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Abstract
Purpose  Noise-induced hearing loss (NIHL) is a global issue that impacts people’s life and health. The current review aims 
to clarify the contributions and limitations of applying machine learning (ML) to predict NIHL by analyzing the performance 
of different ML techniques and the procedure of model construction.
Methods  The authors searched PubMed, EMBASE and Scopus on November 26, 2020.
Results  Eight studies were recruited in the current review following defined inclusion and exclusion criteria. Sample size in 
the selected studies ranged between 150 and 10,567. The most popular models were artificial neural networks (n = 4), random 
forests (n = 3) and support vector machines (n = 3). Features mostly correlated with NIHL and used in the models were: age 
(n = 6), duration of noise exposure (n = 5) and noise exposure level (n = 4). Five included studies used either split-sample 
validation (n = 3) or ten-fold cross-validation (n = 2). Assessment of accuracy ranged in value from 75.3% to 99% with a low 
prediction error/root-mean-square error in 3 studies. Only 2 studies measured discrimination risk using the receiver operating 
characteristic (ROC) curve and/or the area under ROC curve.
Conclusion  In spite of high accuracy and low prediction error of machine learning models, some improvement can be 
expected from larger sample sizes, multiple algorithm use, completed reports of model construction and the sufficient evalu-
ation of calibration and discrimination risk.

Keywords  Noise-induced hearing loss · Machine learning · Prediction models · Discrimination risk

Introduction

Noise can be defined as an unwanted sound that may cause 
unpleasant, annoyance, and distraction. Excessive noise 
exposure has been shown to have a range of detrimental 
effects on people’s hearing as well as their general health and 
psychological well-being (e.g., stress, anxiety and insomnia) 
(Sayler et al. 2019; Williams et al. 2015; Zare et al. 2018). 

Noise-induced hearing loss (NIHL) is often described as 
a hearing loss caused by exposure to sound at significant 
intensity over an extended period of time (Abdollahi et al. 
2018; Jansen et al. 2009; South 2013). It is considered one 
of the most important and avoidable occupational health 
issues throughout the world, due to its negative influence on 
communication, cognitive function and psychological sta-
tus (Basner et al. 2014; Deafness and Hearing 1998; Fligor 
and Cox 2004; Meyer-Bisch 1996; Opperman et al. 2006). 
Prevalence of NIHL ranges from 7 to 21% among workers 
in different countries (Nelson et al. 2005) and it is the sec-
ond most common type of hearing loss following presbycu-
sis (Imam and Hannan 2017). Excessive exposure to loud 
noise leads to permanent damage within the Organ of Corti 
structures and an elevation of hearing thresholds (Hirose 
and Liberman 2003). The typical feature seen in early stage 
NIHL is the audiometric “notch” at frequencies between 3 
and 6 kHz seen in pure tone audiometry (Rabinowitz et al. 
2006). With continuous noise exposure over a long period 
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of time, the degree of hearing loss and affected frequency 
range increases (Lie et al. 2015).

Currently many countries have a permissible exposure 
limit of 85 dBA with the 3-dB exchange rate and use this as 
the formula to calculate an individual’s daily noise dose and 
duration, i.e. the recommended maximum (or 100%) daily 
noise dose over an eight-hour period should not exceed an 
average of 85 dBA (Arenas and Suter 2014). Consequently, 
a noise exposure over 85 dBA for longer than 8 h a day over 
a long period of time has been generally considered as the 
most important risk factor for NIHL (Korver et al. 2017; 
Tikka et al. 2017).

High level of noise exposure may initially give rise to 
a temporary threshold shift (TTS), which could recover 
after a few hours, days or weeks with removal of the noise 
source (Ryan et al. 2016). However, a longer duration and 
cumulative noise exposure will lead the TTS to a perma-
nent threshold shift (PTS), damaging hair cells and coch-
lear nerve irreversibly with a resultant noise-induced hear-
ing loss (Liberman 2016). In addition, impulse sounds have 
an extremely high sound pressure level within a very short 
duration and can induce cochlear injury at higher frequen-
cies (> 3 kHz) (Lie et al. 2016).

Apart from the type and intensity of noise and duration 
of exposure, other factors can influence the occurrence of 
NIHL. Demographic, genetic, behavioural (e.g. hearing 
protection device usage) factors as well as general health 
condition can all affect an individual’s susceptibility to 
work-related sound exposure (Bovo et  al. 2007; Kähäri 
et al. 2001). As examples, Konings et al. (2007) identified 
a significantly higher occurrence of NIHL among workers 
possessing a mutation of the catalase gene responsible for 
management of cellular oxidative stress. Wong et al. (2013) 
identified an increased incidence of NIHL in workers who 
possess mutations to genes that alter the K+ concentration 
in endolymph, such as KCNE1 and KCNQ4. These disturb 
the normal function of mechano-transduction channels in 
hair cells. These genetic factors were significantly correlated 
with NIHL occurrence (Pawelczyk et al. 2009; Van Laer 
et al. 2006).

Roberts et al. (2018) compared the predictability of NIHL 
risk using two noise measurement criteria: average noise 
level and equivalent continuous average. They found that 
equivalent continuous average performed better especially 
in predicting hearing thresholds at 0.5, 3 and 4 kHz. How-
ever, it is problematic to predict NIHL using only exposure 
variables and without considering other important factors 
indicated above. It is important to identify different risk 
factors and their interactions to more accurately predict the 
probability of NIHL occurrence.

Machine learning (ML) has been widely applied to auto-
matically identify inter-correlations between data that would 
normally require a great deal of manpower and be difficult 

to define manually (McKearney and MacKinnon 2019). The 
application of ML to the field of Audiology has shown prom-
ise, because of its effectiveness in analyzing non-linear rela-
tionships between data such as predicting hearing thresholds 
of patients who are exposed to specific risk factors (Chang 
et al. 2019). Abdollahi et al. (2018) constructed eight ML 
models to predict sensorineural hearing loss (SNHL) after 
chemoradiotherapy, of which five had over 70% accuracies 
and precisions. Other studies showed similar high accura-
cies with ML models used to predict sudden sensorineural 
hearing loss (SSNHL) and otoxic-induced hearing loss (Bing 
et al. 2018; Tomiazzi et al. 2019). Varied accuracies between 
64 and 99% were reported by different studies using different 
ML algorithms and inputs to predict risk factors for NIHL 
(Aliabadi et al. 2015; Farhadian et al. 2015; Kim et al. 2011; 
Mohd Nawi et al. 2011; Zhao et al. 2019a).

It is noteworthy, however, that not all ML algorithms 
are substantially superior to traditional statistical regres-
sion analysis in terms of model performance when predict-
ing hearing loss caused by specific risk factors (Abdollahi 
et al. 2018; Bing et al. 2018; Farhadian et al. 2015). To the 
best of our knowledge, there is no literature review evaluat-
ing the quality of ML models to predict NIHL. Currently, 
the benefits and challenges of applying ML algorithms to 
predict NIHL remain unclear. The present review aimed 
to clarify the contributions and limitations of applying 
machine learning tools to predict NIHL by analyzing ML 
model performance and the procedure of model construc-
tion. The significant outcomes would contribute towards a 
better understanding of ML tools to predict the susceptibility 
to NIHL and thus facilitate its prevention.

Methods

Search strategy

To identify studies related to the application of ML to pre-
diction of NIHL, we executed a literature search in PubMed, 
EMBASE and Scopus on November 26, 2020. Search terms 
were designed to cover all possible papers: (algorithm OR 
artificial intelligence OR data mining OR machine learning 
OR neural network OR deep learning OR decision tree OR 
random forest OR multilayer perceptron OR support vec-
tor machine OR classification tree) AND (noise OR noise 
induced OR noise exposure) AND (hearing loss OR hearing 
impairment OR hearing problem OR hearing disease OR 
threshold shift).

Literature selection

The first two authors (F.C and Z.C) screened the title and 
abstract of the searched papers independently. Subsequently, 
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the same two confirmed the full text of selected papers and 
evaluated their eligibility. The 22-item TRIPOD checklist 
published by Moons et al. in 2015 was used to evaluate the 
quality of the study design, model development and validity 
of ML algorithms applied to medical diagnosis or progno-
sis prediction. As a result, journal articles published after 
2015 were recruited as one of the inclusion criteria. Other 
important inclusion criteria were also clearly defined and 
classified. Table 1 summarizes the key components of the 
inclusion and exclusion criteria.

Data extraction and analysis

To systematically appraise the included studies, CHARMS 
guideline was used to review the performance of ML mod-
els as proposed by Moons et al. (2014) for critical appraisal 
and data extraction for reviews related to machine learning. 
General information was collected by the first two authors, 
including study aim, study and model design, input, output 
and main results (Table 2). The performance of the ML algo-
rithms was evaluated on the basis of: accuracy, precision, 
receiver operating characteristics (ROC) curve, area under 
the curve (AUC), prediction error/root-mean-square error 
(RMSE), sensitivity and specificity. The procedure used by 
the different algorithms in predicting or classifying NIHL 
was summarized and critically analyzed as well ( Table 3). 
Analysis included input selection tools, algorithms, calibra-
tion performance, discrimination performance, validation 
tool, strength and weakness.

Results

General characteristics of the include studies

The current search strategy identified 436 papers based on 
the inclusion criteria with 294 left after the removal of dupli-
cates. We removed 286 records according to the exclusion 
criteria or considered as irrelevant. Finally, eight eligible 
papers were included in the current review ( Fig. 1).

Table 2 summarizes the specific characteristics of the 
studies. The number of participants ranged from 150 to 
10,567 (median: 210). Seven studies recruited participants 
with ages ranging from 30 to 50. Only one study recruited 
significantly younger participants with all participants 
recruited from the U.S. Air Force (Greenwell et al. 2018). 
As shown in Table 2, the gender distribution was imbal-
anced with many more males than females in five studies 
(total male vs. female: 12,341 vs. 1869) (Aliabadi et al. 
2015; Farhadian et al. 2015; Greenwell et al. 2018; Zhao 
et al. 2019a, b). There was no information of gender in three 
included studies (ElahiShirvan et al. 2020; Zare et al. 2019, 
2020).

Different categorization approaches and grading systems 
of NIHL were used in the studies, e.g. 25 dB HL as a cri-
terion defined by the National Institute for Occupational 
Safety and Health (NIOSH) (Zhao et al. 2019a, b), and the 
grade systems recommended by the World Health Organiza-
tion (WHO) and Occupational Safety and Health Adminis-
tration (OSHA) (ElahiShirvan et al. 2020; Farhadian et al. 
2015; Greenwell et al. 2018; Zare et al. 2019, 2020). By con-
trast, the averaged hearing thresholds of participants were 
also used as a variable in two studies (Aliabadi et al. 2015; 
Zhao et al. 2019a). Of these studies, Zhao et al. (2019a) 
reported the overall better performance (AUC and accuracy) 
of four algorithms to predict noise-induced hearing impair-
ment defined by OSHA in comparison to using NIOSH’s 
definition. It should be noted that the different approaches 
to defining NIHL are very likely to influence the outcomes 
of the ML models.

A number of variables were considered as potential 
risk factors for NIHL including: age, gender, duration of 
noise exposure, noise exposure level, smoking habit, HPD 
use, time interval between each audiometric measurement 
(in years), median kurtosis of the noise, individual hear-
ing thresholds at the frequencies of 0.25, 0.5, 1, 2, 4 and 
8 kHz, equivalent continuous sound level at 0.5, 1, 2 and 
4 kHz (Leq_500/1000/2000/4000) and Air Force Specialty Code 
(AFSCs). Of these, age (n = 8), duration of noise exposure 
(n = 7) and noise exposure level (n = 6) were the parameters 
mostly correlated with NIHL, followed by other predictive 

Table 1   Inclusion and exclusion criteria for search strategy

Detailed items

Inclusion criteria Published: within 5 years, in English
Participants: adults with noise induced hearing loss, had long-term working experience in the noise envi-

ronment; no history of ear surgery, severe brain injury, tumors or ototoxic drug use, no diabetes mellitus
Study design: Clinical trials
Outcome measure: different machine learning algorithms such as artificial neural network, random forest, 

support vector machine
Exclusion criteria Study design: reviews, case reports/series, meta-analyses, animal studies

Study objective: studies investigating genetics, cytology, assistive hearing devices, audiological assessment
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factors, such as median kurtosis of noise (n = 2), Leq_1000 
(n = 1) and Leq_500 (n = 1). Although age and exposure dura-
tion were both highly correlated with hearing thresholds, 
these two variables may underestimate the risk of multi-
collinearity, which would undermine the validity of their 

predictive effect to the outcome (Alin 2010). In addition, the 
hearing threshold at 4 kHz was found as an effective predic-
tor for overall NIHL (ElahiShirvan et al. 2020; Zare et al. 
2019, 2020). This result is in keeping with the hypothesis 
that high frequencies are most vulnerable after excessive 

Table 3   Strength and weakness of the procedure of different ML algorithms to predict or classify NIHL

NIHL noise-induced hearing loss, ANN artificial neural networks, ROC receiver operating characteristics, RMSE root-mean-square error, RF ran-
dom forest, MLP multilayer perceptron, SVM support vector machine, AUC​ area under the ROC curve

Study Model construction procedure Strength Weakness

Farhadian et al. (2015) Input selection tools Correlation matrix Evaluated the candidacy of 
variables

Evaluated calibration perfor-
mance by multiple metrics

Specified the validation 
method

Single algorithm usage
The performance of ANN with 

different numbers of neurons 
in the training phase was not 
informed

Algorithms ANN
Calibration performance Accuracy, Cohen’s kappa 

coefficient
Discrimination performance ROC
Validation tool Split-sample validation

Aliabadi et al. (2015) Input selection tools Correlation matrix Evaluated the candidacy of 
variables

Evaluated calibration perfor-
mance by multiple metrics

Specified the validation 
method

Single algorithm usage
Not informed the performance 

of different numbers of neu-
rons in the training phase

Not evaluated discriminative 
risk

Only used 10% of the data for 
validation

Algorithms ANN
Calibration performance RMSE, R2

Discrimination performance N/A
Validation tool Split-sample validation

Greenwell et al. (2018) Input selection tools N/A Evaluated the candidacy of 
variables

Evaluated calibration perfor-
mance by multiple metrics

Specified the validation 
method

Single algorithm usage
No evaluated discriminative riskAlgorithms RF

Calibration performance Accuracy, prediction error, R2

Discrimination performance N/A
Validation tool Split-sample validation

Zare et al. (2019) Input selection tools N/A Evaluated calibration perfor-
mance by accuracy

Not evaluated the candidacy of 
variables

Single algorithm usage
Not evaluated discriminative 

risk
No validation tools

Algorithms C5 algorithm
Calibration performance Accuracy
Discrimination performance N/A
Validation tool N/A

Zhao et al. (2019a) Input selection tools t-test Evaluated the candidacy of 
variables

Multiple algorithm usage
Evaluated calibration perfor-

mance by multiple metrics
Specified the validation 

method

N/A
Algorithms RF, Adaboost model, MLP, 

SVM
Calibration performance Accuracy, RMSE
Discrimination performance ROC, AUC​
Validation tool tenfold cross-validation

Zhao et al. (2019b) Input selection tools RF Evaluated the candidacy of 
variables

Evaluated calibration perfor-
mance by multiple metrics

Specified the validation 
method

Single algorithm usage
Not evaluated discriminative 

risk
Algorithms SVM
Calibration performance Accuracy, precision, recall, 

F1 score
Discrimination performance N/A
Validation tool tenfold cross-validation

ElahiShirvan et al. (2020) Input selection tools N/A Evaluated calibration perfor-
mance by accuracy

Not evaluated the candidacy of 
variables

Single algorithm usage
Not evaluated discriminative 

risk
No validation tools

Algorithms SVM
Calibration performance Accuracy
Discrimination performance N/A
Validation tool N/A

Zare et al. (2020) Input selection tools N/A Evaluated calibration perfor-
mance by accuracy

Not evaluated the candidacy of 
variables

Single algorithm usage
Not evaluated discriminative 

risk
No validation tools

Algorithms ANN
Calibration performance Accuracy
Discrimination performance N/A
Validation tool N/A
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noise exposure (Rabinowitz 2000). By contrast, the studies 
showed the lesser contribution of categorical data to predict 
the occurrence of NIHL, such as gender, hearing protec-
tion device (HPD) usage (defined as ‘continuous’, ‘intermit-
tent’ or ‘no’), and smoking status (‘yes’ or ‘no’). Therefore 
when converting numeric data into a categorical variable 
(e.g. convert HPD usage duration to usage patterns) in ML 
to predict NIHL, it may cause selection bias due to less 
information reflecting the relationship between a variable 
and the output(s) (Altman and Royston 2006). For instance, 
two studies merged workers who used HPD 2 h per day and 
those who used 6 h per days into the same group defined as 
‘continuous’ HPD group (Aliabadi et al. 2015; Farhadian 
et al. 2015). As a result, the relationship between the protec-
tive effect of using HPD and the duration of usage could be 
potentially neglected. In addition, the influence of noise type 
on the occurrence of NIHL in this study is unclear (Green-
well et al. 2018). Although there was a higher occurrence 
of NIHL in participants who were exposed to higher level 
of noise classified on the basis of AFSCs, the study did not 
evaluate the nature of environmental noise every group of 
participants with different AFSC experienced.

Several ML models were used in the included studies, 
i.e. random forest (RF), artificial neural networks (ANN) 
or multilayer perceptron (MLP), support vector machine 
(SVM), C5 algorithm and AdaBoost model. Three studies 
used more than two different machine learning algorithms, 
though one study applied RF to determine qualified inputs 
only and did not compare the predictive performance with 
another model (Zhao et al. 2019b). The most commonly 
used ML model was ANN (including one using MLP) in 
four studies, followed by RF and SVM in three studies 
(Table 2). Only 2 studies contained case analysis to evalu-
ate the practical performance of ML models (Aliabadi et al. 
2015; Zhao et al. 2019a). Three studies contained different 
regression models including logistic regression (LR), mul-
tiple linear regression (MLR) and the linear mixed-effects 
model (LMM) (Aliabadi et al. 2015; Farhadian et al. 2015; 
Greenwell et al. 2018).

Critical appraisal of model constructions

Table 3 summarizes important information regarding the 
model construction as well as the strength and weakness 

Fig. 1   Flow diagram of the 
search strategy for studies 
assessing the predictability of 
machine learning models for 
NIHL

PubMed
n = 84

Records after removing duplicates:
n = 294

Scopus
n = 275

EMBASE
n = 77

n = 436

Records excluded by exclusion 
criteria:
n = 286

Eligible papers for critical appraisal:
n = 8
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of individual studies. Four included studies performed the 
analysis using specific tools by selecting different inputs and 
all studies defined the variables clearly. However, only one 
measurement used to evaluate calibration performance or 
lacking discrimination evaluation in the included studies 
made the full appraisal of the ML algorithms difficult. Two 
studies presented ten-fold cross-validation, whereas three 
applied split-sample validation.

Evaluating the candidacy of inputs for predictive power 
helps to prevent overfitting, which refers to the circum-
stances where a model is tailored too much by data to gen-
eralize to new data sets (Lever et al. 2016). Only four studies 
used multivariable models (e.g. correlation matrix, RF) to 
select inputs, but only two performed the statistical analysis 
to define those inputs which were significantly correlated 
with the target variable (Zhao et al. 2019a, b). None of the 
studies utilized a separate dataset to conduct feature selec-
tion, which is imperative to prevent predictor selection bias 
especially for regression models (Singhi and Liu 2006).

Although various algorithms were chosen and used in the 
included studies, only one study performed multiple models 
to compare the predictive performance of NIHL (Zhao et al. 
2019a). The remaining studies did not compare with other 
machine learning classifiers especially with recent machine 
learning approaches, such as deep learning. In addition, 
although two studies evaluated the performance of ANN 
with different structures and found ANN with one hidden 
layer and ten neurons to be superior, the results with differ-
ent numbers of neurons were not informed (Aliabadi et al. 
2015; Farhadian et al. 2015).

According to the CHARMS guideline, compulsory model 
performance measures should at least consist of calibration 
and discrimination (Moons et al. 2014). Calibration refers 
to the comparison between predicted and observed results, 
whilst discrimination represents the degree of distinguish-
ing those at higher risk of having an event from those at 
lower risk (Alba et al. 2017). Calibration usually comprises 
accuracy, precision, R2 or F1 score (Siblini et al. 2020). Dis-
crimination risk could be assessed by the ROC and the AUC 
(Moons et al. 2014). All studies clarified the component 
metrics to evaluate performance except the study by Green-
well et al. (2018) which performed accuracy, prediction error 
and R2 without any definition. Various calibration measures 
were applied including accuracy (n = 8), RMSE/prediction 
error (n = 3), precision (n = 1), recall (n = 1), F1 score (n = 1) 
and/or R2 (n = 1). The discrimination risk, however, was only 
evaluated in two studies by the ROC curve and/or the AUC 
(Farhadian et al. 2015; Zhao et al. 2019a).

In regard to model validation, either split-sample valida-
tion (Aliabadi et al. 2015; Farhadian et al. 2015; Greenwell 
et al. 2018), or ten-fold cross-validation (Zhao et al. 2019a, 
b) was applied. Slip-sample validation randomly divides 
samples into a training group and a validation group (Moons 

et al. 2014). N-fold cross-validation is a procedure to prevent 
performance bias of models in which the total sample is 
divided into N groups and each Nth group tests the model 
in fold N sequentially, while N-1 groups are applied to train 
the model (Mellor et al. 2018). However, it should be noted 
that split validation rather than N-fold cross-validation was 
proved to produce unbiased performance with limited sam-
ple size (n < 1,000) (Vabalas et al. 2019). It is noteworthy 
that Aliabadi et al. (2015) used 10% of the data for valida-
tion, but the small sample size (n = 210) may cause the risk 
of overfitting. In addition, three included studies that shared 
the same database did not apply any validation tool, which 
may have the high risk of overfitting (ElahiShirvan et al. 
2020; Zare et al. 2019, 2020).

Critical appraisal of the performance of ML 
algorithms: contributions and limitations

Although the performance of different prediction models 
varied in the 8 studies, accuracies of included algorithms 
were relatively high and the prediction errors (or RMSE) 
consistently outperformed regression models. On the other 
hand, apart from the limited number of results, the sensitivi-
ties and specificities of some ML models informed by the 
ROC curves were not favorable and the results of the AUC 
were relatively low in two of four models in one study (Zhao 
et al. 2019a) (Table 2).

Accuracy refers to the ratio of correctly classified samples 
in the total sample (Tharwat 2018). In the present review, 
the averaged accuracy of various ML algorithms was greater 
than 75%. Of these, the accuracies obtained from RF mod-
els ranged from 75.5% to 80% in three studies (Greenwell 
et al. 2018; Zhao et al. 2019a, b) and there were accura-
cies of 75.3–94% when using SVM models (ElahiShirvan 
et al. 2020; Zhao et al. 2019a, b). It reached 78.98% and 
78.62% by MLP model and AdaBoost, respectively (Zhao 
et al. 2019a). The accuracy over 99% was achieved using 
C5 algorithm in the study by Zare et al. (2019), but the 
potential overfitting problem and the issue of small sample 
size (n = 150) should be noted. Although Farhadian et al. 
(2015) and Zare et al. (2020) reported the accuracy over 
88% using ANN model, the small sample size in both stud-
ies could also lead to overfitting problem and be difficult 
for generalization, and consequently resulted in spuriously 
high accuracy (Vabalas et al. 2019). By contrast, three of 
five studies contained different regression models includ-
ing LR, MLR and LMM (Aliabadi et al. 2015; Farhadian 
et al. 2015; Greenwell et al. 2018). The accuracy of LR did 
not differ significantly from the result obtained from ANN 
model (LR vs ANN: training group: 87.85% vs 91.4%, test 
group: 84.28% vs 88.6%) in both training and test group 
(Farhadian et al. 2015). There was no comparison of the 
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accuracy between ANN and MLR (Aliabadi et al. 2015) or 
SVM and LMM (Greenwell et al. 2018).

The prediction error and RMSE are used to measure the 
difference between the predicted values, where lower values 
reflect higher accuracy of the prediction models (Hyndman 
and Koehler 2006). The overall RMSEs of five algorithms 
were below 3 dB. In particular, ANN achieved the lowest 
RMSE of 2.4 and 2.6 in the training and test group (Aliabadi 
et al. 2015). One study found MLP RMSE of 2.727 in pre-
dicting hearing thresholds, RF was 2.858, as well as Ada-
boost (2.894) and SVM (2.942) (Zhao et al. 2019a). By con-
trast, MLR showed over 4 dB RMSE in both training and test 
group, which was significantly higher than ANN (Aliabadi 
et al. 2015). For RF model, it obtained an approximate 20% 
prediction error, which was not satisfactory (Greenwell et al. 
2018). Limited inputs (n = 4) in this study might misguide 
the algorithms and return the poor result.

In terms of case analysis, Aliabadi et al. (2015) showed 
that ANN model was able to predict three workers’ hearing 
thresholds with a difference below 1.5 dB HL. In addition, 
by MLP model, the difference between the measured and 
predicted hearing thresholds was less than 2.5 dB HL in 
another study (Zhao et al. 2019a). However, neither of them 
applied separated datasets to prevent the potential overfit-
ting problem.

The ROC curve represents the tradeoff between true posi-
tive rate (sensitivity) and false positive rate (1-specificity), 
which measures the discriminative ability of ML models 
(Tharwat 2018). Although 100% sensitivity and approxi-
mately 90% specificity were achieved by ANN (Farhad-
ian et al. 2015), the performances of 4 models based on 
the ROC curves in another study were limited (Zhao et al. 
2019a). More specifically, SVM was the best but still could 
not balance the sensitivity and specificity over 75% simul-
taneously and the performance of the other three (RF, MLP 
and Adaboost) were significantly inferior with no more than 
65% simultaneously. On the other hand, despite no result 
of the ROC curve, Zhao et al. (2019b) reported only 68.9% 
sensitivity of SVM. Biased inputs which merely included 
noise-related features might render it difficult to predict 
hearing impairment. Similar to regression model, the ROC 
curve of LR presented limited outcomes with highest sensi-
tivity at 90% and no more than 70% specificity (Farhadian 
et al. 2015). Moreover, the AUC is also used to compare 
the performance of different models in the ROC curves, 
ranging from 0 to 1 (Tharwat 2018). The higher values a 
model obtains, better ROC performance it represents. In 
the study by Zhao et al. (2019a), the result of SVM (0.808) 
was significantly higher than MLP (0.711), RF (0.663) and 
Adaboost (0.664), suggesting a better discriminative power 
of the SVM model in predicting NIHL. Notably, only this 
study evaluated the ROC performance, and thus the outper-
formance of SVM remained putative.

Discussion

Contribution of ML models to predict NIHL

The present review demonstrates that ML models had higher 
accuracies and lower prediction errors when compared to 
regression models. The majority of included studies used 
accuracy to evaluate various ML models with the predictive 
ability for NIHL ranging from 75.3% to 99% due to the het-
erogeneity of datasets and model development. In particular, 
three studies with the accuracy over 90% provided limited 
information on input selection and no validation tools were 
applied (ElahiShirvan et al. 2020; Zare et al. 2019, 2020). 
Two previous studies which did not meet the inclusion cri-
teria demonstrated similar issues. Although the study by 
Mohd Nawi et al. (2011) reported over 99% accuracy of the 
prediction model, incomplete information of the model con-
struction created the risk of bias. Another study constructed 
a large database (n = 2,420,330) to analyzed the impact of 
diverse noise to the generation of NIHL using ANN but 
unraveled the unsatisfactory performance with less than 
65% accuracy, which was no better than LR model (Kim 
et al. 2011). The accuracies of some algorithms were also 
investigated in several studies which either tried to predict 
hearing loss with specific etiologies, such as sudden hear-
ing loss (Bing et al. 2018; Park et al. 2020), ototoxic hear-
ing loss (Tomiazzi et al. 2019) and cochlear dead regions 
(Chang et al. 2019), or predict SNHL by specific auditory 
measures, such as OAE (de Waal et al. 2002; Liu et al. 2020; 
Ziavra et al. 2004) and ABR (Acır et al. 2006; Molina et al. 
2016). Similarly, five studies did not evaluate or describe 
the significance of input to cochlear dead regions (Chang 
et al. 2019; de Waal et al. 2002; Liu et al. 2020; Tomiazzi 
et al. 2019; Ziavra et al. 2004). Therefore, the validity of the 
accuracy metric is highly dependent on the transparency of 
model development and input selection.

Notably, it is not appropriate to determine if an algo-
rithm has a favorable performance simply by accuracy as 
this measure might be biased if the distribution of data is 
imbalanced, in which situation some classes are more fre-
quent in comparison with others (Krawczyk 2016). Con-
sequently, those models perform biased and conservative 
to predict the minority class still are able to reach the high 
accuracy. In this case, precision, recall, F1 score, prediction 
error and the ROC/AUC curve should be applied to evaluate 
the predictability of algorithms to prevent an overestimation 
of predictive power (Fabris et al. 2017).
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Model selection to predict NIHL

Based on the characteristics of study design, supervised 
machine learning is more suitable to construct predictive 
models. In general, the procedure of supervised ML usu-
ally consists of data collection, inputs extraction and selec-
tion, algorithms selection, training, testing and validation 
(Kuncheva 2014). Supervised algorithms predict or classify 
labelled output (i.e., NIHL) by discovering relationships 
between features in the training group, aiming to find rela-
tionships and patterns in the data that might be too complex 
to visualize manually (Fabris et al. 2017; Low et al. 2020).

With regard to the application of ML models, RF, ANN 
(including MLP) and SVM were the most frequently used 
models in the included studies, which achieved favorable 
performance. In addition, different studies also applied more 
than one model to predict other types of hearing loss or hear-
ing-related problems. Three types of algorithms achieved 
good performance in predicting sudden hearing loss (Bing 
et al. 2018; Park et al. 2020), ototoxic hearing loss (Tomiazzi 
et al. 2019) and/or SNHL with specific risk factors (Chang 
et al. 2019). Also, several studies successfully applied ANN 
or SVM to clarify different types of SNHL based on the 
morphology of OAE (de Waal et al. 2002; Liu et al. 2020; 
Ziavra et al. 2004) or ABR (Acır et al. 2006).

Although various ML models outperformed regression 
models based on the results of current review, Christodoulou 
et al. (2019) discovered no difference between two types of 
models in 71 clinical prediction studies. However, due to 
the heterogeneous methodologies and aims, they only ana-
lyzed the AUC without further delineating the difference 
of performance between ML and LR in analyzing differ-
ent prediction problems. Because ML models are trained to 
learn from data, the sample size should be sufficiently large 
to contain variety and patterns and thus minimize the errors 
and bias that are inherent in the procedure of data collection 
(Mellor et al. 2018).

By contrast, traditional regression models rely on assump-
tions and known information between data so that require 
smaller sample sizes to discover relationships, which per-
forms better in terms of interpreting the relationship between 
different variables (Zhang et al. 2016). Several previous 
studies used statistical analysis to explore etiological factors 
of NIHL. A multiple linear regression model revealed that 
TTS at 4 kHz was one of the significant predictive factors 
for a PTS of the average thresholds from 2 to 4 kHz (equal to 
NIHL). Using 14 dB TTS as the cutting point could achieve 
good sensitivity (82%), though specificity (53%) was rela-
tively poor (Moshammer et al. 2015). The other multiple 
linear regression model was developed by Xie et al. (2016) 
using age and cumulative noise exposure as the main vari-
ables to predict hearing thresholds at frequencies of 3, 4 and 

6 kHz. The results showed that these variables contributed 
62.1% of dependent variables (R2 = 0.39).

However, several studies suggested that the complex 
structures or inter-correlation of variables during the devel-
opment of LR model resulted in the neglect of relation and 
cross-validation shrinkage (Abdollahi et al. 2018; Bing et al. 
2018; Zhang et al. 2016). Consequently, the distinct char-
acteristics of two types of models should be considered and 
developed to achieve the better performance of each kind of 
models. For instance, it is more efficient to apply regression 
models to determine the effect of a specific factor (e.g. type 
of noise) on the generation of NIHL, because of the greater 
requirements of ML to produce a similar performance. Con-
currently, due to the nature of black box, the exact relation-
ship between inputs and outputs is hard to interpret from ML 
models (Castelvecchi 2016), which may prevent research-
ers from focusing on the specific factors that cause high 
risk of hearing impairment. By contrast, if a study aims to 
construct an ML model to predict a type of hearing loss 
with specific etiology, comprehensive variables should be 
extracted and evaluated before training the model to promise 
the complexity/flexibility.

Although several algorithms showed a favorable predic-
tive ability, either for NIHL or SNHL with specific etiolo-
gies, RF and SVM were one of the most frequently adopted 
models and are highly recommended for classifying or 
identifying hearing loss. Random forest is characterized by 
a combination of decision tree predictors, from which the 
most voted class is selected to represent the final prediction 
(Breiman 2001). It is fast to classify, insusceptible to noise, 
and does not overfit (Singh et al. 2016). On the other hand, 
as a linear machine learning model SVM could handle both 
the regression and classification problem with the manual 
selection of data set (Bing et al. 2018). It usually reaches 
high accuracy and is tolerant to unrelated features as well 
as favorable to generalize (Singh et al. 2016). SVM is also 
able to change to non-linear when it applies the kernel func-
tion in the training phase (Kotsiantis et al. 2007), which is 
more commonly used to predict hearing-related problems. 
Notably, because the limited data size, recent deep learning 
techniques have not been used properly in this field yet, such 
as deep neural network (DNN). Hung et al. (2017) supported 
that DNN outperformed than LR and SVM in predicting the 
occurrence of 5-year stroke. With more data, deep neural 
networks are expected to perform better than the other ML 
techniques.

Furthermore, it should be noted that due to the differ-
ence of designs and datasets between individual studies, 
multiple algorithm use should be encouraged to examine 
which model performs best with specific types of data. For 
instance, two papers suggested that either RF (Statnikov 
et al. 2008) or SVM (Statnikov and Aliferis 2007) could 
outperform any other in classification accuracy to diagnose 
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and predict a similar clinical problem. Similarly, Bing et al. 
(2018) found that deep belief network reached highest per-
formance to predict SSNHL measured by several metrics, 
whereas SVM was the best classifier compared to predict 
unilateral SSNHL in another study (Park et al. 2020).

Limitation of ML models to predict NIHL

One major limitation discovered in the majority of the 
included studies was that the discrimination risk of the pre-
diction model was seldom evaluated. Two studies reported 
the ROC curves and only one study evaluated the AUC in 
the included studies (Zhao et al. 2019a). Similarly, the ROC/
AUC was merely estimated in 4 of 9 studies that predicted 
other types of hearing loss (Acır et al. 2006; Bing et al. 2018; 
Park et al. 2020; Ziavra et al. 2004), ranging from 0.73 to 
0.94. The ROC curve sheds light on the power of a model to 
discriminate different groups, reflected by the values of true 
positive rate (sensitivity) and false positive rate (1-specific-
ity). Notably, the superiority of sensitivity and specificity 
could be different when facing specific predicting problems 
(Obuchowski and Bullen 2018). In particular, considering 
the negative consequence and irreversible impact of hearing 
loss a lower false positive rate is much more important than 
increasing true positive rate.

Furthermore, feature selection may influence the quality 
of ML algorithms at the same time. Although the included 
studies considered variables related to the generation of 
NIHL, those symptoms that share the similar pathology of 
NIHL may act as predictors as well. For example, 20–67% of 
subjects with NIHL showed audiometric ‘notches’ in differ-
ent studies (Hsu et al. 2013; Lie et al. 2015; Rabinowitz et al. 
2006), whereas tinnitus is the primary symptom in some 
cases without having any audiometric ‘notches’ or hearing 
loss (Mrena et al. 2007). It should be noted that overfitting 
would be expected when applying new data to the model, if 
idiosyncratic features are not eliminated before the training 
phase (Moons et al. 2014). Several studies discovered that 
including less relevant variables would undermine the per-
formance of ML models (Bing et al. 2018; Park et al. 2020). 
On the other hand, the way to process data is important for 
model prediction. Dichotomizing data usually increases the 
risk of bias, especially for those around both sides of cut-
off points. Compared with continuous and category vari-
ables, simply dividing data into two categories, even if it is 
based on recommendations from other studies, may reduce 
the information in the data and lower the predictability and 
applicability, which may eventually give rise to overfitting 
problem (Moons et al. 2014).

Although the risk of bias, which is more likely to increase 
when the data set is small, was considered and calibrated 
in the included studies by two internal validation methods 

(split-sample validation and n-fold cross-validation), Vaba-
las et al. (2019) argued that N-fold cross-validation still 
produced biased prediction with samples less than 1000, 
whereas split-sample validation achieved better performance 
in the smaller size data sets. On the other hand, although no 
studies utilized external validation, which refers to testing 
ML models using new data or a separate dataset, external 
validation is more reliable to validate ML models and to 
help recalibrate the model, therefore is highly recommended 
(Moons et al. 2014; Vabalas et al. 2019), due to its tempo-
ral or spatial difference from the initial datasets compared 
with internal validation. Apart from the method of valida-
tion, separating training and testing data before the model 
development is imperative to prevent overfitting, because the 
model is pruned to perform better in the data set where it is 
derived (Austin and Steyerberg 2017).

Recommendations of ML models to predict NIHL

According to the limitations found in the included studies, 
the following recommendations are proposed to maximum 
the transparency and reproducibility of future studies. First, 
report all details of steps during model construction, includ-
ing data collection, feature extraction and selection, model 
development and model evaluation. We highly recommend 
to follow the TRIPOD checklist (Moons et al. 2015) to lower 
the potential risk of bias. Second, recruit more relevant pre-
dictors that are correlated with noise-induced hearing loss 
and evaluate the statistical significance of inputs to prevent 
overfitting before the training phase. Furthermore, select 
appropriate validation methods based on sample size. If the 
number of participants is less than 1,000, split-sample vali-
dation should be considered at first, otherwise apply n-fold 
cross-validation. If possible, external validation is preferable 
to better evaluate the generalization of models. Finally, it is 
necessary to analyze more metrics other than accuracy to 
assess calibration (e.g. precision, recall, prediction error) 
and discrimination performance (the ROC/AUC curve). The 
predictive results of both training and testing phases should 
be separated and informed to eliminate the risk of bias.

The main limitation of the current review is the limited 
number of included studies and number of algorithms, which 
might not provide  robust  evidence to represent the perfor-
mance of machine learning models in predicting NIHL. Fur-
thermore, the heterogeneity of methodology and evaluation 
methods rendered it more difficult to evaluate and compare 
the quality of individual prediction models. The effects of 
different factors on the performance during model develop-
ment were not analyzed, such as sample size, the number of 
variables or the number of events per variable.

Further research is expected to recruit more participants 
and include more predictors relevant to noise-induced hear-
ing loss (e.g. genes, cellular biomarkers) or noise exposure 



1109International Archives of Occupational and Environmental Health (2021) 94:1097–1111	

1 3

(e.g. the waveform of ABR and OAE) to explore the pathol-
ogy of noise-induced hearing loss or noise-induced hearing 
problem, such as hidden hearing loss, noise-induced tinnitus 
and hyperacusis. In addition, with larger sample sizes by 
sharing the collected data with each other, better and more 
powerful ML techniques (e.g. deep learning) could be suc-
cessfully applied in this field.

Conclusion

Eight studies were reviewed in the current study and sup-
ported relatively high accuracy and/or low prediction error 
of machine learning in predicting noise-induced hearing 
impairment. However, limited studies evaluated the dis-
crimination risk of the prediction models and disappoint-
ing sensitivity and specificity values were observed from 
the ROC curves. The above findings revealed several issues 
when developing ML models, which mainly comprised lim-
ited sample sizes, single algorithm use, incomplete reports 
of model construction, and/or insufficient evaluation of cali-
bration and discrimination. Application of machine learning 
models or traditional regression models should be based on 
aims and designs of their studies. Future study would be 
expected to have bigger sample sizes and increased numbers 
of predictors relevant to noise-induced hearing loss or noise 
exposure.
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