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Abstract: Starting from the structure of antimycobacterial screening hit OTB-021 which was devoid
of activity against ESKAPE pathogens, we designed, synthesized and tested two mutually isomeric
series of novel simplified analogs, 2- and 4-(3-nitro-1,2,4-triazol-1-yl)pyrimidines, bearing various
amino side chains. These compounds demonstrated a reverse bioactivity profile being inactive
against M. tuberculosis while inhibiting the growth of all ESKAPE pathogens (with variable potency
patterns) except for Gram-negative P. aeruginosa. Reduction potentials (E1/2, V) measured for selected
compounds by cyclic voltammetry were tightly grouped in the −1.3–−1.1 V range for a reversible
single-electron reduction. No apparent correlation between the E1/2 values and the ESKAPE minimum
inhibitory concentrations was established, suggesting possible significance of other factors, besides the
compounds’ reduction potential, which determine the observed antibacterial activity. Generally,
more negative E1/2 values were displayed by 2-(3-nitro-1,2,4-triazol-1-yl)pyrimidines, which is in
line with the frequently observed activity loss on moving the 3-nitro-1,2,4-triazol-1-yl moiety from
position 4 to position 2 of the pyrimidine nucleus.

Keywords: bioreducible prodrugs; nitroazoles; 3-nitro-1,2,4-triazole; nucleophilic aromatic
substitution; antimycobacterial activity; ESKAPE pathogens; cyclic voltammetry; reversible
single-electron reduction

1. Introduction

N-Aryl-C-nitroazoles represent a general class of heterocyclic compounds which have found
utility as pesticides [1], herbicides, fungicides [2] and high-energy materials [3–5]. At the same time,
compounds belonging to this broadly defined chemical class are noticeably underrepresented in the
medicinal chemistry literature [6]. Possible reasons for this include the negative stigma associated
with nitro heteroaromatic moieties in general which are redox-active moieties and can therefore exert
non-specific toxicity and mutagenicity [7]. Although nowadays such moieties continue being avoided,
there is a steadily growing sentiment (particularly in the antibacterial field [8–10]) that the toxic effects
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of nitro heteroaromatics to the human host can be alleviated—and detrimental effects to the pathogen
retained or even increased—by careful optimization of the molecular periphery around the nitro
heteroaromatic warhead. The feasibility of such an approach has been demonstrated by the recent
approval of antitubercular nitroimidazole drugs delamanid [11] and pretomanid [12] (Figure 1) which
act as metabolically activated prodrugs. The progress in this field as well as the pros and cons of
incorporating nitro (hetero)aromatic groups in drug candidate molecules have been comprehensively
summarized in a recent review [13].
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Figure 1. Clinically approved drugs delamanid and pretomanid.

In our program aimed at discovering new efficacious antibacterial leads, we undertook screening of
a set of diverse nitrogen heteroaromatic compounds bearing a bioreducible nitro group. From this effort,
compound OTB-021 (5-methyl-7-(3-nitro-1,2,4-triazol-1-yl)-1,2,4-triazolo[1,5-a]pyrimidine) surfaced as
a moderately potent hit with specific activity against drug-sensitive H37Rv strain of Mycobacterium
tuberculosis [14], while other Gram-positive (S. aureus and E. faecium) or Gram-negative (E. coli,
P. aeruginosa, A. baumannii, K. pneumoniae) pathogens belonging to the so-called ESKAPE panel [15] and
immortalized cancer cell lines (MCF-7, FS4-LTM, KB-3-1, L929) were not affected. We hypothesized
that the 4-(3-nitro-[1,2,4]-triazol-1-yl)pyrimidine portion of OTB-021 (highlighted in red) was likely
responsible for its antibacterial properties, and we sought to verify this premise by simplifying the
structure of this hit molecule, making it more amenable to structural variations and investigating
the structure–activity relationships (SAR). To this end, we designed two isomeric series, -2- and
4-(3-nitro-1,2,4-triazol-1-yl)pyrimidines 1 and 2, bearing diverse amino side chains in positions 4 and 2
of the pyrimidine ring, respectively. The principal idea behind such a design was to reduce the bicyclic
aromatic nitrogen-rich core of OTB-021 to the more druglike pyrimidine as well as to provide sufficient
room for structural diversity via the side chain variation (Figure 2). Herein, we report the synthesis
and comparative evaluation of the two novel series of compounds with respect to their ability to inhibit
the growth of bacterial pathogens.
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2. Results and Discussion

2.1. Synthesis

2.1.1. 2-(3-Nitro-1,2,4-triazol-1-yl)pyrimidines 1

Initially, our synthetic efforts focused on the installation of the 3-nitro-1,2,4-triazol-1-yl unit on the
pyrimidine nucleus using commercially available 5-nitro-1H-1,2,4-triazole and 2,4-dichloropyrimidine.
Firstly, it was promptly established that the reaction did not require the use of a metal-based catalyst
(Pd0 or CuI) and proceeded as direct nucleophilic aromatic (SNAr) substitution. Secondly, performing
the reaction in the presence of even a slight excess of the base diminished the yield as it led to the
degradation of the 2,4-dichloropyrimidine starting material. Hence, 5-nitro-1H-1,2,4-triazole potassium
salt (3) was obtained [16] in a separate step and used in the chloride displacement reactions. Finally,
we discovered that achieving a good yield of the monosubstitution product was not straightforward
as even at low conversions of the monosubstitution, the product formed reacted with the second
equivalent of 3, even in the presence of unreacted 2,4-dichloropyrimidine. Considering that the
3-nitro-1,2,4-triazol-1-yl moiety itself can served as a good leaving group in SNAr reactions [17],
we obtained disubstituted product 4 in excellent yield (Scheme 1) and subsequently employed it in
SNAr reactions with amines.
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Scheme 1. Preparation of 2,4-bis(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidine (4).

The SNAr reactions of 4 with aliphatic amines indeed proceeded rather smoothly at room
temperature in acetonitrile, while more forcing conditions (DMSO, 100 ◦C, 24–48 h) had to be applied
with aromatic amines. The reactions displayed a pronounced selectivity toward the displacement of
the 3-nitro-1H-1,2,4-triazol-1-yl leaving group in position 4 of the pyrimidine nucleus and allowed
obtaining satisfactory yields of compounds 1a-s (Table 1). Chromatographic isolation of sufficiently
pure (>90% of purity according to 1H NMR) regioisomeric products 2 from these reactions was not
feasible; hence, 4-(3-nitro-1,2,4-triazol-1-yl)pyrimidines were accessed via a different strategy.

Table 1. Synthesis of 2-(3-nitro-1,2,4-triazol-1-yl)pyrimidines 1a-s.
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Table 1. Cont.

Entry Compound Product Ratio 1:2 Isolated Yield of 1 (%)
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a Reactions were performed at 100 ◦C in DMSO over 24–48 h. b No regioisomer was formed.

The regiochemistry of series 1 was unequivocally confirmed by the single-crystal X-ray structure
obtained for compound 1e (Figure 3, Table S1).
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2.1.2. 4-(3-Nitro-1,2,4-triazol-1-yl)pyrimidines 2

We reasoned that the seemingly unavoidable formation of disubstituted product 4 in reactions
of 3 with 2,4-dichloropyrimidine could be circumvented if excess of the latter was used while the
concentration of 3 was maintained low over the course of the reaction. After substantial experimentation,
we established that with 0.5 equiv. of 3 added as a DMF solution to a solution of 2,4-dichloropyrimidine
in DMF using a syringe pump over 8 h (at a rate of about 0.82 mmol in 2.5 mL per hour) at 80 ◦C,
monosubstituted 2-chloro-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidine (5) could be obtained in 43% yield
(from 3), while unreacted 2,4-dichloropyrimidine could be isolated and utilized again. The substitution
pattern of 5 was confirmed by the single-crystal X-ray analysis (Scheme 2, Table S1).Antibiotics 2020, 9, x FOR PEER REVIEW 6 of 21 
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With sufficient amounts of 5 in hand, we proceeded in preparing compounds belonging to series
2 with the same set of amines as was used to prepare series 1 (to allow for direct comparison of
the biological effects exerted by the two series). The substitution of the chlorine atom in position 2
with aliphatic amines generally gave moderate to high yields in acetonitrile at room temperature,
while anilines, again, required heating at 100 ◦C in DMSO for the reaction to proceed (Table 2). Notably,
in this case, no substitution of the 3-nitro-1,2,4-triazol-1-yl group in position 4 of the pyrimidine nucleus
was observed.

Table 2. Synthesis of 4-(3-nitro-1,2,4-triazol-1-yl)pyrimidines 2a-s.
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Table 2. Cont.

Entry Compound Product Yield (%)
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Table 2. Cont.

Entry Compound Product Yield (%)
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screened against the ESKAPE panel of six bacterial pathogens commonly found to carry antimicrobial 
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a Reactions were performed at 100 ◦C in DMSO over 24–48 h.

The regiochemistry of series 2 was unequivocally confirmed by the single-crystal X-ray structures
obtained for compounds 2h, 2k, 2n and 2o (Figure 4, Tables S2 and S3).
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2.2. In Vitro Biological Evaluation

Surprisingly, when tested against the drug-sensitive H37Rv strain of Mycobacterium tuberculosis,
none of the 38 compounds, 1a-s and 2a-s, displayed any appreciable activity. Gratifyingly,
when screened against the ESKAPE panel of six bacterial pathogens commonly found to carry
antimicrobial resistance genes [15], both series displayed a promising antibacterial profile, which
is summarized in Table 3 ((bis(3-nitro-1,2,4-triazol-1-yl) compound 4 is shown for comparison and
ciprofloxacin was employed as a positive control for all six microorganisms).

Table 3. Antibacterial activity (minimal inhibitory concentration, MIC) of compounds 1a-s, 2a-s, 4 and
ciprofloxacin (positive control) against the ESKAPE panel of pathogens (E1 = Enterococcus faecium
(G+), S = Staphylococcus aureus (G+), K = Klebsiella pneumonia (G-), A = Acinetobacter baumannii (G-),
P = Pseudomonas aeruginosa (G-), E2 = Enterobacter aerogenes (G-)).
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Table 3. Cont.

Entry Compound R1NR2 Side Chain
MIC, µg/mL

E1 S K A P E2

25 1m 8 8 32 2 >100 16

26 2m
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Several important observations emerge from the data presented in Table 3. Firstly, (bis(3-nitro-1,2,
4-triazol-1-yl) compound 4 was virtually inactive (except for marginal activity on E. faecium).
This clearly demonstrates that the combination of only one 3-nitro-1,2,4-triazol-1-yl moiety with
an electron-donating amino substituent is the correct definition of the pharmacophore of both series 1
and 2. Secondly, there appears no apparent biologic activity dependence on the relative position of the
two groups around the pyrimidine nucleus. Quite frequently, the high antibacterial potency of series
2 compounds was lost on switching to series 1 (cf. 2a→1a, 2b→1b, 2f→1f vs. K. pneumonia; 2e→1e,
2k→1k, 2s→1s vs. A. baumannii; 2e→1e vs. S. aureus; 2n→1n vs. E. faecium; 2b→1b vs. E. aerogenes).
Less frequently, the opposite was true and series 1 was highly active, while series 2 was not (cf. 1i→2i
and 1m→2m vs. S. aureus; 1j→2j and 1r→2r vs. A. baumannii; 1o→2o vs. S. aureus and E. faecium).
It is an accepted view that the antibacterial activity of bioreducible nitro heteroaromatic compounds
with respect to a particular bacterial species, among other factors, will depend on their ability to be
metabolically activated by the membrane-bound nitro reductase enzyme of that species [18] as well as
on the ability of the resulting reactive chemical entity to cross the bacterial membrane and damage
the pathogen’s DNA [19]. Considering such a multifactorial nature of the observed inhibitory effects
on bacterial growth, it is unsurprising that no definitive bioactivity pattern between series 1 and
2 emerged.

Other notable features of the bioactivity profile of the compounds 1a-s and 2a-s include the
complete absence of activity against P. aeruginosa and the distinct susceptibility of A. baumannii to many
compounds in the investigated set. In fact, some of the compounds (cf. 1b, 1c, 1j, 1l, 1m, 1q, 2b, 2e, 2k,
2s) displayed MIC values comparable or even lower than those displayed by ciprofloxacin towards this
particular pathogen. Another pathogen that demonstrated susceptibility to a number of compounds
tested is E. faecium. However, the best MIC values achieved in this case (2 µg/mL) are six times lower
than the respective value for ciprofloxacin. At the same time, the activity of compounds 1i and 1o
is only three times lower with respect to S. aureus than that of the comparator drug. Compound 2b
certainly leads the way in terms of the single-digit µg/mL activity displayed across the panel, strongly
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inhibiting the growth of E. faecium, K. pneumonia, A. baumannii and E. aerogenes. In contrast, compounds
2c, 2k, 1l and 2o appear to be distinctly selective towards A. baumannii, which is a characteristic
tendency of the entire set. The complete absence of activity across the ESKAPE panel displayed by
compound 1n is somewhat surprising and, again, attests to the multifactorial nature of the bioactivity
patterns observed.

2.3. Electrochemical Behavior

Since it was hypothesized that, like other nitro (hetero)aromatic drugs [20], (3-nitro-1,2,4-triazol-
1-yl)pyrimidines 1 and 2 investigated in this work are activated via the nitro group reduction by the
bacterial nitroreductase, we investigated the electrochemical behavior of selected compounds from both
series using cyclic voltammetry. The aim of this effort was to establish if there is an apparent correlation
of the antibacterial properties against any bacterial species (as was reported for some antimicrobial
nitroaromatic compounds [21] as well as metal chelate complexes [22]) and the compounds’ reduction
potential. Additionally, we thought it interesting to obtain a pairwise comparison of the reduction
potential of series 1 and 2 compounds which might shed light on some of the bioactivity trends
noted above.

Considering the apparent difference in the activity trends against different pathogens of the
ESKAPE panel, we focused on the activity against one specific pathogen, E. faecium, in nominating
compounds for cyclic voltammetry experiments. To this end, we selected highly potent (1i,
1j, 2i), moderately potent (1m, 2b, 2e, 2r) and inactive (1n) compounds with respect to this
pathogen. Cyclic voltammograms obtained for these compounds relative to the ferrocene external
standard demonstrate a one-electron reduction (HetArNO2→HetArNO2

−) and a reversible oxidation
(HetArNO2

−
→HetArNO2) wave with reduction potentials (E1/2) tightly grouped in the −1.3–−1.1 V

range (Figure 5).
As it follows from the data collated in Table 4, there appears no apparent correlation between

the activity displayed by the nine compounds investigated against E. faecium and their reduction
potential. A brief glance at the activity data against the other five pathogens revealed that there is
no correlation with the reduction potential either. This strongly suggests that, as noted previously,
there are likely other factors at play, besides the compounds’ reduction potential, which determine the
observed antibacterial activity. This being said, however, one can note the generally more negative E1/2

values observed for the series 1 compounds. All other factors being equal, this (i.e., the lower tendency
of compounds 1 to undergo a one-electron reduction compared to compounds 2) could be the likely
reason for the frequently observed activity loss on switching from series 2 to series 1.

Table 4. Reduction potentials (E1/2, V) of selected compounds 1 and 2 and their MIC values (µg/mL)
observed against E. faecium.

Entry Compound E1/2
(V vs. Ag/Ag+)

E1/2
(V vs. Fc/Fc+)

E. faecium MIC
(µg/mL)

1 1i −1.253 −1.439 2

2 1j −1.262 −1.447 4

3 1m −1.246 −1.432 8

4 1n −1.255 −1.441 >100

5 2b −1.195 1.381 8

6 2e −1.178 −1.364 8

7 2i −1.192 −1.378 2

8 2r −1.196 −1.382 16

9 ferrocene 0.186 0.000 –
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Figure 5. Cyclic voltammograms for compounds 1i, 1j, 1m, 1n, 2b, 2e, 2i and 2r obtained relative to
the ferrocene standard: (A) full view, (B) redox wave close-up.

3. Conclusions

Starting from the structure of antimycobacterial screening hit OTB-021 which was devoid of
activity against ESKAPE pathogens, we designed, synthesized and tested two mutually isomeric
series of novel simplified analogs, 2- and 4-(3-nitro-1,2,4-triazol-1-yl)pyrimidines (series 1 and 2),
bearing various amino side chains. These compounds demonstrated a reverse bioactivity profile
being inactive against M. tuberculosis while inhibiting the growth of all ESKAPE pathogens (with
variable potency patterns) except for Gram-negative P. aeruginosa. The observed inhibitory patterns
allowed drawing some generalizations. In particular, frequent loss of activity on switching from series
2 to series 1 with the same substituents was noted (although, less frequently, the opposite trend was
observed). Measurement of the reduction potentials (E1/2) by cyclic voltammetry for compounds
selected based on their activity against E. faecium revealed that all compounds investigated displayed
a reversible single-electron reduction with the E1/2 values tightly grouped in the −1.3–−1.1 V range.
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No apparent correlation between the E1/2 values and the ESKAPE minimum inhibitory concentrations
was established, suggesting possible significance of other factors, besides the compounds’ reduction
potential, which determine the observed antibacterial activity. However, the frequent SAR trend noted
above (the absence of activity for series 1 analogs while series 2 counterparts are active) correlates with
the generally more negative E1/2 values displayed by series 1. Collectively, these findings fortify the
position of bioreducible nitro heteroaromatic chemotypes as antibacterial leads.

4. Materials and Methods

4.1. General Experimental

All commercial reagents and solvents were used without further purification, unless otherwise
noted. Analytical thin-layer chromatography was carried out on UV-254 silica gel plates using
appropriate eluents. Compounds were visualized with short-wavelength UV light. NMR spectroscopic
data were recorded with a Bruker Avance 400 spectrometer (400.13 MHz for 1H and 100.61 MHz
for 13C) DMSO-d6 and were referenced to the residual solvent proton signal (2.51 ppm,) and solvent
carbon signal (39.5 ppm). Melting points were determined with a Stuart SMP50 instrument in open
capillary tubes. Mass spectra were recorded with a Bruker Maxis HRMS-ESI-qTOF spectrometer
(electrospray ionization mode). Electrochemical measurements were performed with the Autolab
PGSTAT30 (EcoChemie, The Netherlands) potentiostat/galvanostat.

4.2. Synthetic Organic Chemistry

4.2.1. Preparation of 2,4-bis(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidine (4)

A round-bottom flask equipped with a magnetic stir bar was charged with 2,4-dichloropyrimidine
(3 g, 20.14 mmol), potassium 3-nitro-1,2,4-triazol-1-ide (3, 6.13 g, 40.28 mmol) and dry DMF (40 mL).
The reaction mixture was stirred at 80 ◦C for 24 h, cooled to room temperature and concentrated under
reduced pressure. The residue was taken up in distilled water (100 mL) and the resulting suspension
was filtered. The solid was washed with another distilled water (100 mL) and air-dried to afford the
title compound (5.61 g, 92%) as a beige solid, mp 246–248 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 10.20 (s,
1H, triazole), 10.14 (s, 1H, triazole), 9.30 (d, J = 5.5 Hz, 1H, HAr), 8.18 (d, J = 5.5 Hz, 1H, HAr). 13C NMR
(101 MHz, DMSO-d6) δ 164.7, 163.8, 163.7, 155.7, 153.0, 148.2, 147.2, 110.4. HRMS-ESI (m/z): calcd for
C8H4N10KO4 [M + K]: 343.0049; found: 343.0055.

4.2.2. General Procedure 2 (GP2) for the Preparation of Compounds 1a-d, 1f-l and 1n-s

A glass screw-capped vial containing a magnetic stir bar was charged with 2,4-bis(3-nitro-1H-
1,2,4-triazol-1-yl)pyrimidine (4) (0.98 mmol, 300 mg), amine (1.97 mmol) and acetonitrile (3 mL).
The suspension was stirred at room temperature. After completion of the reaction (TLC analysis),
the solvent was removed in vacuo. The resulting solid was suspended in water (5 mL) and the
suspension was placed in a fridge. After 2 h, the resulting thick precipitate was filtered off, dissolved
in ethyl acetate, absorbed on silica gel (ca 0.3 g) and loaded on a silica gel chromatographic column.
Elution with ethyl acetate-n-hexane (1:2) afforded an analytically pure product.

2-((2-(3-Nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-yl)amino)ethan-1-ol (1a)

Prepared according to GP2 using 2-aminoethan-1-ol. Beige solid, yield 65%; mp 212–214 ◦C
(decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.48 (s, 1H, triazole), 8.15 (d, J = 6.0 Hz, 1H, HAr), 7.91 (s,
1H, NH), 6.67 (d, J = 6.0 Hz, 1H, HAr), 4.54 (s, 1H, OH), 3.63 (t, J = 5.8 Hz, 2H, CH2), 3.58–3.38 (m, 2H,
CH2); 13C NMR (101 MHz, DMSO-d6) δ 163.7, 163.2, 154.9, 153.6, 146.5, 107.1, 59.8, 43.2. HRMS-ESI
(m/z): calcd for C8H9N7NaO3 [M + Na]: 274.0659; found: 274.0667.
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N,N-Dimethyl-2-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-amine (1b)

Prepared according to GP2 using dimethylamine. Yellow solid, yield 48%; mp 207–209 ◦C. 1H
NMR (400 MHz, DMSO-d6) δ 9.56 (s, 1H, triazole), 8.28 (d, J = 6.2 Hz, 1H, HAr), 6.81 (d, J = 6.2 Hz, 1H,
HAr), 3.19 (s, 6H, CH3). 13C NMR (126 MHz, DMSO-d6) δ 163.2, 162.8, 156.5, 153.1, 146.7, 104.0, 37.8,
37.1. HRMS-ESI (m/z): calcd for C8H9N7NaO2 [M + Na]: 258.0710; found: 258.0721.

N-Methyl-2-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-amine (1c)

Prepared according to GP2 using methanamine. Beige solid, yield 61%; mp 235–237 ◦C (decomp.).
1H NMR (400 MHz, DMSO-d6) δ 9.50 (s, 1H, triazole), 8.16 (d, J = 5.6 Hz, 1H, HAr), 7.98–7.83 (s, 1H,
NH), 6.61 (d, J = 6.0 Hz, 1H, HAr), 2.95 (d, J = 4.8 Hz, 3H, CH3). 13C NMR (101 MHz, DMSO-d6) δ
168.8, 167.9, 159.5, 158.4, 151.1, 111.7, 32.2. HRMS-ESI (m/z): calcd for C7H8N7O2 [M + H]: 222.0734;
found: 222.0729.

N-Benzyl-N-methyl-2-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-amine (1d)

Prepared according to GP2 using N-methyl-1-phenylmethanamine. Green solid, yield 68%; mp
131–133 ◦C (decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.56 (s, 1H, triazole), 8.31 (d, J = 6.1 Hz, 1H,
HAr), 7.44–7.22 (m, 5H, HAr), 6.87 (d, J = 6.2 Hz, 1H, HAr), 4.92 (s, 2H, CH2), 3.19 (s, 3H, CH3). 13C NMR
(101 MHz, DMSO) δ 163.1, 157.0, 153.3, 146.5, 137.3, 129.0, 127.8, 127.8, 104.2, 52.8, 36.1. HRMS-ESI
(m/z): calcd for C14H13N7NaO2 [M + Na]: 334.1023; found: 334.1034.

3-((2-(3-Nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-yl)amino)propan-1-ol (1f)

Prepared according to GP2 using 3-aminopropan-1-ol. White solid, yield 35%; mp 201–203 ◦C
(decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.48 (s, 1H,triazole), 8.15 (d, J = 5.9 Hz, 1H, HAr), 7.91 (s,
1H, NH), 6.62 (d, J = 6.0 Hz, 1H, HAr), 4.29 (t, J = 5.2 Hz, 1H, OH), 3.54 (m, 2H, CH2), 3.50–3.38 (m, 2H,
CH2), 1.78 (q, J = 6.6 Hz, 2H, CH2). 13C NMR (101 MHz, DMSO-d6) δ 163.6, 163.2, 154.9, 153.6, 146.5,
106.9, 58.8, 37.7, 32.3. HRMS-ESI (m/z): calcd for C9H11N7NaO3 [M + Na]: 288.0816; found: 288.0823.

N-Ethyl-2-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-amine (1g)

Prepared according to GP2 using ethanamine. White solid, yield 46%; mp 171–173 ◦C (decomp.).
1H NMR (400 MHz, DMSO-d6) δ 9.48 (s, 1H, triazole), 8.16 (d, J = 6.1 Hz, 1H, HAr), 7.94 (s, 1H, NH),
6.60 (d, J = 6.0 Hz, 1H, HAr), 3.44 (t, J = 6.9 Hz, 2H, CH2), 1.21 (t, J = 7.2 Hz, 3H, CH3). 13C NMR
(101 MHz, DMSO-d6) δ 163.4, 163.2, 154.9, 153.7, 146.5, 106.9, 35.4, 14.6. HRMS-ESI (m/z): calcd for
C8H9N7NaO2 [M + Na]: 258.0710; found: 258.0704.

4-(2-(3-Nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-yl)morpholine (1h)

Prepared according to GP2 using morpholine. White solid, yield 38%; mp 212–214 ◦C (decomp.).
1H NMR (400 MHz, DMSO-d6) δ 9.76 (s, 1H, triazole), 8.66 (d, J = 5.2 Hz, 1H, HAr), 7.10 (d, J = 5.2 Hz,
1H, HAr), 3.86 (dd, J = 5.6, 4.1 Hz, 4H, CH2), 3.72 (dd, J = 5.7, 4.1 Hz, 4H, CH2). 13C NMR (101 MHz,
DMSO-d6) δ 163.2, 162.5, 157.3, 153.3, 146.8, 104.2, 66.2, 44.5. HRMS-ESI (m/z): calcd for C10H11N7NaO3

[M + Na]: 300.0816; found: 300.0826.

4-(4-Methylpiperazin-1-yl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidine (1i)

Prepared according to GP2 using 1-methylpiperazine. Yellow solid, yield 66%; mp 193–195 ◦C
(decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.58 (s, 1H), 8.31 (d, J = 6.2 Hz, 1H), 6.95 (d, J = 6.2 Hz, 1H),
3.77 (t, J = 5.1 Hz, 4H), 2.48–2.41 (m, 5H), 2.27 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 163.2, 162.3,
157.2, 153.3, 146.8, 104.2, 54.5, 46.0, 43.9. HRMS-ESI (m/z): calcd for C11H15N8O2 [M + H]: 291.1312;
found: 291.1321.
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N-Benzyl-2-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-amine (1j)

Prepared according to GP2 using phenylmethanamine. Beige solid, yield 39%; mp 139–141 ◦C.
1H NMR (400 MHz, DMSO-d6) δ 9.49 (s, 1H, triazole), 8.46 (s, 1H, NH), 8.19 (d, J = 6.0 Hz, 1H, HAr),
7.43–7.40 (m, 2H, HAr), 7.38–7.33 (m, 2H, HAr), 7.30–7.24 (m, 1H, HAr), 6.68 (d, J = 6.0 Hz, 1H, HAr), 4.66
(d, J = 6.0 Hz, 2H, CH2). 13C NMR (101 MHz, DMSO-d6) δ 163.5, 163.2, 155.4, 153.6, 146.6, 139.1, 128.9,
128.3, 127.6, 107.0, 44.0. HRMS-ESI (m/z): calcd for C13H11N7NaO2 [M + Na]: 320.0866; found: 320.0858.

N-Isobutyl-2-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-amine (1k)

Prepared according to GP2 using 2-methylpropan-1-amine. Yellow solid, yield 32%; mp 129–131 ◦C.
1H NMR (400 MHz, DMSO-d6) δ 9.48 (s, 1H, triazole), 8.15 (d, J = 5.7 Hz, 1H, HAr), 7.96 (s, 1H, NH),
6.65 (d, J = 6.0 Hz, 1H, HAr), 3.26 (s, 2H, CH2), 1.93 (dp, J = 13.4, 6.7 Hz, 1H, CH), 0.97 (d, J = 6.7 Hz,
6H, CH3). 13C NMR (101 MHz, DMSO-d6) δ 163.8, 163.2, 155.0, 153.6, 146.5, 106.9, 47.9, 28.2, 20.6.
HRMS-ESI (m/z): calcd for C10H13N7NaO2 [M + Na]: 286.1023; found: 286.1015.

2,2′-((2-(3-Nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-yl)azanediyl)bis(ethan-1-ol) (1l)

Prepared according to GP2 using 2,2′-azanediylbis(ethan-1-ol). Green solid, yield 28%; mp
163–165 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 9.53 (s, 1H, triazole), 8.25 (d, J = 6.2 Hz, 1H, HAr), 6.87
(d, J = 6.3 Hz, 1H, HAr), 4.61 (s, 2H, OH), 3.85–3.59 (m, 8H, CH2). 13C NMR (101 MHz, DMSO-d6) δ
163.2, 162.7, 156.3, 153.1, 146.6, 104.7, 58.7, 51.8, 51.0. HRMS-ESI (m/z): calcd for C10H14N7O4 [M + H]:
296.1102; found: 296.1114.

N-Cyclopropyl-2-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-amine (1n)

Prepared according to GP2 using cyclopropanamine. Yellow solid, yield 47%; mp 193–195 ◦C
(decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.45 (s, 1H, triazole), 8.34–8.15 (m, 2H, NH, HAr), 6.74
(s, 1H, HAr), 2.80 (s, 1H, CH), 0.84 (td, J = 6.9, 4.7 Hz, 2H, CH2), 0.58 (dd, J = 4.1, 2.4 Hz, 2H, CH2).
13C NMR (101 MHz, DMSO-d6) δ 165.5, 164.7, 163.2, 157.4, 155.0, 153.3, 146.3, 107.0, 103.4, 23.8, 7.1, 6.5.
HRMS-ESI (m/z): calcd for C9H10N7O2 [M + H]: 248.0890; found: 248.0901.

N-Isopropyl-2-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-amine (1o)

Prepared according to GP2 using propan-2-amine. White solid, yield 43%; mp 244–246 ◦C. 1H
NMR (400 MHz, DMSO-d6) δ 9.47 (s, 1H, triazole), 8.14 (d, J = 6.0 Hz, 1H, HAr), 7.84 (d, J = 7.7 Hz, 1H,
NH), 6.59 (d, J = 6.1 Hz, 1H, HAr), 4.22 (s, 1H, CH), 1.24 (d, J = 6.5 Hz, 6H, CH3). 13C NMR (101 MHz,
DMSO-d6) δ 163.2, 162.7, 154.9, 153.7, 146.5, 106.9, 42.2, 22.6. HRMS-ESI (m/z): calcd for C9H11N7NaO2

[M + Na]: 272.0866; found: 272.0859.

N-(3-(1H-Imidazol-1-yl)propyl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-amine (1p)

Prepared according to GP2 using 3-(1H-imidazol-1-yl)propan-1-amine. Yellow solid, yield 66%;
mp 198–200 ◦C (decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.45 (s, 1H, triazole), 8.18 (d, J = 6.0 Hz, 1H,
HAr), 8.04 (s, 1H, NH), 7.61 (s, 1H, imidazole), 7.18 (d, J = 1.2 Hz, 1H, imidazole), 6.90 (d, J = 1.1 Hz, 1H,
imidazole), 6.61 (d, J = 6.0 Hz, 1H, HAr), 4.09 (t, J = 7.0 Hz, 2H, CH2), 3.40 (d, J = 7.1 Hz, 2H, CH2), 2.07
(p, J = 6.9 Hz, 2H, CH2). 13C NMR (101 MHz, DMSO-d6) δ 163.6, 163.2, 155.2, 153.6, 146.5, 137.8, 128.9,
119.8, 107.1, 44.1, 37.8, 30.6. HRMS-ESI (m/z): calcd for C12H14N9O2 [M + H]: 316.1265; found: 316.1271.

2-(3-Nitro-1H-1,2,4-triazol-1-yl)-4-(pyrrolidin-1-yl)pyrimidine (1q)

Prepared according to GP2 using pyrrolidine. Green solid, yield 44%; mp 219–221 ◦C (decomp.).
1H NMR (400 MHz, DMSO-d6) δ 9.64 (s, 1H, triazole), 8.61 (d, J = 5.2 Hz, 1H, HAr), 7.03 (d, J = 5.2 Hz,
1H, HAr), 3.69–3.54 (m, 4H, CH2), 2.06–1.91 (m, 4H, CH2). 13C NMR (126 MHz, DMSO-d6) δ 163.2,
160.5, 156.0, 153.2, 146.6, 105.0, 47.1, 47.0, 25.5, 24.8. HRMS-ESI (m/z): calcd for C10H12N7O2 [M + H]:
262.1047; found: 262.1038.
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2-(3-Nitro-1H-1,2,4-triazol-1-yl)-N-propylpyrimidin-4-amine (1r)

Prepared according to GP2 using propan-1-amine. Beige solid, yield 61%; mp 127–129 ◦C. 1H NMR
(400 MHz, DMSO-d6) δ 9.47 (s, 1H, triazole), 8.15 (d, J = 6.0 Hz, 1H, HAr), 7.95 (s, 1H, NH), 6.62 (d,
J = 6.0 Hz, 1H, HAr), 3.37 (d, J = 8.4 Hz, 2H, CH2), 1.63 (q, J = 7.2 Hz, 2H, CH2), 0.96 (t, J = 7.4 Hz,
3H, CH3). 13C NMR (101 MHz, DMSO-d6) δ 163.6, 163.2, 154.9, 153.6, 146.5, 106.9, 42.2, 22.3, 11.9.
HRMS-ESI (m/z): calcd for C9H11N7NaO2 [M + Na]: 272.0866; found: 272.0854.

N-(4-Methoxybenzyl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-amine (1s)

Prepared according to GP2 using (4-methoxyphenyl)methanamine. Beige solid, yield 19%; mp
147–149 ◦C (decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.51 (s, 1H, triazole), 8.18 (d, J = 6.0 Hz, 1H,
HAr), 7.39–7.30 (m, 2H, HAr), 6.96–6.85 (m, 2H, HAr), 6.66 (d, J = 6.0 Hz, 1H, HAr), 4.58 (d, J = 5.8 Hz,
2H, CH2), 3.76 (s, 3H, CH3). 13C NMR (101 MHz, DMSO-d6) δ 163.3, 163.2, 158.9, 155.3, 153.6, 146.6,
130.9, 129.7, 114.3, 107.0, 55.5, 43.5. HRMS-ESI (m/z): calcd for C14H13N7NaO3 [M + Na]: 350.0972;
found: 350.0962.

N-(4-Methoxyphenyl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-4-amine (1e)

A glass screw-capped vial containing a magnetic stir bar was charged with 2,4-bis(3-nitro-1H-1,2,4-
triazol-1-yl)pyrimidine (4) (0.98 mmol, 300 mg), 4-methoxyaniline (1.97 mmol, 242 mg) and DMSO
(3 mL). The suspension was stirred at 100 ◦C for 24 h. The reaction mixture was poured into water
(10 mL) and cooled in a refrigerator. The resulting precipitate was filtered and purified by silica column
chromatography with ethyl acetate-n-hexane (1:2) to afford a pure compound. Greenish solid, yield
45%; mp 216–218 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 9.90 (s, 1H, NH), 9.44 (s, 1H, triazole), 8.32 (d,
J = 5.9 Hz, 1H, HAr), 7.62–7.48 (m, 2H, HAr), 7.06–6.93 (m, 2H, HAr), 6.80 (d, J = 6.0 Hz, 1H, HAr), 3.80
(s, 3H, CH3). 13C NMR (126 MHz, DMSO-d6) δ 163.2, 161.7, 156.4, 153.4, 146.5, 131.9, 122.7, 114.8, 107.7,
55.7. HRMS-ESI (m/z): calcd for C13H11N7NaO3 [M + Na]: 336.0816; found: 336.0826.

2-(3-Nitro-1H-1,2,4-triazol-1-yl)-N-(p-tolyl)pyrimidin-4-amine (1m)

A glass screw-capped vial containing a magnetic stir bar was added to with 2,4-bis(3-nitro-1H-1,2,4-
triazol-1-yl)pyrimidine (4) (0.98 mmol, 300 mg), p-toluidine (1.97 mmol, 211 mg) and DMSO (3 mL).
The suspension was stirred at 100 ◦C for 48 h. The reaction mass was poured into water (25 mL)
and extracted by ethyl acetate (3 × 20 mL). The combined organic solutions were washed with water
and brine, dried over MgSO4, absorbed on silica gel by concentration in vacuo and loaded on a
chromatographic column. Elution with ethyl acetate-n-hexane (1:2) afforded the title compound.
Yellow solid, yield 35%; mp 199–201 ◦C (decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.96 (s, 1H, NH),
9.45 (s, 1H, triazole), 8.35 (d, J = 5.9 Hz, 1H, HAr), 7.64–7.51 (m, 2H, HAr), 7.23 (d, J = 8.1 Hz, 2H, HAr),
6.86 (d, J = 5.9 Hz, 1H, HAr), 2.33 (s, 3H, CH3). 13C NMR (126 MHz, DMSO-d6) δ 163.2, 161.7, 156.7,
153.4, 146.5, 136.4, 133.3, 130.0, 121.2, 107.8, 20.9. HRMS-ESI (m/z): calcd for C13H11N7NaO2 [M + Na]:
320.0866; found: 320.0874.

4.2.3. Preparation of 2-chloro-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidine (5)

A two-neck round-bottomed flask equipped with a magnetic stir bar was charged with
2,4-dichloropyrimidine (1.96 g, 13.4 mmol) and dry DMF (5 mL). Potassium 3-nitro-1,2,4-triazol-1-ide
(3, 1 g, 6.57 mmol) was dissolved in dry DMF (20 mL) and was added slowly via a syringe pump
to a vigorously stirred solution of 2,4-dichloropyrimidine at 80 ◦C over 8 h. The resulting mixture
was left under stirring for 16 h at 80 ◦C. After cooling to room temperature, the reaction mixture
was concentrated under reduced pressure. The residue was dissolved in ethyl acetate and passed
through a short plug of silica eluting with 50 mL more of ethyl acetate. The eluted solution was
concentrated in vacuo and the crude product was purified by column chromatography on silica gel
(ethyl acetate–n-hexane, 1:2) to give 634 mg (43%) of the title compound as a white solid, mp 143–145 ◦C
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(934 mg of starting 2,4-dichloropyrimidine was recovered by the same purification). 1H NMR (400 MHz,
DMSO-d6) δ 9.87 (s, 1H, triazole), 9.07 (d, J = 5.5 Hz, 1H, HAr), 8.08 (d, J = 5.4 Hz, 1H, HAr). 13C NMR
(101 MHz, DMSO-d6) δ 164.5, 163.6, 159.9, 156.3, 146.8, 109.8. HRMS-ESI (m/z): calcd for C6H4ClN6O2

[M + H]: 227.0079; found: 227.0083.

4.2.4. General Procedure 1 (GP1) for Preparation of Compounds 1a-d, 1f-l and 1n-s

A glass screw-capped vial containing a magnetic stir bar was charged with 2-chloro-4-(3-nitro-1H-
1,2,4-triazol-1-yl)pyrimidine (5) (0.44 mmol, 100 mg), amine (1.32 mmol) and acetonitrile (1 mL).
The reaction mixture was stirred at room temerature. After completion of the reaction (TLC analysis),
the solvent was removed in vacuo. The resulting solid was suspended in water (5 mL) and the
suspension was cooled in the refrigerator. After 2 h, the thick precipitate was filtered off, air-dried and
additionally cristallyzed from 96% ethanol to afford the product.

2-((4-(3-Nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-yl)amino)ethan-1-ol (2a)

Prepared according to GP1 using 2-aminoethan-1-ol. Greenish solid, yield 39%; mp 200–202 ◦C
(decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.55 (s, 1H, triazole), 8.55 (d, J = 5.1 Hz, 1H, HAr), 7.37 (s,
J = 7.0 Hz, 1H, NH), 7.03 (d, J = 5.2 Hz, 1H, HAr), 4.44 (s, 1H, OH), 3.61 (t, J = 6.1 Hz, 2H, CH2), 3.50 (q,
J = 5.9 Hz, 2H, CH2). 13C NMR (126 MHz, DMSO-d6) δ 163.3, 162.6, 162.2, 155.0, 145.4, 97.1, 59.9, 44.0.
HRMS-ESI (m/z): calcd for C8H10N7O3 [M + H]: 252.0840; found: 252.0848.

N,N-Dimethyl-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-amine (2b)

Prepared according to GP1 using dimethylamine. Greenish solid, yield 54%; mp 167–169 ◦C
(decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.69 (s, 1H, triazole), 8.61 (d, J = 5.2 Hz, 1H, HAr), 7.01 (d,
J = 5.2 Hz, 1H, HAr), 3.23 (s, 6H, CH3). 13C NMR (126 MHz, DMSO-d6) δ 163.3, 162.4, 161.6, 154.9, 96.5,
37.1. HRMS-ESI (m/z): calcd for C8H10N7O2 [M + H]: 236.0890; found: 236.0881.

N-Methyl-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-amine (2c)

Prepared according to GP1 using methanamine. Greenish solid, yield 62%; mp 238–240 ◦C
(decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.57 (s, 1H, triazole), 8.56 (d, J = 5.2 Hz, 1H, HAr), 7.47 (s,
1H, NH), 7.03 (d, J = 5.1 Hz, 1H, HAr), 2.94 (d, J = 4.8 Hz, 3H, CH3). 13C NMR (126 MHz, DMSO) δ
163.3, 162.9, 162.6, 155.1, 145.5, 96.9, 28.2. HRMS-ESI (m/z): calcd for C7H8N7O2 [M + H]: 222.0734;
found: 222.0742.

N-Benzyl-N-methyl-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-amine (2d)

Prepared according to GP1 using N-methyl-1-phenylmethanamine. Greenish solid, yield 23%; mp
145–147 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 9.70 (s, 1H, triazole), 8.66 (d, J = 5.2 Hz, 1H, HAr), 7.39–7.24
(m, 5H, HAr), 7.09 (d, J = 5.2 Hz, 1H, HAr), 4.98 (s, 2H, CH2), 3.21 (s, 3H, CH3). 13C NMR (126 MHz,
DMSO-d6) δ 163.3, 162.7, 161.6, 155.0, 145.7, 138.3, 129.0, 128.1, 127.6, 97.2, 52.2, 35.4. HRMS-ESI (m/z):
calcd for C14H13N7NaO2 [M + Na]: 334.1023; found: 334.1025.

3-((4-(3-Nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-yl)amino)propan-1-ol (2f)

Prepared according to GP1 using 3-aminopropan-1-ol. Greenish solid, yield 58%; mp 178–180 ◦C.
1H NMR (400 MHz, DMSO-d6) δ 9.54 (s, 1H, triazole), 8.55 (d, J = 5.2 Hz, 1H, HAr), 7.49 (s, 1H, NH),
7.01 (d, J = 5.2 Hz, 1H, HAr), 4.24 (t, J = 5.2 Hz, 1H, OH), 3.55 (td, J = 6.2, 5.2 Hz, 2H, CH2), 3.51–3.43
(m, 2H, CH2), 1.78 (h, J = 6.8 Hz, 2H, CH2). 13C NMR (101 MHz, DMSO-d6) δ 163.3, 162.6, 162.2, 145.4,
96.9, 59.1, 38.5, 32.5. HRMS-ESI (m/z): calcd for C9H12N7O3 [M + H]: 266.0996; found: 266.1002.
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N-Ethyl-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-amine (2g)

Prepared according to GP1 using ethanamine. Green solid, yield 75%; mp 229–231 ◦C (decomp.).
1H NMR (400 MHz, DMSO-d6) δ 9.53 (s, 1H, triazole), 8.55 (d, J = 5.2 Hz, 1H, HAr), 7.52 (s, 1H, NH),
7.01 (d, J = 5.2 Hz, 1H, HAr), 3.44 (qd, J = 7.1, 5.7 Hz, 2H, CH2), 1.20 (t, J = 7.2 Hz, 3H, CH3). 13C NMR
(101 MHz, DMSO-d6) δ 163.3, 162.6, 162.3, 155.1, 145.4, 97.0, 36.0, 14.9. HRMS-ESI (m/z): calcd for
C8H10N7O2 [M + H]: 236.0890; found: 236.0897.

4-(4-(3-Nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-yl)morpholine (2h)

Prepared according to GP1 using morpholine. Yellow solid, yield 83%; mp 201–203 ◦C (decomp.).
1H NMR (400 MHz, DMSO-d6) δ 9.77 (s, 1H, triazole), 8.66 (d, J = 5.2 Hz, 1H, HAr), 7.10 (d, J = 5.2 Hz,
1H, HAr), 3.87 (dd, J = 5.7, 4.1 Hz, 4H, CH2), 3.73 (dd, J = 5.7, 4.1 Hz, 4H, CH2). 13C NMR (101 MHz,
DMSO-d6) δ 163.3, 162.7, 161.0, 155.0, 145.8, 97.7, 66.4, 44.4. HRMS-ESI (m/z): calcd for C10H11N7NaO3

[M + Na]: 300.0816; found: 300.0828.

2-(4-Methylpiperazin-1-yl)-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidine (2i)

Prepared according to GP1 using 1-methylpiperazine. Greenish solid, yield 76%; mp 210–212 ◦C
(decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.75 (s, 1H, triazole), 8.63 (d, J = 5.2 Hz, 1H, Har), 7.06
(d, J = 5.2 Hz, 1H, HAr), 3.92–3.83 (m, 4H, CH2), 2.47–2.40 (m, 4H, CH2), 2.27 (s, 3H, CH3). 13C NMR
(101 MHz, DMSO-d6) δ 163.3, 162.7, 160.9, 155.1, 145.8, 97.4, 54.8, 46.2, 43.9. HRMS-ESI (m/z): calcd for
C11H15N8O2 [M + H]: 291.1312; found: 291.1319.

N-Benzyl-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-amine (2j)

Prepared according to GP1 using benzylamine. White solid, yield 81%; mp 212–214 ◦C (decomp.).
1H NMR (400 MHz, DMSO-d6) δ 9.52 (s, 1H, triazole), 8.57 (d, J = 5.1 Hz, 1H, HAr), 8.11 (s, 1H, NH), 7.41
(d, J = 7.0 Hz, 2H, HAr), 7.36–7.29 (m, 2H, HAr), 7.27–7.20 (m, 1H, HAr), 7.05 (d, J = 5.1 Hz, 1H, HAr), 4.64
(d, J = 6.3 Hz, 2H, CH2). 13C NMR (101 MHz, DMSO-d6) δ 163.3, 162.9, 162.3, 145.3, 140.2, 128.7, 128.1,
127.5, 127.2, 97.4, 44.6. HRMS-ESI (m/z): calcd for C13H12N7O2 [M + H]: 296.1047; found: 296.1050.

N-Isobutyl-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-amine (2k)

Prepared according to GP1 using 2-methylpropan-1-amine. Greenish solid, yield 44%; mp
149–151 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 9.53 (s, 1H, triazole), 8.54 (d, J = 5.1 Hz, 1H, HAr), 7.57 (s,
1H, NH), 7.01 (d, J = 5.2 Hz, 1H, HAr), 3.25 (dd, J = 6.8, 6.0 Hz, 2H, CH2), 1.94 (dt, J = 13.4, 6.7 Hz, 1H,
CH), 0.95 (d, J = 6.7 Hz, 6H, CH3). 13C NMR (101 MHz, DMSO-d6) δ 163.3, 162.6, 155.0, 145.4, 145.0,
96.9, 48.6, 28.3, 20.6. HRMS-ESI (m/z): calcd for C10H14N7O2 [M + H]: 264.1203; found: 264.1212.

2,2′-((4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-yl)azanediyl)bis(ethan-1-ol) (2l)

Prepared according to GP1 using 2,2′-azanediylbis(ethan-1-ol). Yellow solid, yield 71%; mp
172–174 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 9.65 (s, 1H, triazole), 8.61 (d, J = 5.2 Hz, 1H, HAr), 7.03
(d, J = 5.1 Hz, 1H, HAr), 4.52 (s, 2H, OH), 3.80 (t, J = 6.2 Hz, 4H, CH2), 3.69 (d, J = 6.2 Hz, 4H, CH2).
13C NMR (126 MHz, DMSO-d6) δ 163.3, 162.4, 161.1, 154.9, 145.5, 96.8, 58.9, 51.5, 51.4. HRMS-ESI (m/z):
calcd for C10H14N7O4 [M + H]: 296.1102; found: 296.1114.

N-cyclopropyl-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-amine (2n)

Prepared according to GP1 using cyclopropylamine. Greenish solid, yield 49%; mp 207–209 ◦C.
1H NMR (400 MHz, DMSO-d6) δ 9.51 (s, 1H, triazole), 8.59 (d, J = 5.2 Hz, 1H, HAr), 7.75 (d, J = 3.9 Hz,
1H, NH), 7.08 (d, J = 5.2 Hz, 1H, HAr), 2.91 (td, J = 7.2, 3.6 Hz, 1H, CH), 0.78 (td, J = 7.0, 4.7 Hz, 2H,
CH2), 0.61–0.54 (m, 2H, CH2). 13C NMR (101 MHz, DMSO-d6) δ 163.4, 163.3, 162.5, 155.0, 145.1, 97.8,
24.4, 6.6. HRMS-ESI (m/z): calcd for C9H10N7O2 [M + H]: 248.0890; found: 248.0901.
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N-Isopropyl-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-amine (2o)

Prepared according to GP1 using propan-2-amine. Green solid, yield 59%; mp 193–195 ◦C
(decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.51 (s, 1H, triazole), 8.55 (d, J = 5.1 Hz, 1H, HAr), 7.39 (d,
J = 7.9 Hz, 1H, NH), 7.00 (d, J = 5.2 Hz, 1H, HAr), 4.20 (dp, J = 7.9, 6.5 Hz, 1H, CH), 1.23 (d, J = 6.5 Hz,
6H, CH3). 13C NMR (101 MHz, DMSO-d6) δ 163.3, 162.6, 161.6, 155.1, 145.3, 96.9, 42.7, 22.6. HRMS-ESI
(m/z): calcd for C9H12N7O2 [M + H]: 250.1047; found: 250.1056.

N-(3-(1H-Imidazol-1-yl)propyl)-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-amine (2p)

Prepared according to GP1 using 3-(1H-imidazol-1-yl)propan-1-amine. Greenish solid, yield 26%;
mp 196–198 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 9.48 (s, 1H, triazole), 8.56 (d, J = 5.2 Hz, 1H, HAr),
7.69 (t, J = 5.9 Hz, 1H, NH), 7.63 (d, J = 1.2 Hz, 1H, imidazole), 7.17 (d, J = 1.3 Hz, 1H, imidazole),
7.04 (d, J = 5.2 Hz, 1H, HAr), 6.91 (d, J = 1.1 Hz, 1H, imidazole), 4.09 (t, J = 7.0 Hz, 2H, CH2), 3.40 (q,
J = 6.6 Hz, 2H, CH2), 2.06 (p, J = 6.9 Hz, 2H, CH2). 13C NMR (126 MHz, DMSO-d6) δ 163.3, 162.7, 162.4,
155.0, 145.3, 137.8, 128.8, 119.8, 97.2, 56.5, 44.2, 38.3, 30.8, 19.0. HRMS-ESI (m/z): calcd for C12H14N9O2

[M + H]: 316.1265; found: 316.1270.

4-(3-Nitro-1H-1,2,4-triazol-1-yl)-2-(pyrrolidin-1-yl)pyrimidine (2q)

Prepared according to GP1 using pyrrolidine. White solid, yield 40%; mp 188–190 ◦C (decomp.).
1H NMR (400 MHz, DMSO-d6) δ 9.64 (s, 1H, triazole), 8.61 (d, J = 5.2 Hz, 1H, HAr), 7.02 (d, J = 5.2 Hz,
1H, HAr), 3.67–3.57 (m, 4H, CH2), 2.06–1.94 (m, 4H, CH2). 13C NMR (101 MHz, DMSO-d6) δ 163.3,
162.4, 159.6, 154.8, 145.4, 96.5, 47.0, 25.4, 25.2. HRMS-ESI (m/z): calcd for C10H12N7O2 [M + H]: 262.1047;
found: 262.1053.

4-(3-Nitro-1H-1,2,4-triazol-1-yl)-N-propylpyrimidin-2-amine (2r)

Prepared according to GP1 using propan-1-amine. White solid, yield 49%; mp 175–177 ◦C
(decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.53 (s, 1H, triazole), 8.55 (d, J = 5.2 Hz, 1H, HAr), 7.54 (s,
1H, NH), 7.01 (d, J = 5.1 Hz, 1H, HAr), 3.44–3.32 (m, 2H, CH2), 1.62 (h, J = 7.3 Hz, 2H, CH2), 0.95 (t,
J = 7.4 Hz, 3H, CH3). 13C NMR (101 MHz, DMSO-d6) δ 163.3, 162.5, 162.2, 155.0, 145.4, 96.9, 42.9, 22.5,
11.9. HRMS-ESI (m/z): calcd for C9H12N7O2 [M + H]: 250.1047; found: 250.1058.

N-(4-Methoxybenzyl)-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-amine (2s)

Prepared according to GP1 using (4-methoxyphenyl)methanamine. Greenish solid, yield 46%; mp
248–250 ◦C (decomp.). 1H NMR (400 MHz, DMSO-d6) δ 9.54 (s, 1H, triazole), 8.57 (d, J = 5.2 Hz, 1H,
HAr), 8.02 (s, 1H, NH), 7.38–7.29 (m, 2H, HAr), 7.04 (d, J = 5.2 Hz, 1H, HAr), 6.93–6.84 (m, 2H, HAr), 4.56
(d, J = 6.2 Hz, 2H, CH2), 3.74 (s, 3H, CH3). 13C NMR (101 MHz, DMSO-d6) δ 163.3, 162.8, 162.3, 158.6,
145.3, 132.1, 129.4, 128.9, 114.1, 97.3, 55.5, 44.0. HRMS-ESI (m/z): calcd for C14H13N7NaO3 [M + Na]:
350.0972; found: 350.0973.

N-(4-Methoxyphenyl)-4-(3-nitro-1H-1,2,4-triazol-1-yl)pyrimidin-2-amine (2e)

A glass screw-capped vial containing a magnetic stir bar was charged with 2-chloro-4-(3-nitro-1H-
1,2,4-triazol-1-yl)pyrimidine (5, 0.44 mmol, 100 mg), 4-methoxyaniline (1.32 mmol, 163 mg) and DMSO
(2 mL). The reaction mixture was stirred at 100 ◦C for 3 h. The reaction mixture was poured into
water (10 mL) and cooled in a refrigerator. The resulting precipitate was filtered off and additionally
crystallized from 96% ethanol to afford the title compound. Orange solid, yield 41%; mp 236–238 ◦C
(decomp.). 1H NMR (500 MHz, DMSO-d6) δ 9.71 (s, 1H, NH), 9.46 (s, 1H, triazole), 8.70 (d, J = 5.2 Hz,
1H, HAr), 7.74–7.59 (m, 2H, HAr), 7.23 (d, J = 5.2 Hz, 1H, HAr), 7.04–6.87 (m, 2H, HAr), 3.78 (s, 3H, CH3).
13C NMR (101 MHz, DMSO-d6) δ 163.3, 162.7, 160.0, 155.4, 154.9, 145.4, 132.8, 121.8, 114.4, 99.6, 55.6.
HRMS-ESI (m/z): calcd for C13H11N7O3Ag [M + Ag]: 419.9969, 421.9966; found: 419.9987, 421.9984.
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4-(3-Nitro-1H-1,2,4-triazol-1-yl)-N-(p-tolyl)pyrimidin-2-amine (2m)

A glass screw-capped vial containing a magnetic stir bar was charged with 2-chloro-4-(3-nitro-1H-
1,2,4-triazol-1-yl)pyrimidine (5, 0.44 mmol, 100 mg), p-toluidine (1.32 mmol, 142 mg) and DMSO (2 mL).
The reaction mixture was stirred at 100 ◦C for 3 h. The reaction mixture was poured into water (10 mL)
and cooled in a refrigerator. The resulting precipitate was filtered off and additionally crystallized from
ethanol to afford the title compound. Orange solid, yield 62%; mp 229–231 ◦C (decomp.). 1H NMR
(400 MHz, DMSO-d6) δ 9.78 (s, 1H, NH), 9.47 (s, 1H, triazole), 8.73 (d, J = 5.2 Hz, 1H, HAr), 7.68–7.59
(m, 2H, HAr), 7.26 (d, J = 5.2 Hz, 1H, HAr), 7.17 (d, J = 8.1 Hz, 2H, HAr), 2.31 (s, 3H, CH3). 13C NMR
(101 MHz, DMSO) δ 163.3, 162.6, 159.9, 154.9, 145.4, 137.2, 131.8, 129.6, 120.1, 99.9, 20.9. HRMS-ESI
(m/z): calcd for C13H11N7NaO2 [M + Na]: 320.0866; found: 320.0876.

4.3. Evaluation of Antimycobacterial Activity

Mycobacterium tuberculosis H37Rv strain was obtained from the Federal Scientific Center for
Expertise of Medical Products (RF Ministry of Health Care) on 7 August 2013 (origin: Prague, Institute
of Hygiene and Epidemiology, 1976). The lyophilized strain was seeded on Löwenstein–Jensen growth
medium. The 21-days culture was suspended in physiological solution containing glycerol (15%)
and transferred into cryotubes to be stored at −80 ◦C. Prior to the experiment (3 weeks), the culture
was brought to ambient temperature and re-seeded into Löwenstein–Jensen growth medium. Thus,
the second generation of the original M. tuberculosis culture was used in this study.

REMA (resazurin microtitre plate assay) [23] was used to determine the activity of the synthesized
compounds. A 3-week M. tuberculosis culture was transferred into a dry, sterile tube containing 8–9
3 mm glass beads. The tube was placed on a Vortex shaker for 30–40 s, followed by addition of
Middlebrook 7H9 Broth (5 mL; Becton Dickinson, Franklin Lakes, NJ, USA; catalogue No. 271310).
The turbidity of the bacterial suspension was adjusted to 1.0 McFarland units (corresponding to
approximately 3 × 108 bacteria/mL) and diluted 20-fold with Middlebrook 7H9 Broth containing OADC
enrichment (Becton Dickinson, Franklin Lakes, NJ, USA; catalogue No. 245116). The same culture
medium was used to prepare the 1:100 M. tuberculosis (1% population) control. The concentration
of stock solutions of the compounds in DMSO (10 mg/mL) was adjusted to 800 µg/mL by dilution
with Middlebrook 7H9 Broth (containing OADC enrichment). A 200 µL aliquot of this solution was
introduced into the 2nd row of a 96-well microtitre plate. This row was used to perform 2-fold serial
dilutions using and 8-channel pipette to obtain final concentrations of 1.6, 3.1, 6.2, 12.5, 25, 50, 100,
200 and 400 µg/mL of the compound in rows 2–9 (accounting for 100 µL of bacterial suspension
introduced for testing). Row 10—MTb suspension control, row 11—same culture diluted 10-fold
(the 1% control). Row 12 was used as a blank control for optical density reading (200 µL of the
grown medium). The bacterial suspension (100 µL) was introduced into each well except rows 11
(1% population control) and 12 (blank culture medium), to the total volume of 200 µL in each well.
The plates were incubated at 35 ◦C for 7 days, followed by addition of 0.01% aqueous solution (30 µL)
of resazurin (Sigma, St. Louis, MO, USA; product No. R7017) in each well and the further incubation
for 18 h at 35 ◦C. The fluorescence reading was performed using the FLUOstar Optima plate reader
operating at λex = 520 nm and λem = 590 nm. By comparing the mean values (± SD at p = 0.05) of
fluorescence in the control wells (row 12, blank and row 11, 1% control) and the wells containing the
compound tested, the bacterial viability was determined.

4.4. Screening against ESKAPE Pathogens

Susceptibility testing of the following microorganisms: Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter
aerogenes, to compounds 1a-s, 2a-s and 4 as well as ciprofloxacin (positive control) was performed
using the conventional Kirby–Bauer disk diffusion test [24] under the Standard Operating Procedure
of The European Committee on Antimicrobial Susceptibility Testing (EUCAST) [25]. Disks containing
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5 mg of ciprofloxacin were used. Solutions of compounds 1a-s, 2a-s and 4 in dimethyl sulfoxide
(1 mg/10 mL) were prepared and diluted to a volume of 1 mL with deionized water. The resulting
solutions aliquots (5 mL) were added to a Petri dish containing Muller-Hilton agar inoculated with a
bacterial suspension (McFarland OD 1/4 0.5). After drying of the compound solution, the Petri dish
was incubated at 37 ◦C for 18 h. By measuring the bacterial growth inhibition zone diameter around
the disc with ciprofloxacin or the compounds’ dried solution circular spot, the susceptibility to a drug
was assessed. Additionally, minimum inhibitory concentrations (MIC, µg/mL) were determined using
serial broth dilutions [26].

4.5. Cyclic Voltammetry

Cyclic voltammetry studies were performed with the potential scan rate of 100 mV·s−1 in a sealed
three-electrode cell at 25 ◦C under argon atmosphere. A flow of argon (extra-purity grade, 99.998%)
was bubbled through the solutions to remove dissolved oxygen. Electrochemical measurements were
performed in 10−3 mol·dm−3 solutions of the tested compounds in 0.1 M TBAClO4/DMF. A typical cell
used consisted of a working electrode (glassy carbon disk, 0.07 cm2), a counter electrode (platinum
plate, 1 cm2) and a reference electrode (BAS MF-2062 Ag/0.1 M AgNO3 solution in CH3CN, calibrated
by 10−3 mol ·dm−3 ferrocene external standard as a pseudo-reference electrode to comprise −188 mV
referred to Fc/Fc+). All potentials are quoted versus the above reference electrode.
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