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Objective: Pain is a major issue in the care of patients with sickle cell disease (SCD). The 

mechanisms behind pain and the best way to treat it are not well understood. We studied how 

electroencephalography (EEG) is altered in SCD patients. 

Methods: We recruited 20 SCD patients and compared their resting state EEG to that of 14 

healthy controls. EEG power was found across frequency bands using Welch’s method. Elec-

trophysiological source imaging was assessed for each frequency band using the eLORETA 

algorithm. 

Results: SCD patients had increased theta power and decreased beta2 power compared to con-

trols. Source localization revealed that areas of greater theta band activity were in areas related 

to pain processing. Imaging parameters were significantly correlated to emergency department 

visits, which indicate disease severity and chronic pain intensity. 

Conclusion: The present results support the pain mechanism referred to as thalamocortical 

dysrhythmia. This mechanism causes increased theta power in patients.

Significance: Our findings show that EEG can be used to quantitatively evaluate differences 

between controls and SCD patients. Our results show the potential of EEG to differentiate 

between different levels of pain in an unbiased setting, where specific frequency bands could 

be used as biomarkers for chronic pain.

Keywords: sickle cell disease, electroencephalography, chronic pain, electrophysiological 

source imaging, thalamocortical dysrhythmia

Introduction
Chronic pain is a health condition that costs $635 billion annually in the US alone.1 

Treatment remains sub-par for chronic pain conditions, because chronic pain and its 

reciprocal effects on the brain are not well understood. Several studies have shown 

that chronic pain is associated with structural, functional, and chemical changes in the 

brain.2–6 Subtle differences have been observed in different chronic pain conditions,7–10 

and disease-specific models of chronic pain are needed to explain the variance observed 

and to understand the specific neurophysiological changes from each disease type. 

Following this rationale, we examined how chronic pain affects electrophysiological 

signals in SCD.

SCD is a debilitating multisystem disorder in which the hemoglobin gene has a 

mutation that causes abnormal polymerization and solubility of hemoglobin, which 

leads to sickle-shaped red blood cells. Sickle red blood cells occlude blood vessels 

causing vasoocclusive crises impairing oxygen supply resulting in hypoxia, reper-

fusion injury, inflammation, end-organ damage, and pain.11–13 Recurrent acute and 
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chronic pain are the most common symptoms in SCD.13–15 

Efforts have been made in an attempt to find the best way 

to rate pain in SCD.16–20 Characterizing the pain accurately 

is imperative as treatments for chronic pain in SCD are lim-

ited and often unsuccessful. Opioids are the most common 

treatment for pain in SCD,14,21 but their kinetics vary in SCD 

patients; therefore, finding the right dose to effectively treat 

pain in SCD is challenging.22 Often, patients will receive 

suboptimal treatment, which causes SCD patients to suffer 

and potentially develop even more pain.15 Additional research 

is needed to better understand chronic pain in SCD and to 

address health care disparities for this often overlooked and 

underserved patient population in the US. 

EEG is a noninvasive technique that records electrophysi-

ological responses of the brain over the scalp in a relatively 

inexpensive and convenient manner compared to other imag-

ing modalities. EEG has been used to monitor several types of 

chronic pain patients. An increase in spectral power in the lower 

frequencies has been observed in many studies for patients 

with neuropathic chronic pain.23–27 Additionally, a trend for the 

dominant peak in spectral power to shift to lower frequencies 

was seen in some of these studies.26,27 However, not all chronic 

pain patients have observable changes in EEG spectral power. 

A study of chronic back pain patients showed no significant 

differences in spectral peak power or peak frequency.28 The 

authors suggested that an explanation for these results might be 

that chronic back pain mainly involves nociceptive mechanisms, 

rather than neuropathic pain mechanisms.28 It has been shown 

that chronic pain does alter neurophysiological dynamics of 

SCD patients, using fMRI and multimodal imaging.29,30 More-

over, chronic pain in SCD is complex, and studies have shown 

that SCD pain likely involves nociceptive and neuropathic 

mechanisms.31,32 Given these findings, we hypothesized that 

SCD patients will have altered EEG spectral power.

The goal of the present study was to investigate how 

resting-state EEG is altered in SCD patients compared to 

healthy controls. ESI and EEG spectral power were used to 

assess differences between healthy controls and SCD patients 

and to test how clinical parameters related to chronic pain 

history and disease severity are related to EEG power and ESI 

imaging results. These relationships can be used to evaluate 

what factors in the EEG data have the potential to rate or 

predict chronic pain intensity.

Methods
Patients
This study was registered at clinicaltrials.gov as “Func-

tional Neuroimaging of Pain Using EEG and fMRI” with 

the registration number NCT02212691. The patient group 

consisted of 24 patients who were recruited by local hema-

tologists. The study was approved by the Institutional Review 

Board at the University of Minnesota, and all patients gave 

written informed consent before participating. As part of the 

study, patients were also asked if they would give permission 

to share certain clinical parameters from their medical history 

with researchers. All but one participant, who did not wish 

to share his health information with anyone besides his doc-

tor, consented to provide this additional information to the 

research team. Participants under 18 years of age gave assent 

and their parent or legal guardian gave written informed 

consent as well. Of the initial patient group, three patients 

were excluded due to high impedance levels at the time 

of EEG recording during the experiment. The recruitment 

flowchart is shown in Figure 1. A summary of the clinical 

parameters of the patient group (n=20: eight females and 

twelve males; mean age 23±7 years) included in the study is 

shown in Table 1 and a list of medications used by the patients 

is shown in Table 2. On the day of the study, the patients 

verbally reported their pain, rated on a scale from 0 to 10, 

with 0 being no pain and 10 being the worst pain imaginable. 

The pain score reported was for the current pain felt on the 

day of study, and it did not reflect previous pain experiences.

Figure 1 Flowchart of subject recruitment. Healthy controls were recruited through fliers and patients were recruited through local hematologists. Four patients were 
excluded from the study because of poor quality of EEG recordings from three patients and one declined to participate. A total of fourteen healthy controls and twenty 
patients were analyzed in this study.
Abbreviation: EEG, electroencephalography.

14 eligible healthy
controls 24 eligible patients

14 healthy controls studied 20 patients studied

4 withdrawn
High impedance levels during EEG recording (n=3)

Declined to participate (n=1)
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Controls
The control group consisted of 14 (seven females, seven 

males; mean age 26±4 years) healthy controls who volun-

teered for the study. The ethnicity of the healthy subjects 

included six African Americans, five Caucasians, one His-

panic, and two Asians. The healthy controls had no neuro-

logical or psychiatric disease history and no pain or chronic 

pain conditions. All healthy subjects gave written informed 

consents to participate in the present study.

EEG recording and preprocessing
The EEG sessions were conducted in a private room where 

subjects were seated and asked to let their mind wander 

naturally, but to remain alert and awake. Participants had 

their eyes open during 10 minute sessions. All subjects had 

a minimum of two sessions of resting state recorded. Patients 

were allowed to continue taking their regular medications at 

the time of the study. The EEG data were measured using 

a 64-channel EEG system (BrainAmp MR 64 plus; Brain 

Products, Gilching, Germany). A summary of our analysis 

protocol is displayed in Figure 2. The EEG data were pro-

cessed offline using the EEGLAB toolbox.33 ICA was used to 

decompose the EEG to remove artifacts. The EEG data were 

downsampled to 256 Hz and re-referenced to averaged refer-

ence. At least 5 minutes of artifact-free EEG was required for 

participants to be included in the final data analysis. 

EEG power spectrum analysis
The preprocessed EEG data were bandpass filtered between 

1 and 50 Hz and segmented into 10 second epochs. PSD was 

calculated for each epoch and estimated using the Welch’s 

Table 1 Group statistics of clinical characteristics of the sickle 
cell disease patients

Clinical variables Values  

Age (years) 23.3 (±6.6) (n=20)
Female (%) 40 (n=20)
Pain score 0.8 (±1.6) (n=20)
Hydroxyurea therapy (%) 60 (n=20)
Systolic blood pressure (mmHg) 120 (±12) (n=20)
Diastolic blood pressure (mmHg) 69 (±9) (n=20)
Hemoglobin (g/dL) 10 (±2) (n=20)
Fetal hemoglobin (%) 8 (±8) (n=20)
Automated absolute reticulocyte count (K/µL) 265 (±155) (n=20)
White blood cell count (K/µL) 10 (±2) (n=20)
Platelet count (K/µL) 355 (±133) (n=20)
Chronic red cell transfusion (%) 15 (n=20)
Emergency room visits in past 2 years 9 (±12) (n=20)
Hospitalizations in past 2 years 7 (±6) (n=20)

Sickle cell type %  

Hemoglobin SS 70 (n=14)
Hemoglobin SC 15 (n=3)
Hemoglobin SB+thalassemia 5 (n=1)
Hemoglobin SB0+thalassemia 10 (n=2)

Notes: Summary of the clinical characteristics of the patients recruited for the study 
who were willing to disclose their medical information. The mean value is listed and 
the standard deviation is within the parentheses unless specified otherwise. A total 
of 20 patients were included in this summary.

Table 2 Group summary of all medications used by patients

Medications % N

Albuterol inhaler 15 3
Aspirin 5 1
Benztropine 5 1
Celecoxib 5 1
Clozapine 5 1
Deferasirox 10 2
Trazadone 5 1
Diphenhydramine 10 2
Escitalopram 5 1
Folate 40 8
Fondaparinux 5 1
Gabapentin 30 6
Haloperidol 5 1
Hydroxyurea 60 12
Ibuprofen 40 8
Meloxicam 10 2
Topiramate 5 1
Zolpidem 5 1

Narcotic pain medications % N

Hydromorphone 10 2
Methadone 5 1
Morphine 5 1
Morphine extended release 10 2
Oxycodone 50 10
Tramadol 10 2

Notes: Summary of all the medications used by the patients recruited for the study. 
The percentage and the number of patients using a specific medication are listed, 
where N indicates the number of patients. Many patients were taking more than 
one type of medicine. The medications are separated to differentiate narcotic pain 
medications from other medications. 

Figure 2 Diagram of analysis protocols. The EEG data were preprocessed to 
remove artifacts and then filtered into different frequency bands to perform power 
spectral analysis and ESI. A BEM realistic-shaped generic head model was used to 
image sources using the eLORETA algorithm. Group contrast images were found 
from comparing source maps of the control and patient groups. 
Abbreviations: BEM, boundary element method; EEG, electroencephalography; 
ESI, electrophysiological source imaging.

BEM model eLORETA source
imaging

Group
contrasts

Spectral
analysis

EEG
preprocessing
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method with a Hamming window that was 2 seconds long and 

with 50% overlap. The PSD results were averaged across the 

epochs in each subject. The group results were obtained by 

averaging the PSD results of all the subjects in the group. The 

PSD results obtained were separated into different frequency 

bands of interest, including delta (2–4 Hz), theta (4–8 Hz), 

alpha (8–12 Hz), beta1 (12–16 Hz), beta2 (16–30 Hz), and 

gamma (30–50 Hz) bands. For each frequency band and 

for every subject, the average power, maximum peak value, 

frequency location of the maximum peak, and COG (see the 

following text for definition) were calculated.24,28,34 The aver-

age power was obtained by averaging the PSD values across 

the frequency band range; maximum peak value was defined 

as the maximum PSD value within the specified frequency 

band range; frequency location was found by determining 

at which frequency the maximum peak was located for each 

frequency band; and COG was calculated using the follow-

ing equation:34
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Where i is the lower bound of the frequency band, j is the 

upper bound of the frequency band, f is the frequency, and A
f
 

is the amplitude of PSD at a given frequency. 

The parameters of power analysis including average 

power, maximum peak value, frequency location of the 

maximum peak, and COG were tested for significance for 

each frequency band using the software RStudio.35 The aver-

age values and standard deviations were found for all power 

analysis parameters. Significance was tested using two-sided 

non-parametric Wilcoxon tests. The Wilcoxon rank sum test 

was chosen due to the robustness of this method and the 

non-Gaussian distribution of the data.36 The results of the 

Wilcoxon tests had FDR correction applied to account for 

multiple comparisons.37 For these comparisons, the level of 

significance was set to be p<0.05 (FDR corrected). Further-

more, the effect size between the controls and patients was 

found for each power parameter. Effect size is a measure 

independent of sample size that determines the strength of 

differences between two groups.38 The effect size was found 

using the Cohen’s d method.39,40 Typically, an effect size above 

0.80 is considered large.39 For this study, a more conserva-

tive threshold of 0.90 was used to have higher power.41 Only 

results above 0.90 are reported. 

Additionally, the power results were tested against the 

clinical parameters of number of ED visits, number of 

hospitalizations, and percent fetal hemoglobin. These para

meters were chosen because of their relation to the patient’s 

chronic pain history, where these values tend to reflect the 

frequency of vaso-occlusive pain crisis.30,42 A linear model 

was generated by assuming a linear relationship between 

the power parameter being tested and the clinical parameter 

being tested and by assuming that there was no y-intercept. 

RStudio was used to test the slope coefficient for significance. 

An FDR correction was applied to the results of these tests to 

account for multiple comparisons. The level of significance 

was set to be p<0.05 (FDR corrected). 

EEG source imaging analysis
The preprocessed EEG data were filtered into different fre-

quency bands used in the power analysis. EEG source imaging 

analyses were performed using the Fieldtrip toolbox.43 Indi-

vidual MRI from each subject was used to create individual 

three-layer BEM models44,45 to separate the head volume 

conductor into brain, skull, and scalp with a conductivity 

ratio of 0.33, 0.0165, and 0.33 S/m, respectively.46,47 For the 

subjects with noisy MRI, we used the MRI of Colin2748 which 

is a realistic standard head model. A three-dimensional source 

grid with 5 mm resolution was defined and restricted to the 

gray matter of Colin27, which resulted in 13,527 grid points. 

The source grid generated from Colin27 was warped into each 

individual’s head model so that the forward problem could be 

solved to calculate individual lead fields. This method let us 

directly compare the source imaging results because all the 

subjects had equal numbers of grid points and corresponded 

to a common head model. EEG cross-spectra were calculated 

from the EEG signals in 2 second windows for each band. 

EEG cross-spectral matrix was fed into eLORETA49 algorithm 

to compute spectral density of the estimated current density 

signals for each voxel in each band.50 eLORETA provides 

unbiased localization and independence in choice of refer-

ence and has been evaluated in previous studies.51,52 Group 

comparison was performed in SPM12,53 where a second-level 

random-effect analysis was performed on normalized ESI 

solutions, and the control group was compared to the patient 

group. For each frequency band, the groups were compared 

to each other and contrast images were obtained to determine 

regions with significant differences for either “patient > con-

trol” or “control > patient”, with p<0.05 (FDR corrected). 

Results
Patient statistics
Clinical variables used in this study are listed in detail in 

Table 1. Twenty patients with sickle cell anemia were included 
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for analysis, among whom fourteen had hemoglobin SS, three 

had hemoglobin SC, one had hemoglobin SB+thalassemia, 

and two had hemoglobin SB0+thalassemia. The average 

pain score and standard deviation recorded for the current 

pain on the day of the study was 0.8±1.6. The average pain 

score was low for this study because sixteen of the patients 

reported a zero for their pain score. One reason for the lack 

of variability is that patients would not come in for the study 

if they had pain and would reschedule to a day when they felt 

better. Due to this lack of variability, this variable was not 

studied for further analysis. As stated earlier, the parameters 

analyzed in this study included percent fetal hemoglobin, 

number of ED visits, and number of hospitalizations. Percent 

fetal hemoglobin ranged between 0.3% and 27.2%, with an 

average and a standard deviation of 8±8%. The number of 

ED visits over the past 2 years ranged between 0 and 44, 

with an average and a standard deviation of 9±12. Number 

of hospitalizations over the past 2 years ranged between 0 

and 19, with an average and a standard deviation of 7±6. The 

medications taken by the patients participating in this study 

varied greatly, as seen in Table 2. A majority of the patients 

were taking some dosage of hydroxyurea; half were using 

oxycodone for treating pain; and many were taking more than 

one type of medication at the time of the study. 

Power spectrum analysis results
EEG power spectral analysis showed that the patient group 

tended to have more power at low-frequency bands (delta, 

theta, and alpha) and less power at high-frequency bands 

(beta1, beta2, and gamma), as shown in Figure 3A. The aver-

age power values showed that significant differences were 

found for theta band (−15±1.4 vs −14±1.1, p=0.02, d=−1.2) 

and for beta2 band between controls and patients (−21±2.2 

vs −23±1.5, p=0.02, d=1.2), as shown in Figure 3B. No sig-

nificant correlations between the three clinical parameters 

studied and average power were found. 

The other power spectral analysis metrics revealed dif-

ferences between the control group and patient group. The 

maximum peak values showed differences between the con-

trol group and patients in theta (−13±0.9 vs −12±1.2, p=0.07, 

d=−0.9), beta2 (−20±1.4 vs −21±1.0, p=0.08, d=0.9), and 

gamma groups (−22±2.2 vs −24±2.0, p=0.08, d=1.0). The 

maximum peak values in the theta band showed a positive 

correlation with ED visits (p=0.03, R2=0.50) (Figure 4A). 

This correlation shows a strong relationship between theta 

power and ED visits, implying that the greater the maximum 

theta peak observed in patients the higher the frequency 

of visits to the ED. There were no statistical differences 

observed in the frequency location of the maximum peak. 

The COG showed significant differences in the gamma band 

between controls and patients (40.4±0.2 vs 40.3±0.1, p=0.05, 

d=1.0). The theta band showed a significantly negative cor-

relation with COG values and ED visits (p<0.001, R2=0.72) 

(Figure 4B). This indicates that patients with more severity 

tend to have their power concentrated in lower frequencies. 

Source imaging results
ESI was performed on the theta and beta2 bands due to 

the significant differences observed in both patient groups 

assessed by power analysis. The ESI results were contrasted 

between the control group and patient population. The theta 

band results showed greater brain activity for the patient 

group in the prefrontal cortex, left rolandic operculum, left 

insula, left putamen, and caudate nucleus (Figure 5A). A 

majority of these regions are known to be active during pain 

processing.54,55 Controls had greater activity compared to 

patients in regions such as precuneus, cuneus, left angular 

gyrus, and occipital lobes. The beta2 results showed there 

were significant regions where patients had more activity 

Figure 3 Summary of average power results for each frequency band. (A) Plot 
showing continuous average power across frequency spectrum from 1 to 50 Hz. 
The average values are shown for the controls and patients. The standard deviation 
is shown by the shaded regions. (B) Bar plot showing group averages for specific 
frequency bands. The bars show the group mean value and the error bars show the 
standard deviation. *p<0.05.
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compared to controls in the prefrontal cortex, anterior cin-

gulate cortex, right superior temporal gyrus, and the right 

caudate nucleus. Regions where controls had significantly 

greater activity included the precuneus and cuneus lobes 

(Figure 5B). 

Discussion
This study examined resting state data in SCD patients using 

EEG. There were statistically significant differences detected 

between the patient group and healthy controls, specifically 

in the theta and beta2 bands in EEG. The theta band showed 

correlations with a history of chronic pain, suggesting that 

high theta power may be associated with a more severe case 

of SCD. Furthermore, we used ESI to explore where these 

differences occur. The theta and beta2 band changes localized 

to several regions of the brain commonly involved in pain 

processing. To our knowledge, this is the first EEG resting 

state source imaging study that has been performed in SCD 

patients. This study shows a great potential for EEG to be 

used to assess disease severity in SCD patients.

The anterior cingulate cortex, insular cortex, and prefron-

tal cortex are all known to be active during pain processing. 

Both acute pain studies54,56,57 and studies of chronic pain5,58 

have implicated these areas to be central to processing noci-

ceptive input. Furthermore, these regions tend to be more 

heavily recruited for the emotional aspect of nociception.59,60 

However, these areas are also involved in other functions 

such as emotional processing, attention, and learning.61–63 

Our ESI results showed that patients have greater activation 

in the prefrontal cortex, insular cortex, and anterior cingulate 

cortex within the theta or beta2 band compared to controls. 

Neurogenic pain patients have shown that theta activity local-

izes to several pain regions, including insular cortex, anterior 

cingulate cortex, prefrontal, and somatosensory cortices.55 

Based on the nature of our study, the increased activation in 

these areas is most likely caused by chronic pain or emotional 

strain that SCD patients experience. 

Several studies have shown that chronic pain patients 

have increased power at low-frequency bands such as delta, 

theta, and alpha.24–26,64 The power results of our study showed 

patients tend to have higher power at lower frequencies and 

COG showed there was a shift observed in patients with 

more severe symptoms to have power concentrated at lower 

frequencies. This shift of power has been observed in chronic 

neurogenic pain patients as well.26 While our results do not 

reflect significant changes observed in alpha power, as is seen 

in other studies,24,26 we believe this is due to our experimental 

protocol where patients had their eyes open. Alpha power 

decreases when eyes are open.34,65 Our findings also support 

a relationship between EEG theta power and chronic pain 

events due to correlations observed in ED visits. Previous 

work has demonstrated that pain intensity can be reflected 

in ED and hospital visitations.30,66–69 Specifically, many lon-

gitudinal studies characterizing ED visits of SCD patients 

found that a majority of the time pain was the reason for the 

visit (ranging from 78% to 94%).66,68 Additionally, a study 

showed that patients who visit ED more often have more pain 

(reflected in pain diary data) and a higher clinical severity of 

SCD.67 Pain in SCD is chronic and severe and is described as 

the hallmark of the disease.13,67,68 The differences observed in 

the EEG data could be related to other complications of the 

disease, such as hypoxemia, but due to the correlations to ED 

visits, the differences are most likely related to the effects of 

enduring long-term chronic pain. A study with chronic back 

pain patients showed that EEG power results correlated with 

the average pain scores of the past 4 weeks but not with the 

pain scores obtained at the moment of the EEG recording.28 

Shifts toward lower frequencies and increased power at 

lower frequencies in chronic pain patients are theorized to 

be caused by TCD. For certain neurological disorders, such 

Figure 4 Scatter plots describing significant correlations in theta band of the patient 
group. (A) Plot showing a positive correlation between maximum peak values of 
theta band and ED visits in the past 2 years. The p-value is 0.03 and R2 is 0.50. (B) 
Plot showing a negative correlation between the COG in theta band and the ED 
visits in the past 2 years. The p-value is <0.001 and R2 is 0.72. 
Abbreviations: ED, emergency department; COG, center of gravity.
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as neurogenic pain, the neurons in the thalamus exhibit 

altered behavior, which disrupts the normal thalamocortical 

resonance.27,70 This mechanism has been supported by single 

unit recordings in the thalamus of neurogenic pain patients, 

showing a mean firing rate of 4 Hz.28 This disruption causes 

excessive theta power and results in cortical processing 

dynamics to be shifted in the frequency domain.27,28 Several 

types of chronic pain patients have shown increased power in 

theta or alpha band.24–27 Furthermore, patients who received 

a therapeutic lesion in the thalamus displayed pain relief 

and reduced theta power compared to before the therapeu-

tic intervention.26,28 The increased power observed in SCD 

patients is most likely caused by this same TCD mechanism.

The limitations of our study include a small patient 

population, allowing patients to continue taking whatever 

medications they use on a regular basis, having them keep 

their eyes open during EEG recordings, and using an ethni-

cally diverse control group. The small number of subjects 

restricts our analysis and makes it difficult to achieve 

significant differences. There is also an increased risk of 

errors with small sample sizes and a chance that outliers 

can dominate results. The small sample size may contribute 

as to why no correlations between hospitalizations and fetal 

hemoglobin were found. It is also challenging to determine 

how or whether the medications affected the neural signals 

and subsequent EEG data. It should be noted that recruiting 

SCD patients is challenging and SCD trials in general have 

poor accrual;71–73 for example, a study on pain treatment had 

to be concluded prematurely.21 The reasons for these problems 

are the unpredictable nature of pain in SCD patients and 

poor compliance due to many factors.74,75 We did not ask our 

patients to stop taking their medications because we wanted 

to retain the maximum number of patients. The control group 

did not match the ethnicity of the patient group. However, 

the control group was not dominant in any particular race, 

and no significant differences were found between the results 

of African-American controls and the other controls in an 

additional analysis. Other complications in interpreting our 

results include that sickled blood cells could cause alterations 

in neural behavior and that differences observed may not 

Figure 5 Contrast images of ESI results. (A) Results of contrasts in the theta band. The contrast results of “control>patient” are shown in orange/yellow and the contrast 
results of “patient>control” are shown in blue. The t-values are shown in color bars. Results displayed are p<0.05 (FDR corrected). (B) Results of contrasts in the beta2 
band. The contrast results of “control>patient” are shown in orange/yellow and the contrast results of “patient>control” are shown in blue. The t-values are shown in color 
bars. Results displayed are p<0.05 (FDR corrected).
Abbreviations: ESI, electrophysiological source imaging; FDR, false discovery rate.
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reflect chronic pain or TCD.76 However, several studies have 

shown that at rest SCD patients have comparable oxygen 

delivery to controls.29,77,78 Finally, EEG has limited spatial 

resolution, which makes it challenging to map deep brain 

structures such as the thalamus.79 This potentially limits 

our explanation of the TCD mechanism potentially being 

a factor in SCD patients’ neural activity. However, previ-

ous studies have shown that EEG can be used to map out 

the connectivity in the thalamocortical pathway in epilepsy 

patients, which shows that EEG is capable of detecting deep 

brain structure activity.80 Another limitation of this study is 

using ED visits to mark chronic pain. This is an imperfect 

marker; however, several clinical publications about pain in 

SCD have used ED visits and hospitalizations as a surrogate 

for pain severity.30,67,81,82 These markers of chronic pain are 

still valuable because they provide an objective measure of 

chronic pain history. Despite the limitations of our study, we 

still found significant differences between the patient and 

control groups, as well as significant correlations between 

the EEG results and the frequency of ED visits. However, 

results should be interpreted with caution as highlighted ear-

lier. This was a preliminary study with many limitations, and 

future studies with increased sample sizes, racially matched 

controls, and better methods for measuring pain are needed 

to confirm our preliminary results. 

EEG is an important tool, especially in this cohort, 

because it is noninvasive, economical, easy to use, and 

can provide an objective measurement for assessing pain. 

In addition to our findings, EEG has also been shown to 

find altered activity between controls and SCD patients in 

processing acute pain.83 Other imaging modalities, such as 

fMRI or diffusion tensor imaging, require a larger burden 

on patients to complete data recording due to potential risks 

and the bulk of instrumentation. Acquiring data sets using 

MRI techniques can be limited due to the unpredictability 

of pain. EEG is far more flexible because it is portable and 

can be brought to the patient’s home, hence can be utilized 

for more detailed studies that include longitudinal follow-

up.84,85 Recent advancements in ESI using high-density EEG 

have revealed significantly enhanced capability of imaging 

brain sources that were not available before.79,86,87 Thus, 

EEG is a feasible tool to use on SCD patients, because it is 

an inexpensive and convenient way to address the lack of 

unbiased pain measurements for chronic pain patients and it 

can provide new insightful knowledge about how SCD pain 

affects neurophysiology.

In summary, this study provides a foundation to show 

that EEG data can be used to assess chronic pain in SCD 

patients and has provided insights into why TCD is a pos-

sible mechanism behind chronic pain in SCD. Using EEG to 

monitor SCD patients is an important finding because other 

types of noninvasive imaging, such as fMRI, are expensive 

and burdensome for patients, providers, and health care sys-

tems. Further research is needed to validate these findings in a 

larger cohort of patients and to further develop EEG methods 

that assess pain intensity in SCD patients.
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