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The motor modules during human walking are identified using non-negative matrix
factorization (NNMF) from surface electromyography (EMG) signals. The extraction of
motor modules in healthy participants is affected by the change in pre-processing
of EMG signals, such as low-pass filters (LPFs); however, the effect of different pre-
processing methods, such as the number of necessary gait cycles (GCs) in post-stroke
patients with varying steps, remains unknown. We aimed to specify that the number
of GCs influenced the motor modules extracted in the consideration of LPFs in post-
stroke patients. In total, 10 chronic post-stroke patients walked at a self-selected speed
on an overground walkway, while EMG signals were recorded from the eight muscles of
paretic lower limb. To verify the number of GCs, five GC conditions were set, namely, 25
(reference condition), 20, 15, 10, and 5 gate cycles with three LPFs (4, 10, and 15 Hz).
First, the number of modules, variability accounted for (VAF), and muscle weightings
extracted by the NNMF algorithm were compared between the conditions. Next, a
modified NNMF algorithm, in which the activation timing profiles among different GCs
were unified, was performed to compare the muscle weightings more robustly between
GCs. The number of motor modules was not significantly different, regardless of the
GCs. The difference in VAF and muscle weightings in the different GCs decreased
with the LPF of 4 Hz. Muscle weightings in 15 GCs or less were significantly different
from those in 25 GCs using the modified NNMF. Therefore, we concluded that the
variability extracted motor modules by different GCs was suppressed with lower LPFs;
however, 20 GCs were needed for more representative extraction of motor modules
during walking in post-stroke patients.
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INTRODUCTION

The human body has numerous joints and muscles. How the
central nervous system controls the musculoskeletal system,
which has the highest redundancy during human movements,
has long been known as a problem (Bernstein, 1967). Researchers
try to solve this problem based on the muscle synergy theory
that the brain does not control each muscle independently but
a few motor modules in the spinal cord to execute complex
movements. The motor modules were identified by mathematical
processing (e.g., non-negative matrix factorization [NNMF],
factor analysis, principal component analysis, and independent
component analysis) from surface electromyography (EMG) data
during movement tasks. In particular, the identification of motor
modules using the NNMF algorithm is implemented in neural
networks because the non-negativity constraints are similar to
motor control in that the synapses are either excitatory or
inhibitory (Lee and Seung, 1999). A previous study has provided
evidence that the data using the NNMF algorithm were not
contingent artifacts but reflected structures of the motor modules
(Tresch et al., 2006). Recently, these methods have been used
in functional assessment and therapeutic effects in post-stroke
patients (Bowden et al., 2010; Clark et al., 2010; Cheung et al.,
2012; Routson et al., 2013).

In general, to remove the variability of muscle activity in each
gait cycle (GC) or the noise due to the artifact, identifying motor
modules from EMG signals involves the following pre-processing
steps: the choice of GCs, or high-pass filter, rectified, low-pass
filter (LPF), and normalization. Oliveira et al. (2014) have shown
that sufficient GCs provided the extracted motor modules with
higher quality in healthy participants (Oliveira et al., 2014). Other
studies have previously suggested that the required GCs to extract
the ideal envelope waveform in healthy participants were not less
than 6–10 (Shiavi et al., 1998) or 20 (Gabel and Brand, 1994).
Thus, fewer GCs may affect the extraction of motor modules,
similar to filter and normalization. It is still unclear how many
GCs are sufficient to effectively remove the variability of EMG
signals and to extract the motor modules consistently in post-
stroke patients. In fact, there are no standard criteria for the
number of GCs necessary for the extraction of motor modules in
post-stroke patients. Previous studies have inconsistently showed
that the measured GCs were 10 (Barroso et al., 2014, 2017)
or were not defined, such as walking distance and duration
(Neptune et al., 2009; Bowden et al., 2010; Clark et al., 2010;
Hashiguchi et al., 2016). Hashiguchi et al. (2016) reported that
a limited number of GCs might affect the extraction of motor
modules as a limitation in such studies. The determination
of representative extracted motor modules, even with a small
number of GCs and minimum-required GCs, is an important
issue in clinical settings because post-stroke patients with poor
walking performance are not able to walk long distances and have
increased step-by-step variability (Balasubramanian et al., 2009).

Meanwhile, previous studies have shown that differences in
LPFs affected the number of motor modules, the explained
variance (e.g., variability accounted for [VAF] or cumulative
explained variance), and muscle weightings. Moreover, high LPFs
increase the variability of module extraction because retaining the

high frequency content in the EMG signals would decrease the
total VAF. It is clear that the LPFs affect the extraction of motor
modules in healthy participants and in patients with cerebral
palsy; however, this remains unclear in post-stroke patients.

In this study, we investigated how the number of GCs
influenced the extracted motor modules in post-stroke patients.
Since the EMG signals might be highly variable for the post-
stroke patients with high variability in performance, it was
necessary to confirm the influence of variability on the extraction
of motor modules in the consideration of pre-processing, such as
the GCs selection and the LPFs. Thus, our study might be useful
in comparing previous studies and help apply the methodology
to extract muscle modules more consistently.

MATERIALS AND METHODS

Participants
This study included ten participants with chronic post-stroke
hemiparesis. The inclusion criteria were as follows: (i) at least
6 months since single unilateral stroke onset and (ii) ability
to walk independently on a level surface using a cane. The
exclusion criteria were lower extremity joint pain, contractures,
and neurological or musculoskeletal disorders other than stroke
that affect walking.

All participants provided informed consent according to the
Declaration of Helsinki, and the study protocol was approved
by the ethics committee of the institution (Kansai Medical
University #2019148).

Experiment Protocol
The participants repeatedly walked at a self-selected speed
with a cane on a 7-m-long over-ground walkway: 1 m for
acceleration, followed by 5 m for gait measurement, and 1 m of
deceleration. Notably, half of the participants used an ankle foot
orthosis (AFO) daily, but, in this study, they walked without an
AFO. Gait measurements were performed on the level surface
until at least 25 GCs could be completed, excluding obvious
outliers (e.g., acceleration, deceleration, turning, and significant
noise). Muscle activity during walking was recorded using
EMG signals, and foot switch was recorded using the Noraxon
Clinical DTS system (Scottsdale, AZ, United States; sampling
rate: 1,500 Hz). The EMG activity was recorded from the gluteus
medius (Gmed), gluteus maximus (Gmax), rectus femoris (RF),
vastus medialis (VM), semitendinosus (ST), tibialis anterior (TA),
gastrocnemius lateralis (GCL), and soleus (SOL) of the affected
side using superficial bipolar Ag–AgCl electrodes (Blue sensor;
Medicotest, Inc., Olstykke, Denmark) with an inter-electrode
spacing of 2 cm. The skin was cleaned using an alcohol swab to
minimize impedance, and the electrodes were placed according
to the recommendations for EMG signals for the non-invasive
assessment of muscles (Hermens et al., 2000). A foot switch
was placed under the affected foot to identify initial contacts
during walking. The data were analyzed using MATLAB R2018a
(The MathWorks, Inc., Natick, MA, United States). To verify the
number of GCs or the cut-off of the filtering frequency in different
pre-processing methods, which influenced the representative
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extraction and reconstruction of motor modules for walking, five
conditions for GCs were set, which were as follows: 25 GCs vs.
20 GCs, 15 GCs, 10 GCs, and 5 GCs, in three LPF conditions
with reference to previous studies: 4, 10, and 15 Hz (Clark et al.,
2010; Monaco et al., 2010; Routson et al., 2013; Hashiguchi et al.,
2016). The number of GCs from the beginning for each cycle was
determined in all participants.

Non-negative Matrix Factorization
The EMG signals were high-pass filtered (40 Hz) with a zero-
lag second-order Butterworth filter (Bowden et al., 2010; Clark
et al., 2010; Routson et al., 2013), demeaned, rectified, low-
pass filtered (4, 10, and 15 Hz) with a zero-lag second-order
Butterworth filter, and then the number of GCs was determined
(Figure 1). The initiation of each GC was determined as the initial
contact by foot-switch data. One GC duration was resampled at
101 data points. To compare between participants and among
different GCs, the EMG signals amplitude divided by the peak
value of each muscle during walking was normalized in each
condition (Bowden et al., 2010; Clark et al., 2010; Routson et al.,
2013). For each participant, the normalized EMG signals were
represented as an m × t matrix (original EMG: oEMG), where
m indicates the number of muscles (eight in this study), and t
is the time course (the number of GCs × 101 data points: the
concatenation of a given number of GCs) (Bowden et al., 2010;
Clark et al., 2010; Routson et al., 2013). The oEMG was separated
into muscle weightings and activation timing profiles using
the NNMF algorithm (Lee and Seung, 1999) of the MATLAB
function “nnmf”; options used were default values. These are
represented by the following equations:

oEMG = W × H + e

W × H = rEMG,

Where, W is m × n matrix (n is the number of modules),
H is an n × t matrix, and rEMG is m × t matrix
reconstructing the EMG. The NNMF algorithm first ran two
random matrices, W and H. The EMG signals were optimized by
an iteratively performed optimization process until it converged
to a minimized error. The output normalization method of motor
modules was by maximum value of each W (Safavynia and Ting,
2012; Chvatal and Ting, 2013).

In the conventional NNMF algorithm described above, since
it was decomposed into muscle weightings and activation
timing profiles, muscle weightings were affected when activation
timing profiles changed. Muceli et al. (2010) unified the
muscle weightings between conditions to confirm differences
in activation timing profiles. Comparable with the previous
study, in our study, we developed a modified NNMF algorithm,
which unifies activation timing profiles between GC conditions
as one in each module to confirm slight differences in
muscle weightings. We performed modified NNMF in the
LPF of 4 Hz, representing the motor modules in any GC.
Thus, to compare the muscle weightings among different GC
conditions in more detail, we performed additional analysis.
The modified NNMF algorithm was performed using the same
MATLAB function “nnmf” as the conventional NNMF algorithm
(Supplementary File 1). These are represented by the following
equation:

datasets (oEMG 5GCs,10GCs,15GCs,20GCs,25GCs) =

W5GCs,10GCs,15GCs,20GCs,25GCs × H.

This dataset consisted of averaging different numbers of GCs.
For each participant, the datasets were represented as an m’ × t’
matrix (40 × 101 matrix), where m’ indicates the number of
muscles (8 muscles × 5 GC conditions), and t’ is the time course
(101 data points: the average of a given number of GCs).

FIGURE 1 | A flowchart of pre-processing for NNMF. Algorithm (A) and condition setting (B). (A) Pre-processing of one muscle. NNMF, non-negative matrix
factorization.
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Determining the Number of Modules
An adequate number of modules were not a priori assumption.
Therefore, we assumed that the adequate number of modules
ranged from 1–8. To determine the adequate number to rEMG,
we calculated the VAF, which is the ratio of the sum of the
squared error (oEMG – rEMG)2 to the sum of the squared oEMG;
oEMG2. These are represented by the following equation:

VAF = [1− (oEMG− rEMG)2/oEMG2
] × 100.

Variability accounted for is the similarity between the oEMG
and rEMG. We calculated the VAF in the total muscles (VAFtotal)
and each muscle (VAFmuscle). Since the criteria of VAF affected
the determination of the number of modules, we made the same
criteria in all conditions. We selected two criteria for the optimal
number of modules in reference to a previous study (Clark et al.,
2010). First, the number of modules did not increase if 90%
VAFtotal was achieved. Second, the number of modules did not
increase if 90% VAFmuscle was achieved, and if VAFmuscle with the
lowest value did not increase by 5% or more than the previous
VAFmuscle.

Comparison of Muscle Weightings
If the number of modules were different for each participant,
it would have been difficult for us to assess the module
quality between participants. Thus, to compare the changes
in module quality between participants and among different
GCs, the number of modules was set to four (Clark et al.,
2010; Routson et al., 2013). By using this method, the
muscle weightings in each module were comparable. Muscle
weighting discrimination was performed, as previously described
(Neptune et al., 2009; Clark et al., 2010; Gizzi et al., 2011;
Routson et al., 2013).

Statistical Analysis
All statistical analyses were performed using the R software
version 3.6.2. Different GCs in the number of modules, VAF
from 1 to 7 (VAF8 was excluded because it is 100%), and muscle
weightings were assessed. The differences between conditions
(the number of GCs) were compared using the Friedman test
(significance level α = 0.05). The post hoc analyses of GCs, in
which 25 GCs were set as a reference condition, were carried
out using the Wilcoxon signed-rank sum test with Bonferroni’s
correction for multiple comparisons (four comparisons resulting
in the significance level α = 0.05/4 = 0.0125). The effect size was
calculated as r = Z-stat/

√
N.

RESULTS

The study comprised of 10 post-stroke patients (age:
69.6± 7.2 years; height: 161.8± 11.6 cm; weight: 59.8± 11.2 kg;
sex: 7 men and 3 women; paretic side; 6 right and 4 left; the score
of motor paralysis (Fugl-Meyer Assessment of Lower Extremity):
26.3± 3.9; walking speed: 0.46± 0.1 m/s) (Table 1). TA
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Number of Modules
The number of modules was 2–5 for all conditions. The different
GCs did not influence the number of modules when the LPFs
were 4 and 10 Hz (p = 0.35 and p = 0.08, respectively;
Figures 2A,B). In contrast, the number of modules on conditions
where the LPF was 15 Hz was significantly influenced by different
GCs (χ2 = 14.29, p = 0.006, Figure 2C). However, there were
no significant differences in the post hoc analysis, although the
number of modules at 5 GCs and 10 GCs tended to be more than
25 GCs (p = 0.047 and p = 0.042, respectively).

Variability Accounted for
The different GCs partially influenced VAF under all conditions
of the LPFs (Figures 3A–C).

Muscle Weightings and Activation
Timing Profiles
Module 1 was mainly formed by leg extensor muscles, which are
Gmed, Gmax, RF, and VM, during early stance, and ST, GCL, and
SOL were slightly activated. Module 2 was formed by the ankle
plantar flexor, which is the GCL and SOL, during the late stance.
Module 3 was formed by TA and RF slightly during early stance
and early swing. Module 4 was mainly formed by ST during the
late swing and early stance. TA in module 3 and ST in module 4
were the maximum values on average because for all participants
in our study, TA was the most weighting in module 3 and ST was
the most weighting in module 4.

The different GCs did not influence the muscle weightings
when the LPF was 4 Hz (Figure 4). In contrast, the different
GCs partially influenced muscle weightings when the LPFs were
10 and 15 Hz (Figures 5, 6). In module 4, when the LPF was
10 Hz, Gmed and Gmax at 20 GCs were significantly decreased
than in the reference condition (25 GCs) (r = 0.98, p = 0.002,
and r = 0.79, p = 0.013, respectively, Figure 4). However, no
significant differences were observed among GCs in the post hoc
analysis at 15 Hz (Figure 6). The higher the frequency of LPFs,
the more was the noise in the activation timing profiles (as shown
in the left columns in Figures 4–6).

In the modified NNMF algorithm, assuming the same
activation timing profiles among different GCs, the different GCs
influenced the muscle weightings (Figure 7). In module 1, Gmed
at 5 GCs, 10 GCs, and 15 GCs was significantly decreased than in
the reference condition (25 GCs) (r = 0.91, p = 0.005, r = 0.82,
p = 0.004, and r = 0.98, p = 0.002, respectively). In module
2, TA at 5 GCs and 10 GCs was significantly increased than
in the reference condition (r = 0.82, p = 0.009 and r = 0.82,
p = 0.009, respectively).

DISCUSSION

Number of Gait Cycles Necessary to
Extract Representative Motor Modules
The variability among GCs was increased in post-stroke patients
with poor walking performance (Balasubramanian et al., 2009).

FIGURE 2 | The effects of different conditions on the number of extracted modules by NNMF. The effects of different GCs when the LPFs were 4 Hz (A), 10 Hz (B),
and 15 Hz (C). NNMF, non-negative matrix factorization; LPF, low-pass filter; GC, gait cycle.

FIGURE 3 | Effects of different conditions on total variability accounted for. Effects of different GCs when the LPFs were 4 Hz (A), 10 Hz (B), and 15 Hz (C). The bars
of total variability accounted for indicating the conditional median, and the error bars indicate the median absolute deviations. Significant differences are marked with
∗(p < 0.05 in the Friedman test only) and †(p < 0.05 in the Friedman test, and p < 0.0125 when comparing the reference condition, 25 GCs, or p < 0.016 when
comparing between LPFs in the Bonferroni-corrected Wilcoxon signed-rank sum test). LPF, low-pass filter; GC, gait cycle.
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FIGURE 4 | The activation timing profiles and muscle weightings of assuming four modules. The effect of different GCs when the LPF was 4 Hz. Activation timing
profiles are shown as the conditional mean. The bars of muscle weightings indicate the conditional median, and the error bars indicate the median absolute
deviations. LPF, low-pass filter.

Many GCs might be needed to extract the representative modules
during walking in post-stroke patients when the variability of
the EMG signals in each GC was considered. Previous studies
reported that the measured GCs in post-stroke patients were
fixed to ten repetitions (Barroso et al., 2014, 2017), or were
determined by other criteria, such as walking distance and
duration (Neptune et al., 2009; Bowden et al., 2010; Clark et al.,
2010; Hashiguchi et al., 2016). These studies did not mention
the required number of GCs. Here, we randomly divided 25
GCs into 5, 10, 15, 20, and 25 GCs, then, a minimum number
of clinically measurable GCs were selected as the representative
for the extraction of motor modules using NNMF during over-
ground walking because of the variability from low endurance
and poor performance for post-stroke patients, and the spatial
limitations of clinical setting.

The number of modules did not significantly change by the
different GCs in each LPF, although the number of modules at
5 and 10 GCs tended to be smaller than those at 25 GCs on the
LPF of 15 Hz (Figure 2C). Similarly, the VAF at 5 and 10 GCs
was significantly smaller than that at 25 GCs on the LPF of 15 Hz
(Figure 3C). This indicates that a few GCs might cause variability

in the EMG signals for each step, in addition to noisier EMG
signals with high LPFs. The noise removal on the LPF of 4 or
10 Hz would have less effect on the change of the number of
modules and the VAF owing to the variability from a few GCs.
Our findings suggested that the number of modules and the VAF
were representatively extracted at lower LPF frequencies, despite
a small number of GCs, such as 5 GCs.

Moreover, the muscle weightings of the motor modules might
be affected by the measured GCs if the muscle activity was
variable for each GC. Here, the number of modules was set
to four to simplify the comparison of the muscle weightings
across participants and conditions, which has been widely used
in other studies (Clark et al., 2010; Routson et al., 2013; Barroso
et al., 2014; Kieliba et al., 2018). The different GCs compared
with 25 GCs did not affect the muscle weightings on 4 Hz
significantly, whereas these partially significantly affected the
muscle weightings on higher LPFs (10 and 15 Hz). These
results suggest that muscle weightings were also representatively
extracted using a small number of GCs in lower LPFs as
well as the number of modules and the VAF. In contrast, it
should be noted that the very low LPFs, such as 0.5 Hz, were
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FIGURE 5 | The activation timing profiles and muscle weightings of assuming four modules. The effect of the different GCs when the LPF was 10 Hz. Activation
timing profiles are shown as the conditional mean. The bars of muscle weightings indicate the conditional median, and the error bars indicate the median absolute
deviations. Significant differences are marked with ∗ (p < 0.05 in the Friedman test only) and † (p < 0.05 in the Friedman test, and p < 0.0125 when comparing the
reference condition, 25 GCs in the Bonferroni-corrected Wilcoxon signed-rank sum test). LPF, low-pass filter; GC, gait cycle.

likely to reproduce poorly because of the oversmoothed signal
(Kieliba et al., 2018).

Modified Muscle Weightings Unified
Activation Timing Profiles
While a modified NNMF algorithm, which could “unify muscle
weightings” from GC conditions as one, was used to detect a
slight change of activation timing profiles between conditions
(Clark et al., 2010; Muceli et al., 2010; Gizzi et al., 2011), our
modified NNMF algorithm, which “unified activation timing
profiles” from GC conditions as one, was to detect a slight
change of muscle weighting between GC conditions. In our
study, the statistical analyses, which directly compared the
muscle weightings between GC conditions, were the same as
in a previous study (Kieliba et al., 2018). In conventional
NNMF algorithm, there might be no difference in the LPF of
4 Hz in conventional NNMF algorithm because the influence
of activation timing profiles between GC conditions was not
considered. The slight differences in activation timing profiles
influenced muscle weightings in the conventional NNMF

algorithm because of “matrix factorization.” The modified
NNMF algorithm would enable the confirmation of slight
changes in muscle weightings between the intervals of GCs. Our
results showed that the muscle weightings in Gmed of module 1
were low in the conditions of 15 GCs or less, and those in the
TA of module 2 were high under the conditions of 10 GCs or
less. Thus, we found that 20 GCs were needed to extract more
representative motor modules. The new method showed that
the motor modules using at least 20 GCs were more robustly
extracted in the consideration of variability in each step for post-
stroke patients on the level ground, even when the noise of EMG
signals was minimized. A previous study suggested that at least 20
GCs were needed to account for step-to-step variability even in
healthy participants (Oliveira et al., 2014). Although the previous
study was used on the LPF of 10 Hz, post-stroke patients in the
present study had similar results by adjusting LPF.

Study Limitations and Future Directions
Some limitations in our study should be noted. First, the
sample size was small; therefore, the potential effects of patient
characteristics could be considered. Our study would provide
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FIGURE 6 | The activation timing profiles and muscle weightings of assuming four modules. The effects of different GCs when the LPF was 15 Hz. Activation timing
profiles are shown as the conditional mean. The bars of muscle weightings indicate the conditional median, and the error bars indicate the median absolute
deviations. Significant differences are marked with ∗ (p < 0.05 at the Friedman test only). LPF, low-pass filter.

gait characteristics of the chronic phase because patients were
on an average 64.3 ± 87.8 months from the onset of stroke. Our
findings, with respect to the measured GCs, were useful, despite
differences in severity and duration from onset. Moreover,
walking speed did not affect these results because patients walked
at an average speed of 0.46 ± 0.1 m/s. Therefore, future studies
should compare healthy participants and/or patients with other
diseases to obtain robust results.

Second, methodologically speaking, we selected the first N
cycles for each condition in this study. It should also be
considered to select the methods for possible combinations of
GCs up to N randomly. However, the methods in our study
were very simple and close to clinical conditions. Moreover, we
thought that the method selecting the first N cycles was low in
bias because the variability in each GC was unpredictable.

Third, the patients walked with assistive devices, such as a cane
and/or an AFO, in daily living. The use of a cane compensates
for the balance and weight-bearing during the paretic stance,

which might reduce the variability between GCs. Meanwhile,
removing the AFO might cause instability of the ankle, such as
ankle inversion. Although the effects on lower-limb modules,
such as motor control with a cane, were confirmed, the effects on
conditions without the use of cane require further investigation.

Finally, the influence of pre-processing, except for LPFs,
has not been studied in this study. Previous studies suggested
that different band-pass filters, EMG normalization methods,
and output normalization methods slightly influenced muscle
weightings (Banks et al., 2017; Shuman et al., 2017; Kieliba
et al., 2018; Ao et al., 2020). In particular, Shuman et al. (2017)
suggested that muscle weightings were more similar in different
LPF conditions for EMG data normalized to unit variance than
peak amplitude in children. In this study, we included the method
to choose high-pass filter (40 Hz) and EMG normalization
by peak values during walking as many previous studies in
post-stroke patients. Although we considered that these pre-
processing methods had no significant effects on the conclusion
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FIGURE 7 | Same activation timing profiles among different GCs and muscle weightings. The effects of the different GCs when the LPF was 4 Hz. Activation timing
profiles are shown as the conditional mean. The bars of muscle weightings indicate the conditional median, and the error bars indicate the median absolute
deviations. Significant differences are marked with ∗ (p < 0.05 in the Friedman test only) and † (p < 0.05 in the Friedman test, and p < 0.0125 when comparing the
reference condition, 25 GCs in the Bonferroni-corrected Wilcoxon signed-rank sum test). LPF, low-pass filter; GC, gait cycle.

of the present study because we compared GC conditions in
different LPF conditions, future studies should detect the needed
number of GCs in consideration of all pre-processing for post-
stroke patients to obtain robust results.

CONCLUSION

We verified that the number of GCs influenced the motor
modules extracted in the consideration of LPFs in chronic
post-stroke patients. The different GCs did not affect the
number of modules but affected the total VAF under high
LPF conditions in the conventional NNMF algorithm. In the
comparison of muscle weighting, the conventional NNMF
algorithm showed that the different GCs with low LPF, such
as 4 Hz, were not affected when the module number was
fixed at four. However, the modified NNMF algorithm, in
which the activation timing profiles of different GCs were
unified as one in each module to detect slight changes

in muscle weightings, required EMG signals of 20 GCs
or more. Therefore, we suggested that the representative
motor modules would be extracted with low LPFs despite
a small number of GCs; however, 20 GCs are needed for
chronic post-stroke patients in general when a more robust
methodology is applied.
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