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Abstract
Progress in structural membrane biology has been significantly accelerated by the ongoing ‘Resolution Revolution’ in cryo-electron microscopy 
(cryo-EM). In particular, structure determination by single-particle analysis has evolved into the most powerful method for atomic model building 
of multisubunit membrane protein complexes. This has created an ever-increasing demand in cryo-EM machine time, which to satisfy is in need of 
new and affordable cryo-electron microscopes. Here, we review our experience in using the JEOL CRYO ARM 200 prototype for the structure 
determination by single-particle analysis of three different multisubunit membrane complexes: the Thermus thermophilus V-type ATPase VO
complex, the Thermosynechococcus elongatus photosystem I monomer and the flagellar motor lipopolysaccharide peptidoglycan ring (LP ring) 
from Salmonella enterica.
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Introduction
Membrane proteins and their embedding biomembranes are 
fundamental to cellular life due to their roles in energy con-
version and communication between the inside and outside 
of the cell [1–4] . In contrast to its importance, our under-
standing of membrane biology is still rather limited as the dire 
consequence of the experimental difficulties associated with 
biomembrane research [5–7] . This circumstance is reflected 
by the comparatively low number of atomic models for mem-
brane proteins against water-soluble proteins deposited in the 
Protein Data Bank (PDB): 6238 vs 192 888 (https://pdbj.org/; 
https://blanco.biomol.uci.edu/mpstruc/), while the share of 
membrane protein-encoding genes in the human genome is 
∼30% [8] .

Since the first direct observation of a transmembrane pro-
tein by electron crystallography, bacteriorhodopsin of the 
purple membrane, in 1975 [9], structures of membrane pro-
teins have been experimentally determined by cryo-electron 
microscopy (cryo-EM) using image analysis of helical tubes 
or crystallographic analysis of 2D and 3D crystals imaged by 
electron and X-ray diffraction [10–14] . However, the chal-
lenges in growing well diffracting crystals of to the lipid 

bilayer adapted membrane proteins puts a severe brake on the 
structure determination process [15].

The advent of atomic resolution single-particle cryo-EM in 
the ongoing ‘Resolution Revolution’ [16]  of cryo-EM, a tech-
nique that does not require crystals but is able to provide 
protein Coulomb potential maps at crystallographic resolu-
tions [17–19] , means that this bottleneck of the membrane 
protein structure determination process is now removed. 
Moreover, the very recent advances in EM instrumentation 
of using electron beams with a reduced energy spread by 
employing either cold field-emission guns (FEGs) [20, 21]  
or monochromators [22]  now allow the analysis of well-
behaved membrane proteins at a 1.7 Å resolution [21] . These 
advances in single-particle cryo-EM, however, come at the 
expense of a steep price tag for state-of-the-art 300 keV 
cryo-transmission electron microscopy (TEM). Meanwhile, 
it has been demonstrated for both water-soluble and mem-
brane proteins that when a suitable protein sample is com-
bined with optimized imaging conditions, considerably less 
expensive 200 keV cryo-TEMs can deliver Coulomb potential 
maps of sufficient quality for reliable atomic model building
[23–26] .
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Fig. 1. The detergent problem in single-particle cryo-EM. (a) A cartoon of an ideal situation in a single hole of a holey carbon cryo-grid prepared for 
single-particle cryo-EM imaging. Proteins are randomly oriented in a thin layer of vitreous ice not much thicker than the maximum diameter of the 
protein. (b) The same situation for DDM solubilized membrane proteins. The presence of detergent in the form of free detergent micelles, free detergent 
monomers, two free detergent monolayers and membrane protein-bound detergent micelles is depicted in realistic dimensions. Free detergent in the 
form of two monolayers at the air–water interface complicates high-resolution cryo-imaging by adding a layer of ∼50 Å of carbon and the connected 
noise to each particle image.

Recently, JEOL has developed a 200 keV cryo-TEM, the 
CRYO ARM 200, as a relatively affordable instrument for 
single-particle cryo-EM. In this short review, we describe 
our experience in analyzing multisubunit membrane protein 
structures of a eubacterial vacuolar type adenosine triphos-
phate hydrolase (V-ATPase) [27] , a cyanobacterial photo-
system I (PSI) [28] and the lipopolysaccharide peptidogly-
can ring (LP ring) of a bacterial flagellar motor [29] using 
the prototype CRYO ARM 200 (JEOL, Akishima, Tokyo, 
Japan) operated at a 200 keV acceleration voltage, equipped 
with a thermal FEG as the electron source, an in-column Ω
energy filter, a K2 Summit direct electron detector and the 
JADAS [30] software and SerialEM [31] for automated data
acquisition. 

Membrane protein sample preparation
Phase contrast cryo-TEM images of proteins embedded in 
vitreous ice at electron doses that retain their native struc-
ture have a very low signal-to-noise ratio—greatly impacting 
image processing and 3D reconstruction of high-resolution 
Coulomb potential maps [32] . The image contrast in cryo-
EM images of proteins depends on the difference in density 
between protein and the embedding vitreous ice (∼1.3 vs 
∼1 mg ml−1) [33, 34] . Therefore, the use of buffers free of 
crowding agents, such as glycerol, sucrose and other small 
organic molecules in single-particle cryo-EM and the forma-
tion of a vitreous ice layer only slightly thicker than the 
target protein imaged, is crucial for the success of a single-
particle cryo-EM project [35] . The presence of free detergent 
in preparations of detergent-solubilized membrane proteins 
complicates the formation of ideal ice thickness during plunge 
freezing of cryo-grids. The detrimental effects associated with 
the presence of detergent can be mainly ascribed to a lowered 

surface tension, the presence of free detergent micelles in 
solution and, perhaps most importantly, the formation of 
detergent monolayers at the air–water interface that might 
even stack during the blotting and freezing process (see Fig. 1) 
[36] . This ‘detergent problem’ in single-particle cryo-EM of 
integral membrane proteins was recognized early on [37]  and 
in the pioneering work on the transient receptor potential 
V1 channel (TRPV1 channel) structure, it was successfully 
solved by replacing the purified channel stabilizing deter-
gent with amphipols [19] . Later studies demonstrated that 
the reconstitution of membrane proteins into nanodiscs not 
only eliminates the ‘detergent problem’ but also allows for 
structure determination of membrane proteins in their physio-
logical environment of the lipid bilayer and in favorable cases 
the visualization of bound lipids (Fig. 2a) [38] . For membrane 
proteins recalcitrant to the use of amphipol or nanodiscs, the 
gradient based detergent removal (GraDeR) approach (see 
Fig. 2b), combining the novel high-affinity detergents lauryl 
maltose neopentyl glycol (LMNG) [39] and glycol diosgenin 
(GDN) [40] with free detergent removal via density gradi-
ent ultracentrifugation, has been shown to yield good results 
[36, 41–43] . This approach is not limited by the diameter of 
the target protein and as a consequence especially promising 
for large, fragile multisubunit membrane complexes with a 
tendency to disassemble in conventional nonionic detergents 
such as β-dodecyl-maltoside (DDM) [44] . Indeed, in con-
trast to first-generation nonionic detergents such as DDM, the 
lipid-like second-generation nonionic detergents LMNG and 
GDN are much more powerful in retaining structural integrity 
and functional stability of fragile multisubunit membrane 
complexes [45, 46]. This is even more true for membrane 
proteins successfully reconstituted into the lipid bilayer envi-
ronment of nanodiscs [47]. However, the enhanced stability 
of the isolated target membrane protein complexes does not



C. Gerle et al. Cryo-EM of membrane proteins at 200 keV 251

Fig. 2. NanoDisc and GraDeR—two solutions to the ‘detergent problem’. (a) Workflow of nanodisc use in single-particle cryo-EM of membrane proteins: 
after purification of the target membrane protein, the addition of lipids and nanodisc scaffolding protein is followed by BioBeads-mediated detergent 
removal, leading to the reconstitution of nanodisc-stabilized membrane proteins. After removal of excess nanodiscs by size exclusion chromatography 
and concentration, the sample is ready for cryo-grid preparation. LDM, lipid detergent micelle; MSP, membrane scaffold protein. (b) GraDeR workflow: 
solubilization and purification of the target membrane protein in the lipid-like, high-affinity detergents LMNG and GDN or a mixture of them allows the 
mild and efficient removal of free detergent by density gradient centrifugation. After removal of the crowding agent and concentration, the sample is 
ready for cryo-grid preparation.

guarantee the physiological relevance of any determined struc-
ture per se. Therefore, the functional analysis of the isolated 
membrane complexes in vitro under conditions that match 
those that are used for structure determination by single-
particle cryo-EM is mandatory. Moreover, since the absence 
of ligands in the Coulomb potential map can be caused by 
either physical absence or intrinsic disorder, the actual pres-
ence of ligands in the prepared membrane complexes has to 
be confirmed by other means, e.g. light spectroscopy or mass 
spectrometry [28]. Finally, in the case of very large membrane 
complexes containing many polypeptide chains, the use of in 
situ cryo-electron tomography can be necessary to corrob-
orate the physiological relevance of the overall architecture 
and oligomeric state of the determined structure. As has been 
demonstrated nicely for the mitochondrial F-type adenosine 
triphosphate synthase (F-ATP synthase) [48].

Structure of the Vo domain from Thermus 
thermophilus
Rotary ATPases are evolutionary ancient energy convert-
ers essential to the bioenergetics of all cellular life on our 
planet [49–53] . They are marvelous molecular nano-machines 
that interconvert electrochemical energy in the form of a 

transmembrane proton motive force (Δpmf) into the chem-
ical energy of ATP via mechanical rotation [54–58] . Rotary 
ATPases can be classified into F-type and V-type ATPases. The 
former is mostly engaged in ATP synthesis, and the latter usu-
ally functions as a proton pump. Still, every rotary ATPase is 
capable of functioning in both directions of the Δpmf—ATP 
interconversion [59, 60] . V-ATPase from the thermophilic 
extremophile Thermus thermophilus was first isolated from a 
hot spring in Shizuoka, Japan, and is physiologically working 
as an ATP synthase [61]. The bipartite division of V-ATPase 
into the rotary motor V1 domain, which harbors the ATPase 
catalytic sites, and the membrane-spanning Vo domain, which 
harbors the H+-transporting rotor ring, is reflected by its 
assembly pathway ending in a final step of docking V1 onto 
Vo [62] . Proton tightness of Vo in the absence of V1 had 
been demonstrated earlier; however, the structural basis of 
this change from H+ transportation in the VoV1 holoenzyme 
versus the auto-inhibited Vo form remained unknown.

Although successful in the description of subcomplex struc-
tures [63–68], crystallographic approaches never allowed 
to visualize the structure of the T. thermophilus VoV1
holoenzyme, nor that of the isolated Vo complex. In fact, 
not a single high-resolution structure of any intact rotary 
ATPase by crystallographic methods was ever reported. In 
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Fig. 3. EM image data of the isolated T. thermophilus Vo. (a, b) Electron 
micrograph of negatively stained isolated Vo from T. thermophilus
reconstituted into nanodiscs exhibiting good monodispersity. Scale bars 
are 200 nm in (a) and 50 nm in (b). (c) A typical cryo-EM micrograph of the 
same sample shown in (a) and (b). Scale bar is 100 nm. (d) Fourier 
transform of the micrograph shown in (c). Thon rings suggest minimal 
astigmatism. The white circle indicates the maximum CTF resolution of 
3.0 Å as estimated by Gctf [108]. (e) Good 2D classes of the isolated Vo
clearly show secondary structure features of the transmembrane 
regions. For further information, see Kishikawa et al. [27].

order to solve the ‘detergent problem’ in single-particle cryo-
EM for both VoV1 and Vo complexes, they were first puri-
fied in DDM and then reconstituted into 1,2-dimyristoyl-
sn-glycero-3-phosphocholine lipid nanodiscs via BioBeads-
mediated detergent removal and a subsequent final removal 
of excess scaffold proteins using size exclusion chromatog-
raphy [27] . The thus prepared Vo complexes were applied 
to freshly 1 min glow discharged holey carbon molybdenum 
grids (Quantifoil) and plunge frozen (4∘C, 100% humidity, 
Whatman #1, 9 s at blot force 10) in liquid ethane using 
a Vitrobot Mark IV (Thermo Fisher Scientific). More than 
5000 movies were automatically collected with the prototype 
CRYO ARM 200 (Fig. 3b). The movies were acquired at a 
nominal magnification of 50 000×, resulting in a pixel size of 
1.1 Å, and a defocus range from −1.0 to −3.5 μm with a total 
of 60 frames for each movie and a total dose of 80 e− Å−2. See 
also Table 1 for a summary of imaging conditions. Images 
were processed in RELION 3.0 [69, 70] and refined to a 

Table 1. Imaging conditions for the three multisubunit membrane proteins 
reviewed here

Isolated Vo
PDB 6LY9
EMD-30015

Monomeric PSI
PDB ID 6LU1
EMD-0977
EMPIAR-
10352

LP ring
PDB 7CLR
EMD-30398

Molecular weight 290 kDa 330 kDa 10 MDa 
(basal body)

Microscope CRYO ARM 
200 (JEOL)

Acc. vol. (kV) 200
Electron detector K2 summit 

(Gatan)
Total dose (e− Å−2) 79.2 80.4 45
Nominal 

magnification
50 000 60 000 40 000

Calibrated 
magnification

45 454 56 178 34 482

Pixel size (Å pix−1) 1.1 0.89 1.45
Movie frames 60 60 50
Nominal defocus 

range (μm)
−1.0 to −3.5 −0.5 to −3.5 −0.2 to −2.0

Energy filter 
slit-width (eV)

10 10 10

Automation 
software

JADAS 
(JEOL)

Resolution (Å) 3.9 3.2 3.5

Imaging conditions chosen for the isolated Vo complex are identical to those 
that were successfully employed for the previous analysis of β-galactosidase 
at 2.45 Å. For the stable monomeric PSI complex of thermophilic source, 
we aimed at higher resolution using a relatively higher magnification and 
an increased lower defocus range. With particle image collection posing a 
bottleneck, for the analysis of the LP ring in the context of the very large 
basal body, we chose a relatively low magnification to increase the number 
of particles in the field of view. Accordingly, the electron dose was lowered. 
The extreme particle size allowed for further lowering of the defocus range 
without affecting particle picking.

final overall resolution [Gold Standard Fourier Shell Corre-
lation (FSC)] of 3.9 Å (Fig. 4a and b). The resulting Coulomb 
potential map was of sufficient quality for de novo atomic 
modeling of the whole Vo complex, and several densities cor-
responding to lipids could be identified [27]  (Fig. 4c and d). 
A comparison of the isolated Vo structure with that of Vo in 
the context of the VoV1 holoenzyme indicated almost iden-
tical features for the transmembrane region of the rotor ring 
adjacent to a subunit and the rotor ring itself. In contrast, 
the cytoplasmic domain of a subunit asol, the d subunit and 
the peripheral stalk subunit E and G (EG) bundle exhibited 
dramatic conformational changes which together provide a 
structural basis for the transformation from a proton permis-
sive VoV1 state of Vo to the separated proton tight Vo domain 
(Fig. 4e and f). Unbound from the crown of V1, the two EG 
α-helical bundles are found to swing out from the periph-
ery of the long axis of the VoV1 complex by 37∘ (Fig. 4e). 
The absence of the central stalk subunit from the rotor ring 
bond d subunit together with the released binding of the EG 
bundles to V1 further results in a 45∘ tilt of helix 6 in sub-
unit d and a 15∘ rotation and a ∼20 Å movement toward 
the rotor for asol. These large-scale conformational changes 
lead to the formation of electrostatic interactions between 
asol and the rotor ring bound d subunit, effectively blocking 
futile rotation of the proton transporting C12 rotor ring in 
the isolated Vo complex and as a result autoinhibition against 
proton leaks. Remarkably, structural comparison between 
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Fig. 4. Isolated Vo: map and model. (a) Local resolution of the final 3D 
Coulomb potential map of the isolated Vo from T. thermophilus calculated 
by ResMap [87] . (b) Euler angle distribution of all images used to 
calculate the final map; a strong bias toward side views, especially the 
views as in (a), can be discerned. The isolated Vo map in the center is 
shown from the ‘top’, i.e. cytosolic side. (c) Side view of the final map 
and final atomic model of the isolated Vo in the ribbon style. (d) Top view 
of (c) from the cytosolic side with the map at a lower threshold and the 
nanodisc and lipids depicted in yellow. (e) The EG peripheral stalks are 
swung out from their association with V1. The red (upper) and Blue 
(lower) arrows indicate the conformational changes of the EG peripheral 
stalk and asol, respectively. Subunits in the holo VoV1 complex are 
depicted as semi-transparent. (f) The interfaces between the soluble 
domain of a subunit (asol) and d subunit exhibit large conformational 
changes between the isolated Vo and the Vo in holo VoV1. In the isolated 
Vo complex, the electrostatic interactions indicated by the dashed red 
boxes inhibit the rotation of the rotor. In contrast, asol swings away from 
the d subunit in the holo VoV1 complex, releasing these interactions. asol
and d subunit are colored blue (lower) and orange (upper), respectively. 
The residues involved in the interactions are represented as spheres. For 
further information, see Kishikawa et al. [27].

prokaryotic and eukaryotic Vo suggests the conservation of 
this molecular mechanism of autoinhibition against proton 
leaks across species [71–75]. 

Structure of monomeric PSI from 
Thermosynechococcus elongatus
PSI is nature’s most efficient energy transformer—capable of 
pumping one electron across the thylakoid membrane for 

each photon absorbed by its pigment network of carotenoids 
and chlorophylls [76]. The 2.5 Å crystal structure of the 
T. elongatus PSI trimer reported in 2001 was the first atomic 
description of this multisubunit membrane protein central to 
the light reactions of oxygenic photosynthesis [77]. How-
ever, although isolation, spectroscopic characterization and 
crystallization of its monomeric form were already described 
in the 1990s [78] , the high-resolution structure of the 
T. elongatus PSI monomer remained unknown. A striking dif-
ference between cyanobacterial PSI and that of algae and 
higher plants is that cyanobacterial PSI is present in oligomeric 
forms, mostly trimers, whereas algal and plant PSI is strictly 
monomeric and is always connected to an outer antenna 
of light-harvesting complexes [79–81] . Possibly related to 
this difference in oligomeric organization is the observed 
dependence of ‘red’ chlorophyll absorption on the oligomeric 
state in cyanobacterial PSI [82] . In contrast, plants and algae 
outsource ‘red’ chlorophyll activity to the light-harvesting 
complexes of the outer antenna of PSI [83] . The biological 
role of ‘red’ chlorophylls is to allow the productive use of 
light with wavelengths beyond that of the reaction centers 
absorbing wavelength by using thermal energy as a means 
to bump up the excitation energy for transfer to an open 
reaction center. Additionally, in the case of a closed reaction 
center, ‘red’ chlorophylls allow the quenching of dangerous 
excess excitation energy by its transfer to a thermal energy 
sink. Although the loss of ‘red’ chlorophyll absorption in 
T. elongatus PSI upon monomerization is spectroscopically 
well documented, the absence of an atomic model for the 
monomer left their location among the total of 96 chloro-
phylls obscure [84]. A newly developed purification method 
for T. elongatus PSI in its monomeric form allowed us to estab-
lish a preparation of intact and fully functional PSI monomer 
in the milligram range, i.e. suitable for structural studies 
by single-particle cryo-EM. The examination of the purified 
complex by negative stain EM showed the tendency of T. elon-
gatus PSI monomers to form small row-like aggregates in the 
presence of the detergents DDM and LMNG [39] (Fig. 5a). 
Switching to the novel, high-affinity detergent GDN [40] 
greatly enhanced monodispersity (Fig. 5b)—removing this 
obstacle for structure determination by single-particle cryo-
EM. The ‘detergent problem’ was solved using the GraDeR 
approach for the removal of excess free detergent in an addi-
tional sucrose density gradient step. GraDeR prepared PSI 
monomers were concentrated to 7.5 mg ml−1, and sucrose was 
removed using centrifugal concentrators (AMICON, molecu-
lar weight cut-off: 100 kDa). The almost complete absence of 
free detergent micelles, easily discernible in the background 
of uranyl acetate stained specimens, and good monodispersity 
were evaluated by negative stain EM (Fig. 5b). For cryo-EM 
imaging, in a first and at the same time also final trial, a vol-
ume of 2.6 μl of PSI monomers was applied to a total of three 
Quantifoil holey carbon copper grids that had been freshly 
glow discharged on both sides for 60 s, blotted and flash 
frozen in liquid ethane using a Vitrobot Mark IV (Thermo 
Fisher Scientific) (4∘C, 95% humidity, Whatman #1, 3 s at 
blot force 0) and transferred to the prototype CRYO ARM 
200. To judge ice thickness, we took advantage of the energy 
filter by comparing average pixel values in filter ‘on’ and ‘off’ 
modus. Areas exhibiting ratios of 0.85 were judged as being 
suitable for a ∼3.0 Å reconstruction and marked for auto-
matic data acquisition. Regions of good ice thickness had 
particles densely packed to the edge of the hole with a clear 
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tendency for preferred side views (Fig. 5c)—aspects of cryo-
grid quality in this study that clearly deserve improvement in 
future studies. A total of 1530 movies were acquired using 
the prototype CRYO ARM 200 at 60 000× nominal magni-
fication corresponding to a pixel size of 0.89 Å. Each movie 
was taken at 12 s exposure containing 60 frames with an elec-
tron dose of 1.34 e− Å−2 per frame resulting in a total dose of 
80.4 e− Å−2 and a defocus range from −0.5 to −3.5 μm with 
one stage position for each acquired movie (Table I). With 
the exception of ab initio structure calculation, which was 
performed in cryoSPARC [85, 86] , all image processing was 
performed in RELION 3.0 [69, 70]. Even though the densely 
packed particles showed a strong propensity for side views 
along the membrane plane, the good radial distribution of 
Euler angles (Fig. 6b) in the final data set of 46 105 parti-
cle images allowed successful 3D auto-refinement. Extensive 
rounds of contrast transfer function (CTF) refinement and 
motion correction at the single-particle level using Bayesian 
polishing gave a Coulomb potential map with a final overall 
resolution (Gold Standard FSC) of 3.2 Å and a local reso-
lution of 2.75 Å (estimated using ResMap [87]) at the PSI 
core (Fig. 6a). Model building in Coot [88] and Phenix [89] 
was performed employing the in 2001 published X-ray crys-
tal structure of the T. elongatus trimer (PDB ID: 1JB0 [77] ) as 
a starting model, resulting in a final atomic model of the PSI 
monomer with very good refinement statistics. Almost half of 
all atoms in PSI are those of cofactors, therefore the use of 
accurate cofactor restraint files was instrumental for success-
ful refinement of the atomic model (Fig. 6f). For chlorophyll a
and β-carotene, these were calculated using the Grade Server 
(http://grade.globalphasing.org) [90],  whereas restraints for 
the cubic [Fe4S4] iron–sulfur clusters were from Moriarty and 
Adams [91] . The comparison of our atomic model of the 
T. elongatus PSI monomer (Fig. 6c and d) with that of the 
T. elongatus PSI trimer allowed us to find important struc-
tural differences that can explain the loss of long wavelength 
chlorophyll absorption by the disordering but not loss of a 
chlorophyll cluster in the membrane-facing region of the PsaX 
subunit (Fig. 6e). Quantifying the relative disorder or mobil-
ity of cofactors is useful for structural evaluation of individual 
or groups of cofactors in photosystems that can harbor hun-
dreds of pigments involved in the absorption and transfer of 
excitation energy. The recently published Q-scores [92]  avail-
able as a Chimera [93]  plug-in provide a convenient means 
to quantify the resolvability of each single atom in a model 
fitted into a given Coulomb potential map. Importantly, for 
photosystems, this creates the possibility to compare relative 
disorder of individual pigments and might be especially use-
ful in higher resolution maps of photosystems to clarify the 
relationship of pigment mobility and spectroscopic behavior. 
Our structure-based location of cyanobacterial ‘red’ chloro-
phylls at a membrane-facing cavity on the periphery of the 
PsaB subunit allowed us to propose three new hypotheses 
[28]. First, lipids act as a vibrational energy source or sink 
depending on the reaction center’s needs. Second, cyanobac-
terial PSI oligomerization serves as a molecular switch for the 
activity of ‘red’ chlorophylls. This notion implies that during 
the evolution of PSI, oligomerization became redundant for 
algal and plant PSI as a consequence of their ‘red’ chloro-
phylls being outsourced to the light-harvesting complexes. 
Third, the peripheral location of excitation energy trapping 
‘red’ chlorophylls at the far side of cyanobacterial PsaB is 

Fig. 5. PSI monomer: EM image data. (a) Electron micrograph of purified 
T. elongatus PSI monomers in LMNG after sucrose gradient-mediated 
removal of free detergent and uranyl acetate negative staining. The PSI 
monomer exhibited the tendency to form row-like smaller aggregates in 
both DDM and LMNG. A single PSI monomer is encircled in red, and a 
row-like aggregate indicated by a yellow arrow. Scale bar, 20 nm. (b) 
Negative stain EM of the same purification batch of the PSI monomer 
after performing detergent exchange to GDN and free detergent removal 
by GraDeR showed good monodispersity. Scale bar, 20 nm. (c) Cryo-EM 
micrograph of the same sample as in (b). One PSI monomer in side-view 
orientation along the membrane plane is boxed out and enlarged. Scale 
bar, 30 nm. (d) Fourier transform of the micrograph shown in (c). Thon 
rings are visible beyond 3 Å resolution and indicate minimal astigmatism. 
(e) Good 2D classes of the PSI monomer indicate that side views along 
the membrane plane of the complex dominate the image data set. In 
addition, the closeness of neighboring particles is apparent. For further 
information, see Çoruh et al. [28].

underlying the less frequent use of the cyanobacterial PsaB 
electron transfer chain branch compared to the nearly equal 
use of both branches in PSI of higher plants.

Structure of the LP ring from Salmonella 
enterica
Bacteria such as Salmonella swim in solution using a rotary 
motor called the flagellar motor. The bacterial flagellum is 
divided into three main elements: the filament acting as a pro-
peller, the hook acting as a universal joint and the basal body 
generating torque for filament rotation [94, 95]. The flagel-
lar basal body shares structural similarity to artificial rotary 
motors and consists of four active components: C ring, MS 

http://grade.globalphasing.org
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Fig. 6. PSI monomer: map and model. (a) Local resolution of the final 3D Coulomb potential map of the T. elongatus PSI monomer calculated by ResMap 
[87] with a resolution better than 3.0 Å in the core. (b) Euler angle distribution of all images used to calculate the final map; length of the columns 
indicates the relative number of particle images at the local Euler angle position. A strong bias toward side views with an even radial distribution can be 
discerned. The PSI monomer map in the center is shown from the ‘bottom’, i.e. lumenal side. (c) Side view of the final map and final atomic model of the 
T. elongatus PSI monomer in the ribbon style. (d) Top view of (c) from the stromal side with the map at a lower threshold and the detergent micelle 
depicted in yellow. (e) Side view from the membrane-facing side with protein as surface, cofactors in gray stick model and the map in transparent gray 
for the detergent micelle. Protein regions of the T. elongatus PSI trimer crystal structure which are disordered in the monomer are depicted in red ribbon 
and labeled (f) Map in mesh and model in gray stick of a representative chlorophyll exhibiting the typical non-planarity of the chlorine ring. For further 
information, see Çoruh et al. [28].

ring, LP ring and the rod. The MS-C ring acts as a rotor and 
is surrounded by the stator complexes that channel the flow 
of protons from the outside of the inner membrane to the 
cytoplasm and convert it into torque—driving the rotor with 
∼100% efficiency. The LP ring consists of a lipoprotein, FlgH 

and a periplasmic protein, FlgI, that together form a cylindri-
cal structure that surrounds the rod as a drive shaft. The LP 
ring is embedded in both the outer membrane and the pep-
tidoglycan layer and acts as a bushing [94, 95]. The length 
of the flagellar filament is up to 10 times longer than that of 
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Fig. 7. EM image data of the LP ring and hook-basal body isolated from S. enterica. (a) A representative cryo-EM micrograph of the isolated LP ring. (b) A 
representative cryo-EM micrograph of the hook-basal body. (c) Good 2D classes of the LP ring portion of the hook-basal body, including part of the hook 
and rod. Since the LP ring was focused in 2D classification, the structure of the LP ring is clearly seen, whereas that of the rod and hook is obscure. 
Scale bars, 40 nm. For further information, see Yamaguchi et al. [29].

the cell, and the flagellar motor can rotate it at speeds of up 
to 1700 rpm against the viscous resistance of water [96]. As a 
result, the LP ring requires a mechanism to support the rod for 
its stable rotation while keeping friction minimal. For under-
standing of how the LP ring acts as an efficient bushing, we 
used cryo-EM to determine its high-resolution structure.

Since the purification of the LP ring has been already estab-
lished [97, 98], we initially attempted to perform structural 
analysis on the purified LP ring alone. For this purpose, 
we purified the LP ring from Salmonella enterica serovar 
Typhimurium, however, initially only at very low yield. In 
addition, due to the tendency of LP ring particles to adsorb 
onto the carbon film, collecting a sufficient number of particle 
images proved to be challenging. To solve these problems, we 
first used genetic engineering to increase the number of flag-
ella motors per cell and also performed cell culturing at much 
larger volumes. This enabled us to freeze cryo-grids exhibiting 
a sufficient number of particles in the field of view; still, 3D 
reconstruction was not possible due to the severely preferred 
end-on orientation of the LP ring complexes (Fig. 7a). To over-
come these challenges, we decided to, instead of the isolated 
LP ring, use the complete hook-basal body for our analysis of 
the LP ring structure.

The hook-basal body was isolated using Triton X-100, an 
inexpensive detergent that is used for hook-basal body purifi-
cation since the early days of bacterial flagellar research [97]. 
Triton X-100 turned out to be sufficient both for purification 
and also high-resolution cryo-EM imaging of the hook-basal 
body, which is likely a consequence of its large supramolec-
ular structure with a molecular mass of >10 MDa, effectively 
diminishing the detrimental influence of free detergent.

For structure determination by single-particle cryo-EM, the 
purified hook-basal body was applied to freshly glow dis-
charged Quantifoil holey carbon grids and plunge frozen in 
liquid ethane using a Vitrobot Mark IV (Thermo Fisher Sci-
entific). Cryo-EM images were recorded using the prototype 
CRYO ARM 200. A total number of 12 759 movies, each 
containing 50 frames, were collected with a total electron 
dose exposure of 45 e− Å−2. All movies were recorded at a 
nominal magnification of 40 000× corresponding to a pixel 
size of 1.45 Å, using a defocus range from −0.2 to −2.0 μm
(Table I).

Particle picking proved to be challenging. First, the number 
of particles in the field of view was relatively small; second, 
particles tended to crowd near the carbon edge (Fig. 7b) and 
third, the non-spherical, asymmetric shape of the particle 

Fig. 8. LP ring: map and model. (a) Local resolution of the final 3D 
Coulomb potential map of the LP ring calculated by blockres in the Bsoft 
package [109]. (b) The Euler angle distribution of all images is used to 
calculate the final map. Since the hook-basal body is not easily oriented 
end-on in ice, it shows a strong bias toward side views. (c) Side view of 
the final map with the final atomic model depicted in the ribbon style. (d) 
Top view of map and model from the outside of the cell. (e) The atomic 
models of FlgH and FlgI colored in pink (upper model) and cyan (lower 
model), respectively. FlgH contains two long β-strands and three 
β-strands that are orthogonal to each other. (f) The atomic model of the 
LP ring. One FlgH subunit (rainbow colored) interacts with six 
neighboring FlgH subunits (pink) and three neighboring FlgI subunits 
(cyan), thereby maintaining the stable ring structure. For further 
information, see Yamaguchi et al. [29].

made it difficult to detect its center and prevented the use 
of standard automatic picking procedures. We improved the 
efficiency and accuracy of particle identification by developing 
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a particle picker program, YOLOPick, based on a convolu-
tional neural network program, YOLO [99]. After picking 
and extracting a sufficient number of particle images, 2D clas-
sification was carried out, and only good 2D class averages 
were selected for further processing (see Fig. 7c). The image 
signal corresponding to the hook-basal body other than the 
LP ring was subtracted from all images for high-resolution 
refinement of the LP ring structure. All image analysis was 
performed using RELION 3.0-beta [69, 70], and the final LP 
ring structure was successfully solved at an overall resolution 
(Gold Standard FSC) of 3.5 Å from a total of 10 802 parti-
cles. Importantly, the resulting Coulomb potential map was 
of sufficient quality for de novo atomic modeling.

The LP ring forms a cylinder with an inner diameter of 
135 Å, an outer diameter of 260 Å and a height of 145 Å and 
exhibits a 26-fold rotational symmetry (Fig. 8). Atomic mod-
els of FlgH and FlgI were built using Coot [88] and Phenix 
[89] (Fig. 8c–f). FlgH forms the L ring wall with a three-layer 
structure. The inner layer contains two very long antiparallel 
β-strands and a short β-strand with an α helix. The middle 
layer contains four antiparallel β-strands with two short α
helices. The third, outer layer consists of an extended chain 
covering the inner two layers. The long antiparallel β-strands 
of the inner layer and the three stranded β-sheet of the mid-
dle layer domain are crossing nearly perpendicular to each 
other. The long β-strands of the inner layer domain and the 
three stranded β-sheet of the middle layer domain interact 
with up to six neighboring FlgH molecules in the LP ring, indi-
cating that such complex and intimate interactions between 
FlgH subunits are responsible for the mechanical and chemical 
stability of the LP ring [29] (Fig. 8e and f).

Conclusion and prospects
In summary, we have demonstrated that even the prototype 
of CRYO ARM 200 equipped with a conventional thermal 
FEG, an in-column Ω energy filter, a K2 Summit direct elec-
tron detector and the JADAS software for automatic data 
collection is able to serve as more than a mere screening 
machine. And that it is capable, when combined with suitable 
sample preparation and image analysis, to produce high-
resolution single-particle cryo-EM structures of multisubunit 
membrane proteins that can advance our understanding of 
membrane biology. In all three projects described here, we 
used JADAS for automatic data collection with one movie 
taken for each stage position. This limits the number of movies 
taken per day to around 1000. In contrast, the commercial 
version of the CRYO ARM 200 using SerialEM for beam-
shift-based data acquisition allows routinely acquisition of 
up to 25 movies per stage position, effectively resulting in 
a >10-fold increase in data acquisition speed [100]. This 
increase in speed, which can be even accelerated further by 
taking multi-shots per hole [101, 102], means that sufficient 
amounts of data can be taken within a single day for most 
single-particle analysis projects. With Thon rings in images 
of thin films of amorphous platinum–iridium extending up 
to 1.8 Å, the spatial resolution limit of the thermal FEG-
equipped prototype CRYO ARM 200 is comparable to that 
of the XFEG-equipped Titan Krios (Thermo Fisher Scientific) 
[103]. The implementation of cold FEG technology in the 
commercial CRYO ARM 200 reduces the energy spread of 

the electron beam from 0.8 to 0.4 eV—significantly enhanc-
ing the signal in the better than 2.0 Å resolution range [26]. 
In addition, several improvements were made in the newly 
released ‘CRYO ARM 200 II’ (JEM-Z200CA). These include 
fringe-less imaging by Köhler illumination and a narrower 
gap pole piece, which allows for a spherical aberration coef-
ficient (Cs) of 1.5 mm and a chromatic aberration coefficient 
(Cc) of 1.8 mm that together should boost the achievable res-
olution. However, further improvements in both software 
and hardware of the commercial CRYO ARM 200 are desir-
able. SerialEM is a powerful software, but it is also relatively 
complex to use. For single-particle analysis projects, user 
friendliness in data acquisition could be improved through 
a specialized graphical user interface (GUI) for SerialEM or 
newer versions of JADAS that include beam-shift-based data 
acquisition strategies. Furthermore, higher stability of the in-
column Ω energy filter enabling the routine use of slit-widths 
narrower than 10 eV would be beneficial. Also, setting the 
slider adopter cartridge, which is used for the transfer of 
auto-grids (Thermo Fisher Scientific), as the standard type 
of cartridge also for bare cryo-grids could simplify the ‘clip-
ping’ of cartridges considerably. Finally, future versions of 
the cartridge-based cryo-grid transfer system of the CRYO 
ARM 200 should make it practical to recover cryo-grids after 
their examination. Together with the improvements suggested 
above, as well as others not yet conceived or voiced, the CRYO 
ARM 200 has the potential to develop into a standard ana-
lytical instrument for the biomedical sciences. This is likely 
contingent, however, on the reduction of the price in order to 
meet the budgetary requirements of a broad range of future 
users. This might spark a democratization of cryo-EM image 
data collection that matches the democratization initiated for 
image processing by the development of graphics process-
ing units (GPU)-accelerated computing [70, 104]. Together 
with recent breakthroughs in membrane protein structure pre-
diction [105–107], this hopefully enables the emergence of 
structural membrane biology at a level that rivals structural 
biology of soluble proteins.
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