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The role of innate immunity in dementia with Lewy bodies (DLB) has been little studied. We
investigated the levels in cerebrospinal fluid (CSF) of glial proteins YKL-40, soluble TREM2 (sTREM2)
and progranulin in DLB and their relationship with Alzheimer’s disease (AD) biomarkers. We included
patients with DLB (n =37), prodromal DLB (prodDLB, n=23), AD dementia (n =50), prodromal AD
(prodAD, n=53), and cognitively normal subjects (CN, n = 44). We measured levels of YKL-40, sSTREM2,
progranulin, A3,_,,, total tau (t-tau) and phosphorylated tau (p-tau) in CSF. We stratified the group

. DLB according to the ratio t-tau/A3,_,, (>>0.52, indicative of AD pathology) and the A/T classification.

. YKL-40, sSTREM2 and progranulin levels did not differ between DLB groups and CN.YKL-40 levels were

. higherin AD and prodAD compared to CN and to DLB and prodDLB. Patients with DLB with a CSF

. profile suggestive of AD copathology had higher levels of YKL-40, but not sSTREM2 or PGRN, than those

. without. T+ DLB patients had also higher YKL-40 levels than T—. Of these glial markers, only YKL-40

. correlated with t-tau and p-tau in DLB and in prodDLB. In contrast, in prodAD, sTREM2 and PGRN also
correlated with t-tau and p-tau. In conclusion, sTREM2 and PGRN are not increased in the CSF of DLB
patients. YKL-40 is only increased in DLB patients with an AD biomarker profile, suggesting that the
increase is driven by AD-related neurodegeneration. These data suggest a differential glial activation
between DLB and AD.

. Epidemiological, pathological and genetic studies support the importance of the innate immunity in the patho-

* physiology of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD)'. In

. particular, astroglia and microglia play an important role in neurodegeneration®*. These two cellular types have

. very different functions in the central nervous system (CNS): microglia, the resident monocytic cells in the CNS,

. phagocyte cellular debris and protein aggregates, while astrocytes support neuronal and synaptic activities among
other key functions>*.

YKL-40 protein, also known as chitinase 3-like 1 protein, is a glycoprotein expressed by astrocytes near
amyloid plaques in AD human brain®®. YKL-40 can be detected in cerebrospinal fluid (CSF) and the lev-
els are increased in preclinical and prodromal AD, as well as in other neurodegenerative conditions, such as
Frontotemporal Lobar Degeneration (FTLD), Amyotrophic Lateral Sclerosis (ALS) or Multiple Sclerosis (MS)”-°.
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Prodromal DLB Prodromal AD

CN (n=44) DLB (n=37) (n=23) AD (n=50) (n=53) Total p-value
Age,y+SD 67.445.1 76545 76.5+6.4 74.6+5.6 723463 73465 ~0.001
(range)* (60.2-78.7) (64-84.6) (58.5-85.8) (62.4-86.8) (60.4-85) (58.5-86-8) :
Sex, Female % (n) | 56.8 (25) 54.1 (20) 56.5 (13) 62 (31) 60.4 (32) 57.8% (78) 0.949
APOEe4, %" (n)> | 18.2(8) 24.3(9) 34.8(8) 58 (29) 75 (39) 45.1(93) 0.003
MMSE 4 SD* 289412 23446 261424 225434 267423 257438 <0.001
SISLF fgggl’ Pel 918242122 602742692 | 634+197.7 384.74£105.6 45814722 | 583.6+261 <0.001

. CSF t-tau, pg/

Core AD biomarkers LS 228.8+52.3 448943339 | 371341745 694.5+321 609+267.7 493.8+310 <0.001
CSF p-tau, pg/ 4554102 68.8442.3 62.6:£24.4 94.14£262 94.8439.2 76436.8 <0.001
mL=+SD
SISLF fé%; 40,ng/ | 53884492 278.8+83.4 270.7 469 295.3454.1 29674557  |277.8+648 | <0.001

Inflammation-related biomarkers | <5° ;211315(1;4)% g/ 42423(40)  |53+£23(28) | 44+£19(18)  |43+22(36) | 5+24(41) | 46+23(163) | 0.038
CSFPGRN,ng/ | 43 1, 42411 45413 44+13 46+12 44+12 0.653
mL=+SD

Table 1. Demographic and CSF biomarker data. *At least one APOEe4 allele. *Cognitively normal controls
(CN) vs. DLB, prodDLB, AD and prodAD, p < 0.001; prodAD vs. prodDLB and DLB, p=0.05. bCN, DLB and
pDLB vs. AD and pAD, p < 0.001. °CN vs. AD, p < 0.001; prodDLB vs. AD, p=10.09. “CN vs. DLB, prodDLB,
AD and prodAD and AD vs. DLB and prodDLB, p < 0.001; AD vs. prodAD, p=0.003. °*CN vs. DLB, AD and
prodAD, p < 0.001; CN vs. prod DLB, p=10.006; DLB vs. AD and prodAD, p < 0.001; prod DLB vs. AD and
prod AD, p<0.001. ‘CN vs. AD and prodAD, p < 0.001; CN vs. DLB, p=0.016, CN vs. prodDLB, p =0.06;
DLB and prodDLB vs. AD and prodAD, p < 0.001. 8CN vs. AD and prodAD, p < 0.01; DLB and prodDLB vs.
AD, p=0.03; DLB and prodDLB vs. prodAD, p=0.006 and p = 0.007, respectively. "pAD vs. AD, p=0.06
(results adjusted by multiple comparisons). Analyses using ANCOVA including age for all biomarkers and also
sex in the case of STREM2. In post-hoc analyses p-values were adjusted by Bonferroni correction for multiple
comparisons (10 comparisons for this analysis).

Other studies have implicated the triggering receptor expressed on myeloid cells 2 (TREM2) receptor in
neurodegenerative diseases'!. Rare heterozygous variants in TREM2 have been linked with an increased risk
of AD'>!3, Furthermore, recent studies have shown an elevation in the CSF of the soluble fragment of TREM2
(STREM2) in early stages of sporadic AD1¢ as well as in autosomal dominant AD"’.

Another line of evidence that supports the role of inflammation in neurodegenerative conditions implicates
the Progranulin protein (PGRN). PGRN is expressed in many tissues and cell types!®. In CNS, PGRN is mainly
expressed in neurons and microglia'®!® where is involved in the mechanisms of cell proliferation and neuroin-
flammation. PGRN levels are decreased in CSF and blood of patients with heterozygous mutations in the granulin
gene (GRN), that are associated with FTLD with TAR-DNA-binding protein 43 inclusions?**-?*. Furthermore,
genetic variants that modulate GRN expression, such as the GRNrs5848 polymorphism, have been associated
with an increased risk of AD*%.

There are multiple evidences that support that glia is activated in synucleinopathies®. In particular, activated
microglia targeting dopamine nigral neurons has been described in PD¥. Microglial activation in PD and demen-
tia with Lewy bodies (DLB) has been implicated in the initiation and progression of the disease by means of secre-
tion of pro-inflammatory cytokines and reactive oxygen species®. In addition, synuclein released from neurons in
PD and DLB can be endocytosed by astrocytes forming glial inclusions*-?. These inclusions can induce changes
in gene expression in astroglia, enhancing the inflammatory response and promoting neurodegeneration*%.

In this study, we investigated the CSF profile of YKL-40, sSTREM2, PGRN in patients with DLB and prodromal
DLB, and compared this pattern with that of AD. We also examined the influence of concomitant AD pathology
on these biomarkers in DLB.

Results

Demographics and core CSF biomarkers. Table 1 summarizes the demographics and CSF biomarker
values of all the study participants. There were no significant differences between groups in gender, but CN
subjects were significantly younger than the other groups. As expected, MMSE scores were lower in DLB and
AD than in CN or groups with prodAD and prodDLB. Core AD CSF biomarkers also differed between groups
(Table 1). DLB groups had lower levels of AB,_,, than CN but higher than AD groups. DLB groups had also higher
levels of t-tau and p-tau than CN, but lower than AD groups. Frequency of APOEe4 allele in DLB groups was
similar to CN and lower than AD groups (p=0.001).

Relationship between glial biomarkers, age, APOE and clinical measures. There was no associa-
tion between gender and any of the three glial markers, but there was a trend towards higher levels of STREM2 in
males (p=0.06). Therefore, all sSTREM2 analyses were adjusted by gender. Age significantly correlated with CSF
levels of YKL-40 and sTREM2 (r =4-0.351; p < 0.001 and +0.212; p < 0.006, respectively) in the whole sample
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Figure 1. Inflammation-related biomarkers across clinical diagnoses. *p < 0,05, **p < 0.01. The group-wise
comparisons were analyzed by ANCOVA adjusting by age for all biomarkers and additionally for sex in the case
of sSTREM2. The p-values were adjusted by Bonferroni correction for multiple comparisons (10 comparisons).
Thicker horizontal bars represent the mean while whiskers represent the standard deviation. CN: cognitively
normal controls, DLB: Dementia with Lewy Bodies, prodDLB: prodromal DLB, AD: Alzheimer’s disease,
prodAD: prodromal AD. (a) CSF YKL-40 levels in the different clinical groups. (b) CSF sSTREM2 levels in the
different clinical groups. (¢) CSF PGRN levels in the different clinical groups.

as previously reported'*!’, without differences when stratifying by diagnosis. We did not find differences in the
levels of any of the glial markers between APOEe4 carriers and non-carriers in the whole group. However, in
prodDLB, non-carriers showed higher levels of sSTREM2 than carriers (5.14 4 1.9 vs. 3.1+ 1.1ng/mL, p=0.02).
STREM2 levels were not influenced by APOEe4 status in any other clinical group. We did not detect differences in
YKL-40 or PGRN levels between APOEe4 carriers and non-carriers in any clinical group.

We did not find any significant association between the levels of glial markers and the clinical or neuropsycho-
logical measures after correction for multiple comparisons.

Glial biomarkers across clinical diagnoses. Next, we analyzed differences in levels of YKL-40, sSTREM2
and PGRN across groups (Fig. 1, Table 1). We did not find significant differences between DLB, prodDLB and
CN in the levels of YKL-40 in CSE Patients with DLB and prodDLB had lower YKL-40 levels than those with AD
(both p=0.03) and prodAD patients (p =0.006 and p =0.007, respectively). AD and prodAD had significant
increased levels of YKL-40 compared with CN (both, p < 0.01).

STREM2 levels did not differ between DLB groups and CN, but levels were higher in both, DLB and prodAD,
compared to AD (p =0.02 and p =0.006, respectively). These differences, however, disappeared when adjusting
by Bonferroni correction for multiple comparisons and only a trend towards higher sSTREM2 levels in prod AD
compared to AD (p=0.06) was observed. No differences were found across groups in CSF PGRN levels.
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Figure 2. Correlations between glial biomarkers. CN: cognitively normal controls, DLB: Dementia with Lewy
Bodies, prodDLB: prodromal DLB, AD: Alzheimer’s disease, prod AD: prodromal AD. (a—c) Correlations
between CSF sTREM2 and YKL-40, PGRN and YKL-40, and sTREM?2 and PGRN levels in the different
diagnostic groups, r and p-values of the partial correlation are shown in brackets (adjusted by age for all the
biomarkers and additionally for sex in STREM2).

Correlations between glial biomarkers. Figure 2 and Table 2 show the correlations between the three
investigated glial markers. Supplementary Fig. S1 shows the correlations stratified by diagnosis. We found a cor-
relation between YKL-40 and PGRN levels (r =0.42, p=0.01, Fig. 2b) and between sSTREM2 and PGRN (r =0.46,
p=0.02, Fig. 2c) in DLB. We also found that YKL-40 correlated with sSTREM2 (r=0.57, p=0.02, Fig. 2a) in prod-
DLB. In AD groups, we found correlations between YKL-40 and PGRN and sTREM2 and PGRN only in prodAD
(Fig. 2b,c), but not in AD patients, while YKL-40 and sTREM2 were correlated in both AD and prodAD (Fig. 2a).

Relationship between glial and core AD biomarkers. Table 2 and Supplementary Fig. S2 show the
different correlations between glial and core AD biomarkers in CSE YKL-40 correlated with t-tau and p-tau in
prodDLB (r=0.71 and r =0.778, both p < 0.001), and DLB (r=0.6 and r =0.627, both p < 0.001). sSTREM2 and
PGRN levels did not correlate with A3, _y,, t-tau or p-tau in the DLB groups.

Influence of AD copathology on CSF glial markers in DLB.  We next analyzed levels of YKL-40,
sTREM2 and PGRN in DLB patients according to the presence or absence of a CSF AD profile based on the
ratio t-tau/AB,_4,>°. We found that levels of YKL-40 in DLB patients with a t-tau/A(3,_y, ratio indicative of AD
pathophysiology (>0.52) were higher than those with a normal t-tau/AB,_,, ratio (<0.52, Fig. 3a, p=0.04). There
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CN DLB Prodromal DLB | AD Prodromal

(n=44) (n=37) (n=23) (n=50) | AD (n=53) | All sample
YKL-40/sTREM2, r 0.524%%* 0.36 0.569" 0.438% | 0.53%%* 0.406%**
YKL-40/PGRN, r —0.332 0.420%* 0.294 0.042 0.384%* 0.171
sTREM2/PGRN, r 0.162 0.459 0.463 0.276 0.499%* 0.337%*
YKL-40/AB,_4,, r 0.423* —0.073 —0.331 0.031 0.101 —0.163*
YKL-40/t-tau, r 0.263 0.600%** 0.71%%* 0.317 0.65%%* 0.572%%*
YKL-40/p-tau, r 0.285 0.627%#%* 0.778%** 0.306 0.591%** 0.5897%#*
STREM2/AB,_r T 0.231 0.196 0.042 0.389° | 0.409 0.152
sTREM2/t-tau, r 0.406* 0.235 0.459 0.078 0.418* 0.179*
sTREM2/p-tau, r 0.531%* 0.272 0.455 0.155 0.368" 0.204%*
PGRN/AB_4, 1 —0.378! —0.009 —0.129 —0.074 0.210 —0.108
PGRN/t-taur 0.126 0.339 0.263 0.240 0.393* 0.256% %%
PGRN/p-tau, r 0.075 0.415' 0.449 0.236 0.394 0.2947%#%*

Table 2. Partial correlations between glial markers across diagnoses. r values in bold represent the significant
correlations between biomarkers. Partial correlations were adjusted by age for all biomarkers and sex in the case
of sSTREM2. P-values were adjusted by Bonferroni correction for multiple comparisons (9 comparisons for this
analysis). *p < 0.05. **p < 0.01. ***p < 0.001. ‘p-value between 0.09 and 0.05.

were no differences in the CSF levels of sSTREM2 or PGRN in DLB patients when stratifying by the tau/A@3,_,
ratio (Fig. 3b,c). Suppl. Table 1 shows demographic and clinical data from those patients. We found similar results
when analyzing together DLB and prodDLB groups (data nor shown).

To further investigate the influence of amyloid and tau pathology on the CSF levels of glial markers in DLB
we stratified patients according to the A/T scheme®*2. We did not find differences in glial markers between A+
vs. A— DLB patients. T+ DLB patients had higher levels of YKL40 than T- DLB patients (p =0.007, Fig. 4b). T+
DLB patients showed also a trend for higher levels of STREM2 and PGRN (p =0.07 and p=0.09 respectively,
Fig. 4d,f).

Discussion

The main finding of this study is that YKL-40 levels are elevated in CSF in DLB patients only when there is a CSF
profile indicative of concomitant AD pathology. The glial markers YKL-40, sSTREM2 and PGRN are not increased
in CSF in DLB when comparing with CN. We also measured for the first time these glial markers in the prodro-
mal phase of DLB and found no increase at this stage of the disease compared to CN and later stages of DLB.

The lack of increase in CSF YKL-40 in the whole DLB group agrees with previous findings in PD and DLB*-%,
supporting the absence of an increase of this protein in CSF in synucleinopathies. This may suggest a lack of
astroglial activation following the a-synuclein pathology. On the other hand, our group and others have shown
an increase of CSF YKL-40 in AD and also FTLD-related syndromes early in the disease course>”#10353839 Thijg
contrast between synuclein- and tau-related neurodegenerative dementias suggests that YKL-40 is more involved
with this second group of disorders. Moreover, we demonstrate an increase in YKL-40 in DLB patients with
concomitant AD copathology when compared with DLB patients without AD copathology, suggesting that it is
comorbid AD what is driving astrocytic activation in DLB. In agreement with this finding, we found that YKL-40
levels were highly correlated with t-tau and p-tau levels in DLB groups and that YKL-40 was increased in T+ DLB
patients. One possible explanation to the difference in CSF YKL-40 between AD and DLB is that the a-synuclein
inclusions observed in astrocytes in DLB may influence the astrocytic response toward neurodegeneration com-
pared to tauopathies such as AD and FTLD***!, In addition, the astrocytic response against pathologic protein
deposition in DLB seems to be linked to the presence of pathologic tau (p-tau) in the presence of concomitant
AD pathology.

This is the first study that reports the CSF sTREM2 levels in DLB patients. We found higher levels of this
protein in DLB compared to AD, but this difference did not survive correction for multiple testing, perhaps due
to the relatively small sample size that limited the statistical power. Although TREM2 has not been previously
investigated in postmortem DLB, some studies have shown higher levels of TREM2 in brains of PD patients and
in PD murine models*>-*. This could support the hypothesis that TREM2 is elevated in synucleinopathies in con-
trast to YKL-40. Nevertheless, we could not find differences in sSTREM2 levels between DLB and CN. We did not
find differences either when stratifying the DLB group by CSF AD profile neither a correlation between sTREM2
and t-tau and p-tau in DLB groups, indicating that the levels of sSTREM2 in DLB are independent of neurode-
generation due to AD. We could not replicate previous studies showing higher levels of sSTREM2 in AD'*"7, with
only a trend toward higher levels in prodromal AD. These results are possible due to the small number of patients
included.

Finally, as previously reported in a smaller study®® we did not find any difference in the levels of PGRN protein
in CSF in DLB or an influence of AD copathology.

One of the strengths of this study is that we included a group of patients with prodromal DLB. Although
there are no established criteria for this stage of the disease, we included only those patients that converted to
DLB during the follow-up. YKL-40, sTREM2 and PGRN levels have never been investigated in CSF in prodro-
mal DLB, nevertheless, we did not detect any increase in this stage, indicating that these glial markers do not
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Figure 3. Influence of AD copathology on CSF glial markers in DLB patients. *p-value < 0.05.

**p-value = 0.009. Thicker horizontal bars represent the mean while whiskers represent the SD. CN: cognitively
normal controls, DLB: Dementia with Lewy Bodies, Non AD-Sg: DLB patients with core CSF biomarkers non-
suggestive of concomitant AD copathology (t-tau/AB;_y, ratio < 0.52). AD-Sg: DLB patients with core CSF
biomarkers suggestive of concomitant AD copathology (t-tau/AB,_,, ratio > 0.52). (a-c) CSF YKL-40, sSTREM2
and PGRN levels in CN and DLB patients with and without AD copathology according to the t-tau/AB,_, ratio.

change significantly early in the disease course. Nonetheless, it is of value to include prodromal DLB patients in
biomarker studies, not only to find markers of early disease stage, but also to generate new hypothesis regarding
the pathophysiology of the disease. This study has some limitations: the study is based on CSF biomarkers in a
single-center cohort and needs validation in a larger independent cohort, the sample size is relatively small, relied
on clinical diagnosis and neuropathological confirmation was not available.

In summary, we report that DLB and AD show different patterns of glial activation markers in CSE. YKL-40
is only increased in DLB when there is underlying AD pathology and, in contrast to AD, YKL-40 levels are not
elevated in prodromal stages. We could not find differences between DLB and healthy subjects in CSF sTREM2
or PGRN levels, although a trend for higher sSTREM2 levels was found compared to AD and independently of
AD biomarkers. Together, these results suggest a different pattern of glial activation between DLB and AD, which
needs further functional and molecular studies to elucidate the differential role of this innate immune response
in DLB and its impact on the disease pathogenesis and progression.
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Figure 4. CSF glial markers in DLB patients according to A/T classification. *p-value < 0.05. Thicker horizontal
bars represent the mean while whiskers represent the SD. DLB patients were stratified by levels of A3,_4, and
t-tau in CSF: A+: decreased CSF levels of AB3,_,,, A—: normal CSF levels of AB,_,,, T+ increased CSF levels of
p-tau, T— normal CSF levels of p-tau.

Methods

Study participants and clinical classification. We prospectively included 207 subjects evaluated at the
Memory Unit at Hospital de Sant Pau between January 2009 and October 2017. Patients had the following diag-
noses: DLB (n=37), prodromal DLB (prodDLB, n =23), AD dementia (AD, n =50) and prodromal AD (pro-
dAD, n=53). We also included 44 cognitively normal controls (CN) selected from the Sant Pau Initiative on
Neurodegeneration (SPIN) cohort (“https://santpaumemoryunit.com/our-research/spin-cohort/”). To minimize
the effect of gender and age, AD and prodAD cases were age- and gender-matched with the DLB and prodDLB
cases. All participants received a clinical and formal neuropsychological assessment*® and underwent lumbar
puncture to obtain CSF as reported elsewhere®. DLB patients were evaluated using a previously reported clin-
ical protocol*~*". Briefly, the protocol included Minimental State Examination (MMSE), Global Deterioration
Scale (GDS), Unified Parkinson Disease Rating Scale — part III (UPDRS-III), Boston Naming Test (BNT), Free
and Cued Selective Reminding Test (FCSRT), Visual Object and Space Perception (VOSP), Trail Making Test
part A and B (TMT A and B), Neuropsychiatric Inventory (NPI), semantic and phonetic fluencies, Clinician
Assessment of Fluctuations (CAF) and One Day Fluctuation Assessment Scale (ODFAS). The neurological evalu-
ation also included a structured questionnaire to interrogate about the features and onset of psychotic symptoms
and sleep?.
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Patients with DLB met consensus criteria for probable DLB*. Patients with prodDLB met general crite-
ria for MCI* with at least one sign of a-sinucleinopathy (visual hallucinations, parkinsonism, or REM sleep
behaviour disorder (RBD))**>? and had to meet criteria of probable DLB*® during the follow up. According to
current clinical diagnostic criteria*® a diagnosis of DLB excludes a diagnosis of PD by using a one-year rule in
which dementia have to be present before or at least during the first year of onset of the parkinsonism. DLB
patients with suspected AD copathology were defined according to the ratio t-tau/AB,_,, (>0.52; indicative of
underlying AD pathology)*’. We also stratified DLB patients according the A/T scheme®"?, considering A+
when CSF levels of AB3,_,, were lower than 550 pg/mL and T+ when CSF levels of p-tau were higher than 61 pg/
mL7 Patients with AD dementia and prod AD met the NIA-AA criteria®>>* and all had a CSF AD profile defined
by low AB,_,, and high t-tau or p-tau levels according to our published cut-offs’. CN were volunteers with a
normal neuropsychological evaluation for age and education, normal levels of core AD biomarkers in CSE, and
no cognitive complaints.

CSF collection and analyses. CSF was obtained by lumbar puncture as described”*. CSF is collected and
processed in polypropylene tubes following international recommendations. The first 2 ml of CSF are transferred
to the general laboratory for cell count, and analysis of glucose and protein levels. A further 10 ml are trans-
ferred to our laboratory where samples are processed (centrifuged 2000 g at 4 C, during 10 min) and aliquoted
within the first two hours after the lumbar puncture. Aliquots are stored at —80 °C until analysis. Levels of core
AD biomarkers (A(3,_y,, total tau, and phosphorylated tau), YKL-40 and PGRN in CSF were measured using
commercially available kits from Fujirebio-Europe (InnotestTM, catalog numbers Ref 81583 (AB,_4,), Ref 81579
(total tau) and Ref 81581 (phosphorylated tau)), Quidel (catalog number Ref 8020) and Adipogen, Inc. (Catalog
number AG-45A-0018YEK-KI01), respectively, as previously described”***°. sSTREM2 levels were measured by
ELISA using previously described methods'*!7%. Samples were diluted 1:5 to measure STREM2 and PGRN,
while were undiluted for the rest of analytes. All samples were randomized across plates, measured in duplicate,
and all included samples had an intra-assay coefficient of variation (CV) <15%. Inter-assay CV% was <20% for
all the measured proteins (CVs for each assay are shown in suppl. Table S2). The operator was blinded to clinical
diagnosis as in previous studies'*"’.

APOE genotyping. DNA was extracted using standard procedures and APOE was genotyped accordingly to
previously described methods®®.

Statistical analysis. Differences in categorical variables were assessed by Pearson chi-square tests.
Normality of the variables was tested by Shapiro-Wilk test. Non-normally distributed variables (STREM2, YKL-
40, t-tau, and p-tau) were log10-transformed to achieve a normal distribution and all the analyses were performed
with the log-transformed values. A3,_4, did not follow a normal distribution even after log-transformation and
non-parametric tests were used. Group comparisons between normally distributed values were performed by an
analysis of covariance (ANCOVA) adjusting by the effect of age. CSF sTREM2 comparisons were additionally
adjusted by the effect of gender. Partial Pearson Product-Moment correlations controlled by age (and gender in
CSF sTREM2) were used to test the association between continuous variables. A3, _,, differences between groups
were tested by Kruskal-Wallis and Mann-Whitney tests. Non-parametric correlations (Spearman) were used with
variables that did not follow normal distribution (MMSE). Bonferroni posthoc correction was applied to adjust
for multiple comparisons. We considered 10 comparisons when comparing all the clinical groups together and 9
in the correlations between glial and AD core biomarkers. The level of significance was set at 5% (a=0.05). All
statistical analyses were performed using SPSS software version 21.0 for Windows.

Ethical approval and consent to participate. All subjects signed the informed consent form to par-
ticipate in the study and all study protocols were approved by the local ethics committee at Hospital Sant Pau.in
accordance to Declaration of Helsinki.

Data Availability
The datasets used and/or analysed during the current study are available from the corresponding author on rea-
sonable request.
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