPIN1 (Zeharia et al., 2008; Michot et al., 2012),
Sengers syndrome (hypertrophic cardiomyopathy and cata-
racts) caused by AGK mutations (Mayr et al., 2012), MEGDEL
(3-methylglutaconic aciduria, SNHL, encephalomyopathy
and Leigh-like syndrome) associated with SERAC1 mutations
(Wortmann et al., 2012), and congenital muscular dystrophy
caused by mutations in CHKB, encoding the first step of
phosphatidylcholine biosynthesis (Mitsuhashi et al., 2011).
Targeting mitochondrial lipid metabolism has thus become
an attractive therapeutic strategy, not just for these specific
disorders, but also for other mitochondrial diseases since
altering the mitochondrial membrane lipid composition by
dietary manipulation has been shown to affect ATP synthesis,
ROS production and the membrane potential (see Monteiro
et al., 2013).

Other pharmacological approaches
Nucleoside replacement
Mitochondrial DNA depletion syndrome (MDDS) may be
caused by nuclear-encoded defects of the mtDNA replication

machinery or of nucleoside salvage. Nucleoside imbalance is
thought to underlie disease pathogenesis in the latter group,
and in theory replacing the deficient deoxyribonucleosides
might correct these disorders. Accordingly, addition of dAMP
and dGMP prevented mtDNA depletion in deoxyguanosine
kinase-deficient patient fibroblasts (Taanman et al., 2003) and
myotubes (Bulst et al., 2009). A potential concern regarding
the use of this form of therapy in vivo is that nucleoside pools
are tightly regulated and theoretically replacing one or two
nucleosides may result in iatrogenically induced nucleoside
imbalance and thereby exacerbate the mtDNA replication
defect in affected patients. Recently, it has been proposed that
simultaneous administration of deoxyribonucleosides and
inhibitors of their catabolism may avoid unwarranted side
effects (Camara et al., 2013). Further studies are in progress.

α-Lipoic acid
α-Lipoic acid is a cofactor of three mitochondrial enzymes
(PDH, α-ketoglutarate dehydrogenase and branched chain
ketoacid decarboxylase) and was first tried as a treatment for
PDH deficiency nearly 25 years ago (Byrd et al., 1989).
Recently, it has been shown that a subgroup of patients with
abnormal mitochondrial energy metabolism have defects in
lipoic acid synthesis (Mayr et al., 2011). It is possible that
treatment with lipoic acid may benefit this group of patients,
although no formal studies have been reported yet. As dis-
cussed above, a trial of lipoic acid in combination with crea-
tine and CoQ10 in a heterogeneous group of mitochondrial
disease patients showed only mild benefit (Table 2; Rodriguez
et al., 2007).

Enzyme replacement therapy
Unlike lysosomal storage disorders, for which recombinant
enzyme replacement therapy (ERT) has been approved or is in
clinical trial for more than 10 different disorders (Desnick and
Schuchman, 2012), no ERTs are currently available for mito-
chondrial disorders. However, enzyme replacement has been
attempted for MNGIE using purified thymidine phosphory-
lase enzyme encapsulated in the patient’s own red blood cells
(Moran et al., 2008), so far without long-term clinical success.
Very recently, a preclinical toxicity evaluation of this system
has been performed in mice and Beagle dogs, and was com-
plicated by infusion-related immune responses in both
species (Levene et al., 2013). Finally, one study described the
construction of active thymidine phosphorylase encapsulat-
ing nanoreactors as novel enzyme delivery vehicles (De Vocht
et al., 2010) but clinical utility of this method has not yet
been reported in either cell or animal models of MNGIE.

Miscellaneous approaches
Other specific therapies that have been proposed include
bypass of complex I using succinate, which is metabolized via
complex II (Oguro et al., 2004) or triacylglycerol supplemen-
tation (metabolized via fatty acid oxidation, resulting in
FADH2 production, which feeds into complex II). Triacylglyc-
erol infusion in four patients with complex I deficiency
resulted in increased exercise tolerance (Roef et al., 2002b)
but no effect on plasma lactate levels (Roef et al., 2002a).
Metronidazole has been used to reduce sulphide production
by intestinal anaerobes in ethylmalonic encephalopathy, a
disorder of sulphur detoxification (Viscomi et al., 2010).
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N-acetylcysteine has also been used in the same disorder, in
order to replenish GSH as a means of buffering sulphide
(Viscomi et al., 2010).

Gene therapy
Although this review is primarily focussed on pharmacologi-
cal strategies, it is important to mention some recent poten-
tially exciting developments in gene therapy approaches for
mitochondrial diseases. Gene therapy for mtDNA defects is
particularly challenging since therapeutic DNA molecules
need to pass across the two mitochondrial membranes in
addition to the plasma membrane. Furthermore, mtDNA
gene therapy strategies also need to take into account the
high copy number of mtDNA, with thousands of copies per
cell.

Allotopic gene expression
Recoding genes that are normally encoded by mtDNA so that
they can be inserted into and expressed from the nucleus is
known as allotopic gene expression. This technique was used
successfully to transfer the recoded mitochondrial MTATP6
gene and thereby rescue the ATP synthesis defect in cybrids
containing the m.8993T>G mutation, which is associated
with maternally inherited Leigh syndrome and neuropathy,
ataxia and retinitis pigmentosa (NARP) (Manfredi et al.,
2002). Furthermore, allotopic expression of the MTND4 gene
prevented blindness in a rat model of LHON (Manfredi et al.,
2002; Ellouze et al., 2008). A human clinical trial of allotopic
gene therapy in LHON is in progress but has not yet been
reported (Lam et al., 2010).

Transkingdom gene therapy
Several studies have used transkingdom gene therapy, where
a gene from one species is used to correct a disorder in
another species, to target mitochondrial diseases. Transking-
dom gene therapy was first suggested as a possible treatment
for complex I deficiencies in 2006 (Yagi et al., 2006) and
subsequently adeno-associated virus (AAV) tagging of the
yeast alternative NADH dehydrogenase NDI1 was used to
treat an animal model of LHON (Marella et al., 2010). Simi-
larly, the yeast alternative oxidase bypasses complexes III and
IV and was shown to rescue COX deficiency in human cul-
tured cells (Dassa et al., 2009) and a mouse model (El-Khoury
et al., 2013). Transgenic expression of D. melanogaster deoxy-
ribonucleoside kinase (Dm-dNK) was able to rescue myo-
pathic MDDS in mice with thymidine kinase deficiency
(Krishnan et al., 2013).

Other gene therapy approaches for mtDNA defects
DNA delivery into the mitochondrion has been attempted
using liposome-based nanocarriers such as Mito-Porter
(Yasuzaki et al., 2010) or a DQAsome transfection system
(Lyrawati et al., 2011), delivery of cytosolic tRNAs into mito-
chondria as a method to aid mitochondrial translation
(Mahata et al., 2006) and using restriction enzymes to specifi-
cally degrade mutant mtDNA (Tanaka et al., 2002). Hetero-
plasmy shifting has also been achieved using antisense
oligonucleotides in cybrids containing a heteroplasmic
mtDNA deletion (Comte et al., 2013). Very recently, a new
approach used transcription activator-like effector nucleases

engineered to localize to mitochondria, to eliminate mutant
mtDNA from cybrids containing the m.14459G>A mutation
associated with LHON plus dystonia (Bacman et al., 2013).
The efficacy of these approaches is strongly debated, and
preclinical studies will be required to ensure the safety of
these novel agents in whole organisms.

Gene therapy for nuclear defects
Gene therapy for nuclear-encoded mitochondrial disorders is
technically less challenging and AAV and lentiviral-mediated
gene therapy has been performed in murine models of ethyl-
malonic encephalopathy and MNGIE, respectively, with
encouraging results (Torres-Torronteras et al., 2011; Di Meo
et al., 2012). Similar approaches would be applicable for other
nuclear-encoded mitochondrial diseases.

Pronuclear and spindle cell transfer
Germ line gene therapy has been proposed for mtDNA muta-
tions using the techniques of pronuclear transfer and mater-
nal spindle cell transfer, as a potential method for preventing
transmission of mutated mtDNA from the mother to the
embryo. In the case of pronuclear transfer, donor and recipi-
ent zygotes are enucleated and the recipient’s nucleus is then
fused into the enucleated donor zygote. This has been dem-
onstrated to be technically possible in research using abnor-
mally fertilized human embryos (Craven et al., 2010).
Maternal spindle cell transfer (MSCT) involves transfer of
nuclear material between donor and recipient unfertilized
metaphase II oocytes, and several Rhesus monkeys have been
born from oocytes manipulated in this way (Tachibana et al.,
2009). More recently, MSCT has been shown to be an effec-
tive method to replace mtDNA in human oocytes (Tachibana
et al., 2013). There has been considerable discussion regard-
ing the ethics surrounding these procedures (Bredenoord and
Braude, 2010; Nuffield Council on Bioethics UK, 2012), but
recently, after an extensive public consultation process
(Pitts-Tucker, 2012), the UK government has granted permis-
sion for further human research to be conducted using these
techniques (House of Commons Hansard Debates 25 June,
2013).

Although all of these studies give promise for future thera-
pies, they are still very far from being offered to patients.

Conclusions

The complexity of the mitochondrial organelle and the
disorders associated with its dysfunction creates unusual
challenges for developing effective treatments. There are par-
ticular difficulties in clinical trial design for this group of
heterogeneous disorders with unpredictable clinical courses.
The few well-designed clinical trials that have been con-
ducted to date have failed to identify any clearly effective
treatments for mitochondrial disease. However, recent
developments including the establishment of national
and international consortia aimed at collecting large well-
characterized cohorts of patients affected by mitochondrial
disease, the availability of mouse models of numerous mito-
chondrial disorders, the identification of novel drug targets
including components of the complex signalling cascades
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controlling mitochondrial biogenesis, and the realization of
novel gene therapy approaches, all herald promise for devel-
oping and testing new mitochondrial therapeutic agents.
Given the extreme clinical, biochemical and genetic hetero-
geneity of mitochondrial disease, it is extremely unlikely that
a ‘one size fits all’ universal panacea exists. Rather, it is more
likely that different interventions will be effective for differ-
ent subgroups of mitochondrial diseases. Ultimately, it is
hoped that it will be possible to deliver a ‘personalized medi-
cine’ approach to patients affected by mitochondrial disease,
with the goal of long-term survival with good quality of life.
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