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Human cytomegalovirus (HCMV) represents a prototypic pathogenicmember of the𝛽-subgroup of the herpesvirus family. A range
of HCMV features like its lytic replication in multiple tissues, the lifelong persistence through periods of latency and intermitting
reactivation, the extraordinary large proteome, and extensive manipulation of adaptive and innate immunity make HCMV a high
profile candidate for involvement in autoimmune disorders. We surveyed the available literature for reports on HCMV association
with onset or exacerbation of autoimmune disease. A causative linkage between HCMV and systemic lupus erythematosus (SLE),
systemic sclerosis (SSc), diabetes mellitus type 1, and rheumatoid arthritis (RA) is suggested by the literature. However, a clear
association of HCMV seroprevalence and disease could not be established, leaving the question open whether HCMV could play
a coresponsible role for onset of disease. For convincing conclusions population-based prospective studies must be performed in
the future. Specific immunopathogenic mechanisms by which HCMV could contribute to the course of autoimmune disease have
been suggested, for example, molecular mimicry by UL94 in SSc and UL83/pp65 in SLE patients, as well as aggravation of joint
inflammation by induction and expansion of CD4+/CD28− T-cells in RA patients. Further studies are needed to validate these
findings and to lay the grounds for targeted therapeutic intervention.

1. Introduction

Autoimmune disease (AID) is a complex dysregulation of
immunity, resulting in loss of self-tolerance and subsequent
assault on endogenous tissue or cells. Onset of autoimmunity
depends both on genetic and environmental factors (e.g.,
viruses) and is typically driven by antibodies or T-cells react-
ing against self-epitopes. Self-reactive immune responses can
occur only transiently and may not necessarily cause overt
disease, but in many cases self-destruction of initially healthy
tissue gets permanently out of control, resulting in self-
perpetuating clinical disease progressing in the absence of the
triggering event.

Infection with Epstein-Barr virus (EBV), a human patho-
genic 𝛾-herpes virus, has been linked with the risk to develop
multiple sclerosis (MS), an autoimmune disorder of the
central nervous system characterized by the formation of
lesions, inflammation, and the destruction of myelin sheaths
of neurons [1]. A similar matter of recent debate is if
and how infection with human cytomegalovirus (HCMV),

another human herpes virus, could be linked with certain
autoimmune diseases and how both conditions could inter-
fere with each other. Several features including its extensive
manipulation of adaptive and innate immune functions [2–
5], the very large coding capacity [6], its lytic replication in
multiple tissues [7] both locally and systemically, its lifelong
persistence during subsequent phases of latency and reacti-
vation, and its ubiquitous prevalence in human populations
readily explain why HCMV was frequently linked with AID
but also with further acquired disorders like arteriosclerosis
and vascular disease [8], immune aging [9], and certain types
of tumors [10].

Hypothetically, the mutual influence of HCMV infec-
tion and autoimmunity could have different consequences.
HCMV infection could cause, promote, or prevent AID,
while conversely AID could inhibit or support HCMV
reactivation from latency and/or replication. Given the fact
that productive infection of HCMV usually results in cell
death and thus impedes tissue integrity, HCMV replication

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 472978, 15 pages
http://dx.doi.org/10.1155/2014/472978

http://dx.doi.org/10.1155/2014/472978


2 BioMed Research International

may enhance tissue damage caused by autoimmune patholo-
gies. Conversely, anti-inflammatory activities known to be
associated with HCMV infection could also exert protective
effects on the course of autoimmune diseases. On the other
hand, inflammation of tissues due to AID may generate
an environment preventing the reactivation and growth of
HCMV, or, depending on the prevailing factors, exert proviral
effects and support productive infection.

While mutual influences of HCMV infection and estab-
lished AID are consequently unavoidable, any causal rela-
tionship is much harder to substantiate. A frequently dis-
cussed phenomenon in the case of turning the immune
system against self-epitopes is “molecular mimicry” [11, 12].
According to this concept pathogenic foreign epitopes are
highly similar to host determinants and, therefore, after
activation of the immune system result in self-attack. So
far, a handful of pathogenic epitopes have conclusively been
shown to trigger autoimmunity by molecular mimicry [13].
However, in many cases where viruses are found to coincide
with the onset of autoimmune disease, such an epitope has
not been identified. Apart from that, during infection the
immune system will be strongly activated: cells destroyed by
viruses or by immune attack can further activate dendritic
cells and macrophages. Infected tissue and activated antigen
presenting cells (APC) will attract immune cells producing
high levels of cytokines and chemokines, which facilitate a
so-called “bystander activation” and lower the threshold for a
loss of tolerance.

This review attends to give an overview of the role of
HCMV for initiation and/or exacerbation of autoimmune
responses. The search for published data was performed
using the PubMed database and entering the keywords
“cytomegalovirus” and “autoimmunity.” The autoimmune
diseases, which were found most often in combination with
both keywords, were then searched again in combination
with cytomegalovirus alone. These diseases were systemic
lupus erythematosus (SLE), systemic sclerosis (SSc), type
1 diabetes (T1D), multiple sclerosis (MS), and rheumatoid
arthritis (RA).

2. HCMV Pathogenesis and Modulation of
the Immune System by HCMV

HCMV represents a human pathogenic herpes virus belong-
ing to the subfamily of Betaherpesvirinae. As all herpes
viruses HCMV have a large double-stranded DNA genome
and possess a formidable coding capacity giving rise to more
than 750 translational products [6] and a multitude of virus-
encoded miRNAs in infected cells [14, 15], reflecting the
exceptional power and ability of this virus to manipulate and
cope with the host. During coevolution over millions of years
HCMV adapted closely to the human host and today infects
40–99% of the adult populations depending on ethnic and
socioeconomic conditions. Infection in immunocompetent
individuals normally proceeds unperceived. After primary
infection of diverse cell types (e.g., epithelial cells of the
liver, lungs, kidney, salivary glands, large intestine, placenta
endothelial cells, smooth muscle cells, fibroblasts, neuronal

cells, and various myeloid cells [7]), HCMV remains latent
in CD34+ myeloid progenitors, from which reactivation and
recurrent replication can emerge. Even though a healthy
immune system controls HCMV replication, the infection
can neither be eliminated by immune functions nor by
antiviral drugs, precluding a state of sterile immunity. Upon
failure or reduced efficiency of specific immune functions,
opportunistic HCMV infections may lead to severe or even
fatal illness. Common clinical findings in immunocompro-
mised patients are fatigue, hepatitis, enterocolitis, encephali-
tis, pneumonitis, bone marrow failure and in AIDS patients
also retinitis [16]. Moreover, HCMV infection is associated
with a diminished graft survival in organ transplant recip-
ients. Congenital HCMV infections are a leading cause of
sensorineural hearing loss andpermanent disability in infants
[17].

Immune control of primary and latent HCMV infection
is organized in a hierarchical but also redundantmanner [18–
20], with prominent roles for type I and type II interferons,
NK cells, and CD8+ but also CD4+ T-cells, while antiviral
antibodies are essential to restrict dissemination of recurrent
virus. Even if a healthy immune system successfully con-
trols infection, HCMV leads to permanent changes in the
composition of immune cell populations. Steadily expanding
CD8+ T-cells specific for a few HCMV epitopes dominat-
ing the memory CD8+ T-cell population is a hallmark of
CMV infection and not observed for other viruses [21]. In
the elderly HCMV-specific CD8+ T-cells may cover more
than 20% of circulating CD8+ cells [22], a phenomenon
called “memory inflation.” In addition, a higher frequency
of HCMV specific CD4+ T-cells can be observed in HCMV
positive persons. These cells exhibit a CD4+/CD28− pheno-
type and are classified as terminally differentiated effector
memory cells [23]. Recently, a role for HCMV in early aging
of the immune system or “immune risk phenotype” (IRP),
measured as inverted CD4 : CD8 ratios, was linking HCMV
to immunosenescence [24] and impaired responsiveness to
vaccination [9], with possible effects seen already in young
adults [25]. Moreover, induction of IL-6 and TNF𝛼 has been
described in HCMV-positive persons [9].

Furthermore, HCMV infection results in expansion of a
NK cell subset expressing activatory CD94/NKG2C receptors
in vivo and in vitro [26, 27]. Independently, HCMV induces
the expansion and differentiation of killer cell immunoglob-
ulin like receptor (KIR-)expressing NK cells, manifesting as
stable imprints in the NK cell repertoire. Obviously, HCMV-
induced education by inhibitory KIRs is promoting a clonal-
like expansion of NK cells, causing a bias for self-specific
inhibitory KIRs [28]. In vitro analysis revealed also a HCMV-
driven growth potential of additional NK cell subpopulations
characterized by inhibitory KIR2DL1 and KIR2DL3 as well as
activatory KIR3DS1 receptors [29].

Once infected, cells become tightly controlled by HCMV,
expressing numerous regulators of the cell cycle, apoptosis,
cell signaling pathways, antigen presentation, and so forth
(see Table 1). To date, themolecular understanding ofHCMV
interference with T cell responses, NK cell activation and
effector function, IFN-induction, and IFN receptor signaling
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Table 1: Immunomodulatory functions by HCMV.

Gene Phenotype/suggested mechanism Reference
T-cell responses

US2 Degrades MHC class I and II [30, 31]
US3 Retention of MHC class I complexes, mislocalization of MHC class II [32, 33]
US6 Inhibits the peptide transporter TAP [34, 35]
US11 Degrades MHC class I [36]
US8 Binds MHC class I heavy chains, function unknown [37]
UL18 Inhibits MHC I interaction with the PLC [38]
miR-US4-1 Targets Erap1 [39]
? Disturbed interaction between MHC class I and the PLC [40]
UL11 Interacts with CD45 [41]

NK and NKT cell responses
UL16 Intracellular retention of MICB and ULBP1 and 2 [42]
UL18 LIR-1 activation [43]
UL40 Encodes a signal peptide for HLA-E [44]
UL142 MICA and ULBP3 inhibition [45, 46]
miR-UL112 MICB downregulation [47]
UL83 Inhibition of NKp30 [48]
TRL11 Inhibition of CD16 activation [49]
UL119-118;
TRL11 Inhibition of CD16 activation [49]

US10 Downregulates HLA-G [50]
US2 Inhibits CD1d [51]

Cytokines, chemokines, chemotaxis
US28 Chemokine receptor; promotes chemotaxis; potential chemokine trap [52, 53]
US27 Enhancement of CXCR4 signaling [54]
UL33 GPCR family; modulates CCR5 and CXCR4 [55]
UL111a vIL-10; hIL-10-like functions [56, 57]
UL111a LAvIL10; downregulates MHC class II expression [58]

UL146 vCXCL1, hCXCR1/hCXCR2-specific chemokine; promotes neutrophil
chemotaxis [59]

UL147 IL-8 similarity [60]
UL21.5 Sequesters RANTES; binds CCL5 and prevents host cell signalling [61]

UL128 Increases TNF𝛼 and IL-6 expression by PBMC; promotes PBMC
migration [62]

UL78 GPCR family member; modulates CCR5 and CXCR4 [55]
Modulation of IFN and TNF signaling

UL138 Upregulates TNF𝛼R1 [63, 64]
UL144 TNFR homolog, inhhibits T-cell prolif. via BTLA-4; induces CCL22 [65]
UL7 Inhibits inflammatory cytokine production [66]
? Jak1 degradation [67]
? STAT2 degradation [68]
UL83 Suppresses type I IFN response and IRF3-induction [69]
TRS1 Blocks PKR-mediated translation shut-off [70]
UL126a Inhibits OAS [71]

UL123 Binds STAT2 and inhibits DNA binding; modulated phosphorylation
state of IE1 [72]

UL122 Inhibiton of NF𝜅B; inhibition of IFN𝛽 transcription [73]
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Table 1: Continued.

Gene Phenotype/suggested mechanism Reference
Apoptosis

UL37x1 Neutralizes Bax [74]
UL36x1 Caspase-8 inhibitor [75]
UL121/123 Inhibits apoptosis [76]

Intrinsic immunity
UL123 Disruption of ND10 [77]
UL82 Daxx inhibitor [78–80]

as well as pathways of apoptosis is most advanced but is still
representing only the tip of the iceberg.

The expression profile of infected cells becomesmassively
modified by HCMV due to (i) transcription of HCMV genes,
(ii) extensive manipulation of the cellular transcriptome
due to HCMV encoded transcription factors, and (iii) the
expression of HCMVmiRNAs which affect both HCMV and
host transcription pattern. Thus HCMV infection must lead
to extensive qualitative and quantitative changes of peptide
ligands presented by MHC I and MHC II molecules which
are not restricted to the emergence of viral epitopes but
could include also novel endogenous self-epitopes on the cell
surface. Given the massive interference of HCMV with host
cell gene expression on the one hand and pathways of antigen
presentation on the other hand the comprehensive analysis
of MHC ligandomes is a paramount goal for future stud-
ies assessing potential pathogenic mechanisms that involve
molecular mimicry between HCMV and individual self-
peptides.

3. Prevalence of HCMV IgG in Patients with
Autoimmune Disease

If HCMV plays any causative role for the pathogenesis and
onset of autoimmunity, it should be expected that a higher
prevalence of HCMV IgG antibodies is found in patients
suffering from defined types of autoimmune diseases. To gain
an overview of the frequency of HCMV infection in patients
with autoimmune pathologies, published data were collected
and HCMV seroprevalences in defined groups of patients
in comparison to reported control groups were compiled
(Table 2). In some of the listed reports HCMV was not the
objective of the study but used as a control parameter for EBV
seroprevalence. Most of the studies have been performed in
patients suffering from SLE and MS, but also studies on SSc,
T1D, RA, and Sjögren’s syndrome (SS) have been reported.
Taking all available studies into account it is conspicuous
that no clear association of HCMV infection with a spe-
cific disease can be claimed. One difficulty in establishing
a connection between AID and infection is the fact that
HCMV is widespread in the human population while specific
autoimmune diseases are rather rare, requiring large patient
cohorts to provide sufficient statistical power. Since HCMV
prevalence critically depends on factors like ethnicity, age,
socioeconomic conditions, and sexual lifestyle it is of high
importance to analyze appropriate control group matching

the patient cohort for all confounding factors. Inmany studies
effort was given to control for age and ethnicity; however, in
most cases the socioeconomic backgroundwas not accounted
for. Moreover, the order of events (AID followed by HCMV
infection versus HCMV infection followed by AID) was not
distinguished in these studies.

3.1. SSc. The statistically highly significant association of
HCMV infection in Swiss SSc patients (59% seropositivity in
SSc patients compared with 12–21% in controls) [83] has not
been observed in other studies so far [81, 82], even though
higher HCMV antibody concentrations have been found in
SSc patients [103, 104]. It should be mentioned that in SSc
patients heterozygotes for𝑓 and 𝑧 alleles of the Ig heavy chain
an association with HCMV-specific antibodies was found,
giving a hint for an important role of the genetic background
[82].

3.2. SLE. Studies that found an association between HCMV
and SLE disease were often performed in European countries
[89–91]. Several other studies did not observe a direct associa-
tion betweenHCMV seroprevalence and SLE [86–88]. In one
of these studies HCMV seropositivity correlated significantly
with Raynaud’s phenomenon [90]. Further, another study
reported on significantly more frequent HCMV specific IgM
in SLE patients than in controls, but no difference in HCMV
IgG prevalence was observed [85]. This finding could be
an indication for more frequent HCMV reactivation events
in SLE patients, which may occur as a result of immuno-
suppressive treatment. Also studies outside of Europe found
higher frequencies of HCMV infection in SLE patients [81,
92] or higher HCMV IgG titers [105]. Moreover, in SLE
patients with higher HCMV specific IgG titers more frequent
autoantibodies could be detected [106]. It is peculiar however
and not easily explainable that in that particular study a
patient group positive for anti-HCMV IgM (and IgG) showed
lower levels of autoantibodies against U1RNP/Sm and U1-
70 k in comparison to the HCMV IgM(−)/IgG(+) group,
suggesting a role for HCMV reactivation in regulation of
autoantibodies.

Altogether, these findings are compatible with the notion
that genetic factors in combination with HCMV infection
play an important role for SLE disease onset.

3.3. T1D. In two independent Finnish studies no association
between HCMV and onset of T1D in young children could
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Table 2: Prevalence of HCMV specific IgG and IgM in autoimmune disease patients.

Nationality/ethnic
background/group

Disease Control group
ReferenceNra Ageb HCMV seropositivity Group Nr Age HCMV seropositivity

% IgG % IgM % IgG % IgM
Systemic sclerosis

Turkey 46 45 96 Primary antiphospholipid
syndrome; healthy 38; 65 36; 35 95; 95 [81]

Caucasians 137 66

Patients with osteoarthritis,
fibromyalgia, gout or
regional musculoskeletal
pain syndromes

145 69 [82]

Swiss 86 56 59 20 RA; osteoarthritis 43; 43 56 12; 21 7; 16 [83]
Systemic lupus erythematosus

Turkey 198 38 100 Primary antiphospholipid
syndrome; healthy 38; 65 36; 35 95; 95 [81]

French/inactive
SLE; active SLE 76; 42 34; 35 76; 83 Healthy 31 33 58 [84]

Taiwanese 87 97 10 Cerebral vascular accident
patients 97 100 1 [85]

variable 36 15 42 Matched
sibling/relative/friend 36 16 47 [86]

African American 144 81 11 Randomly selected from
driver’s license agencies 72 Matched 79 8 [87]

White 86 55 9 Randomly selected from
driver’s license agencies 204 Matched 57 5 [87]

variable 196 45 66 Healthy 392 46 69 [88]
Norwegian 20 54 95 45 Healthy 26 49 69 4 [89]
Italian 60 41 82 5 Blood donors 100 40 69 3 [90]
British 97 91 RA; healthy 50; 97 64; 43 [91]
Variable 117 <20 36 Healthy 153 Matched 26 [92]

Type 1 Diabetes Mellitus

Finnish 169 1.3 23 Healthy, matched for
HLA-DQB1 791 1.3 26 [93]

Finnish 90 <7 47 4 Healthy 90 <7 42 4 [94]
Finnish 11 <2 18 Healthy siblings 11 <2 56 [94]

Multiple sclerosis
Swedish 658 35 57 Healthy 786 36 65 [95]
Iranian 78 29 98 Healthy 123 29 52 [96]
Variable (USA) 189 15 28 Healthy 66 15 36 [97]
variable 144 50 Healthy 288 56 [1]

Norwegian 144 39 63
Traumatic fractures or
rupture, gynaegological or
plastic surgery disorder

170 40 69 [98]

Spanish 41 39 78 OND (other neurological
disease 31 48 85 [99]

Rheumatoid Arthritis
German 202 57 Blood bank 272 Matched 54 [100]
Swiss 43 56 12 7 Osteoarthritis 43 56 21 16 [83]
English 50 64 Healthy 97 43 [91]
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Table 2: Continued.

Nationality/ethnic
background/group

Disease Control group
ReferenceNra Ageb HCMV seropositivity Group Nr Age HCMV seropositivity

% IgG % IgM % IgG % IgM
Autoimmune thyroid disease

Greece 34 10 50 Healthy 31 9 55 [101]
Sjögren’s syndrome

English 24 79 Healthy (dental reatment) 24 Matched 63 [102]
aNumber of subjects.
bMedian age of subjects.

be established [93, 94]. This result confirms a Swedish study
determining the prevalence of T1D after congenital HCMV
infection [107]. A single case report has been published,
in which a congenitally HCMV infected child developed
T1D already at the age of 13 months [108]. Thus this might
represent an isolated case that occurred in combination with
other unknown factors. The reported frequent finding of
HCMV genomes in PBMNCs of Canadian T1D patients
[109] is therefore not supported by the Scandinavian studies
mentioned above, suggesting that HCMV could display a risk
only for a subpopulation of affected children, rather than
playing a major role for the etiology of T1D.

3.4. MS. In several studies HCMV has been found to neg-
atively associate with MS [95, 97, 110]. Only one out of
six studies listed here noted a higher HCMV prevalence in
MS patients [96]. Whether this is a specific property of the
Iranian population or if other factors might have made an
impact on this study is not clear. It is interesting though
that in mice a protective role for mouse CMV (MCMV) on
Theiler’s murine encephalitis virus induced murine model of
MS has been described. Improved motor performance and
a significant reduction of brain infiltrating CD3+ cells were
described as a result of MCMV infection [111].

3.5. RA. Only few studies were found that have deter-
minedHCMV seroprevalence in RA patients: whereas higher
HCMV coincidence with RA was found in one report [91],
the two others did not observe this [83, 100]. All studies were
carried out in Europe.

3.6. SS. Using only a low number of subjects no significant
correlation between HCMV seropositivity and Sjögren’s syn-
drome could be established [102], whereas in another study
with small numbers of study participants higher HCMV
antibody titers were reported [112].

3.7. Summary. According to the studies evaluated here, there
is no evidence that HCMV plays a role for the onset of T1D
and MS. However, concerning SLE and SSc it cannot be
ruled out that HCMV indeed may play an active role in the
induction of disease depending on largely unknown genetic
factors. A number of case reports underline this possibility
(SSc: [113]; SLE: [114–116]). For a rejection or confirmation

of the HCMV hypothesis in the induction of SSC and SLE
and a better clarification of HCMV-associated risk factors
population-based prospective studies must be performed in
the future.

4. Relevance of HCMV Molecular Mimicry and
Bystander Effects in Autoimmune Disease

Crossreactive TCRs or immunoglobulins expressed by T-
or B-cells, respectively, that have been primed against a
pathogenic structure might recognize self-epitopes due to
their sequence or structural similarity. This is the basis for
molecular mimicry, which has been proposed to under-
lie aetiologically some autoimmune diseases initiated by
pathogens [117]. It has been suggested that HSV-1 encoded
UL6 (residues 299–314) induces autoreactive T-cells causing
herpetic stromal keratitis [118]. It is a matter of debate,
though, whether molecular mimicry is the key to dis-
ease development or if crossreactivity in combination with
bystander functions and tissue damage is necessary to set off
pathologic immune responses [119–121].

The DNA genome of HCMV encompasses about 230 kbp
and was initially estimated to encode for around 200 pro-
teins [122]. By ribosome profiling this number was recently
readjusted to more than 750 encoded translational products
[6]. In the context of productive infection, this massive
number of proteins confronts the host with plenty of antigens,
against which the immune system is simultaneously primed
or boosted, thereby raising the likelihood of priming immune
cells against a crossreactive epitope and taking the risk of
bystander activation. So far, however, no HCMV encoded
antigen has been clearly linked to an autoimmune disease.

4.1. HCMV and SSc. SSc is a connective tissue disorder with
abnormal fibroblast cell proliferation. Endothelial cell activa-
tion leads to vascular pathology and over time to neointima
formation in small and medium sized arteries. Typically,
there is an increase in CD4+ and decrease in CD8+ T-
cells numbers. Self-reactive antibodies against determinants
of endothelial cells and topoisomerase have been shown to
correlate with disease activity [123].

Interesting observations have been made concerning
antibodies against the HCMV encoded protein UL94. Using
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a random peptide library, a peptide sequence could be iden-
tified, against which 84 out of 90 SSc patients displayed anti-
bodies. The purified antibody bound to the cellular integrin-
NAG-2 complex and UL94 (possibly also hnRNP proteins
and cytochrome C) [124]. However, when reactivity against
the UL94-derived peptide was determined, only 55 out of 90
patients were found to have antibodies against the peptide,
raising the question whether the SSc specific antibodies were
crossreactive with UL94 rather than vice versa. Information
about the HCMV serostatus of the patients was not provided.

The SSc antibody was found to bind to NAG-2 both
on endothelial cells and fibroblast, which resulted in major
changes of the expression pattern that could be linked to
previous observations in SSc patients [125]. Antibody binding
to NAG-2 on endothelial cells leads to apoptosis, whereas
apoptosis was not induced in fibroblasts [124, 125].

Further, the level of UL94-reactive antibodies was anal-
ysed in patients with diffuse (more prominent vascular
disease) and limited forms of SSc [126]. Patients with diffuse
SSc had significantly higher levels of the UL94-reactive
antibody, pointing at a possible role for HCMV in disease
aggravation. However, again, the HCMV serostatus of these
patients was not reported. In addition to the possibility that
a de novo antibody response against UL94 upon HCMV
infection is the reason for these antibodies to arise, it is
also possible that the patients might have developed these
antibodies independently of HCMV, or the patients were
prone to develop the antibodies and HCMV lowered the
threshold and caused loss of tolerance. In the latter case, it
could be possible that also another pathogen might induce
such an event. To corroborate this sequence of events, further
studies are needed. It should be established whether the
UL94-reactive antibody is actually a true anti-UL94 antibody
and, hence, associated with a positive HCMV serostatus.
Are these antibodies also found in healthy HCMV positive
persons and, furthermore, do HCMV negative SSc patients
have less or no activity against NAG-2 and UL94?

Analysis of peptides recognized by antitopoisomerase I
antibodies revealed a homologous peptide sequence present
in the UL70-encoded polypeptide [127]. Experimental data
that this peptide is indeed recognized by such autoantibodies
is not available so far.

Evidence for association ofHCMVwith SSc disease is still
diffuse. However, Pandey and LeRoy hypothesized HCMV
to be an amplifier of SSc in a review of possible mecha-
nisms by which HCMV could contribute to autoimmune
vasculopathies [128]. Interestingly, mice with a deficiency in
IFN-𝛾 signaling (IFN-𝛾R KO) and increased susceptibility to
MCMV showed signs of neointima formation [129]. If SSc-
like disease manifestations could be found in this situation,
this model could provide insight into the pathophysiology of
HCMV infection eventually leading to SSc disease.

4.2. HCMV and SLE. Characteristic for SLE is apoptosis of
endothelial cells and following atherosclerotic plaque devel-
opment. Autoantibodies directed against nuclear structures
(e.g., antinuclear antibodies, ANA and anti-dsDNA) are
detectable years before onset of disease [130] and their levels

correlate with disease severity. It is not clear though to what
extent DNA antibodies contribute to the disease but immune
complexes are found in temporal and spatial association
with glomerular inflammation.Notably, antinuclear and anti-
dsDNA antibodies were found in patients suspected to have
an onset of SLE as a consequence of HCMV infection [131].

The UL83-encoded pp65 matrix protein has been linked
to autoantibodies in SLE patients. Elevated levels of anti-
pp65 antibodies were found in SLE patients compared to
controls and CTD (connective tissue disease) as well as RA
patients. However, in SLE patients also elevated levels of
another tegument protein, pp150, were found [132], raising
the possibility that anti-CMV antibodies were generally
induced in these patients. In this particular publication it
was also reported that an UL83-encoding plasmid used for
immunization of NZB/W F1 mice caused production of
anti-dsDNA and antinuclear antibodies, leading to more
severe signs of glomerulonephritis than control plasmid
immunization [132].

In a second study it was found that ca 75%of pp65 reactive
antibodies from controls (healthy, RA, SS, and SSc patients)
recognized the N-terminus, whereas antibodies from SLE
patients were predominantly (70%) reactive against the C-
terminus (amino acids 336–379) of pp65 [133]. BALB/c mice
were immunized with peptides corresponding to the amino
acids 1–167 or 336–439 of pp65 together with the complement
component C3d as an adjuvant and the crossreactivity of the
raised antibodies was analyzed. Antinuclear and anti-dsDNA
antibody activity could be measured and mice immunized
with the C-terminal peptide showed signs of IgG deposition
on glomeruli. The C-terminal peptide resulted in antibodies
reactive against HeLa cell lysates (as a measure of crossreac-
tivity); it should be noted though that the reactivity against
lysates from HCMV infected cells was also higher for these
antibodies [133].

It would be of high priority to learn whether possible
crossreactivity also exists for anti-pp65 antibodies isolated
from the SLE patients, especially the C-terminal reactive
antibodies, which showed a higher incidence in SLE patients.

In addition, a HCMV gB expressing adenovirus induced
antibodies against dsDNA and the U1-70 kDa spliceosome
(U1-70 k) protein in immunizedmice [134]. In humans, how-
ever, conflicting data are reported on U1-70 k autoantibodies
in healthy HCMV positive persons. Serum from healthy
persons screened within a vaccination study was tested for
the presence of U1-70 k autoantibodies and an increase in
frequency and quantity inHCMVpositive persons was found
[135]. The authors suggested that HCMV may play a role in
inducing autoimmune disease in a subset of these individ-
uals. In contrast, in a following study no indications for a
higher frequency of SLE autoantibodies were found in sera
from healthy volunteers vaccinated with the Towne strain
[136]. This latter finding was confirmed by a study applying
vaccination using soluble recombinant gB in combination
with an adjuvant MF59 and gB expressed by a recombinant
canarypox virus [137], leaving the question concerning the
relation between gB antibodies and autoantibodies open.
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4.3. HCMV and T1D. So far unknownmechanisms by which
HCMV could interfere with immunity and cause T1D have
been postulated. For instance, HCMV inclusion bodies were
found in pancreatic island of children with fatal HCMV
infection [138], suggesting that HCMV infection may cause
immune reactions and destruction of these cells. However in
other autopsy samples of pancreas tissue from T1D patients
no indication for HCMV infection was found by nested PCR
[139], even though the ability of HCMV to infect 𝛽-cells in
vitro has been reported [140]. While HCMV- or immune-
mediated cell death is a possible outcome of abortive HCMV
infection, the data should be carefully interpreted since only
IE1/pp72 and pp65 proteins were detected in these cultures.
Firstly, pp65 protein is abundantly present in the HCMV
particle and therefore viral de novo gene expression is not nec-
essarily needed for detection of pp65 and, secondly, IE/pp72
expression is in most cases possible to detect after virus entry
in various cells, also in nonpermissive cell types, but does not
necessarily implicate successful HCMV replication. To prove
this assumption, evidence of late gene expression or release of
infectious viral progeny should be provided.

Moreover, mice vaccinated with the HCMV strain AD169
were found to produce antibodies against a 38 kDa human
islet cell protein [141]. There is no further follow-up on this
finding reported and the HCMV antigen possibly causing
the crossreactive antibodies (the antigen should be a virion
component since HCMV does not replicate in mouse cells)
was not identified and it is also not clear with which
host protein the antibodies may crossreact and whether the
antibodies have indeed the potential to induce autoimmunity.

T-cells play a major role in destruction of pancreatic 𝛽-
cells in T1D patients [142] and there is a strong correlation
of T1D disease with certain alleles in the highly polymor-
phic MHC II locus [143]. It has been shown that GAD65
(glutamic acid decarboxylase) specific autoreactive CD4+ T-
cells involved in T1D and stiff-man syndrome also recognize
a HCMV UL57 derived peptide. The UL57 peptide can be
processed and presented by dendritic cells, suggesting a
potential involvement in loss of CD4+ T-cell tolerance to
GAD65 [144].

5. T-Cells, HCMV, and RA

CD8+ T-cells are of particular importance to control HCMV
replication. A hallmark of HCMV infection is the extraor-
dinary expansion of HCMV specific CD8+ T-cells. It is
becoming evident though that CD4+ T-cells might be even
more important to prohibit HCMV associated disease [145]
and that HCMV specific CD4+ T-cells are found in HCMV
positive persons at a high frequency. These T-cells are typ-
ically end-differentiated effector memory cells, which have
lost expression of CD27 and CD28, but express CD45RA
and are therefore classified as effector memory or EMRA
cells. HCMV specific CD4+CD28−CD27− T-cells express
granzyme B and have been shown to possess both cytotoxic
activity and the ability to express IFN𝛾 upon encountering
of HCMV antigens [23, 146]. Similarly, expanded CD4+
T-cell populations are also documented in patients with

various autoimmune diseases, including RA [147, 148], MS
[149], and Wegener’s granulomatosis [150]. However, there
is growing evidence that the HCMV seropositive population
of the patients is causing the association with disease and is
responsible for the extraordinary expansion of CD4+CD28−
T-cells [100, 148, 151–153].

5.1. CD4+ T-Cells in HCMV Infected RA Patients. In RA
patients T-cells are strongly implicated in disease patho-
genesis. This is characterized by a large and stable clonal
expansion of T-cells and increased frequencies (up to 10%) of
CD4+CD28− cells [154–156]. Expansion of theCD4+CD28−
subset was particularly pronounced in HCMV positive RA
patients [100, 148, 152, 153], indicating that the disease
per se is probably not the cause for the strong expan-
sion of CD4+CD28− cells, but the coincidence of disease
and HCMV infection. Actually it was observed that the
CD4+CD28− T-cell population was about 3-fold higher
in HCMV positive RA patients than in healthy HCMV
positive subjects [100], suggesting that the disease contributes
essentially to the expansion of CD4+CD28− T-cells.

The majority of the CD4+CD28− cells were found to
be HCMV-specific [148] and no autoreactivity could be
measured in that particular study, although CD4+CD28−
T-cells in RA patients were found to be autoreactive in a
previous study [156] and the CD4+CD28− cells were only
partially susceptible to the control by regulatory T-cells.
Interestingly, it was recently suggested that HCMV-specific
CD4+CD28−CD27− cells are able to function as regulatory
T-cells downregulating both HCMV-specific and to a lesser
extent unrelated immune responses.This functionwas shown
to be dependent on granzyme B and to some extent on TGF𝛽
[157]. If indeed the HCMV specific CD4+CD28−CD27−
cells are by themselves, at least partly, able to confer regula-
tory T cell functions, additional downregulationmight not be
easy to detect.

The question remains whether the HCMV-specific
CD4+CD28− cells play a role for the course of the disease.
Although no significant increase in HCMV seroprevalence
was observed in RA patients, a significant association of
HCMV IgG and progression of joint destruction and number
of required surgical procedures could be determined [100].
It was put forward that the increased CD4+CD28− T-cell
population in these patients might be involved in aggravated
joint disease, as expanded CD4+CD28− T-cells have been
found to cause a significantly faster progression of joint
destruction [158]. Despite the fact that CD4+CD28− T-cells
are also associated with severe extra-articular disease [159],
this association was not noted for HCMV seropositivity
[160].

5.2. Role for CD8+ T-Cells in RA. Studies on CD8+ T-cells
from inflamed lesion of RA patients revealed enrichment of
EBV and HCMV specific CD8+ T-cells in comparison to
cells from peripheral blood. Although the ratio of EBV and
HCMV specific synovial lymphocytes to blood lymphocytes
was conspicuously higher in RA patients, the presence of
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virus specific T-cells was also found in inflamed lesions
of patients suffering from various autoimmune diseases
(psoriatic arthritis, Reiter’s syndrome, ankylosing spondylitis,
and arthrosis) [161]. These findings prompted the authors
of the study to propose that the virus specific CD8+ T-cells
do not play a role for initiation of disease but rather are a
consequence of preferential homing of the cells to inflamed
tissue after virus reactivation. Furthermore, whereas the
virus-specific CD8+ T-cells were readily observed in chronic
stages, they were not found in samples drawn early after onset
of disease, again arguing against a role in initiation of the
disease process [161].

These HCMV specific CD8+ T-cells might contribute
to RA-induced inflammation in the tissue by local release
of proinflammatory cytokines. Recently, a possible TCR-
independent proliferation of HCMV-specific CD8+ T-cells
was proposed [162]. Particularly T-cells (CD8+ CD45RO+)
specific for HCMV antigens presented by HLA-A∗02:01, but
not by HLA-B∗07:01, were found to proliferate in an IL-
15 dependent fashion [162]. This is interesting because high
expression of IL-15 is found both in the synovial fluid and
serum of RA patients and has been found to attract and
activate T-cells, thereby contributing to the pathogenesis of
RA [163]. It is therefore tempting to speculate that the high
prevalence of HCMV-specific CD8+ T-cells in the joints of
RA patients might be connected to IL-15 expression.

In light of this, it should not escape our attention
that pp65 specific, HLA-C restricted CD8+ T-cells were
found to crossreact with an HLA-DR4 alloantigen [164],
demonstrating an additional level, at which loss of immune
tolerance can occur in HCMV infection. Moreover, it might
be a unique characteristic of CMV infections that CD8+
T-cells are activated against highly promiscuous epitopes
presented by MHC class II molecules, as demonstrated in
rhesus cytomegalovirus infection [165]. This might provide
additional challenges for the immune system concerning the
maintenance of immune tolerance. The existence of such
MHC II-restrictedCD8+T-cell responses in humans remains
to be demonstrated.

Final Remarks

At first glance a number of HCMV’s characteristic attributes
appear to predispose this particular virus to be more likely
involved in the induction of autoimmune disorders than
many other pathogens. Commonly found in all human
populations, lasting throughout life in alternating cycles
of productive and latent infection, establishing lytic repli-
cation in multiple tissues, expressing a plethora of anti-
gens, manipulating extensively intrinsic, innate, and adaptive
immune functions, HCMV infection should hazard many
opportunities to induce a loss of immunological tolerance
and cause autoimmune disease. On the other hand, the
cospeciation of HCMV with its human host over millions of
years has obviously led to an optimally adapted opportunist
which does little harm and avoids clinical symptoms in
the immunocompetent host. Evidently, anti-inflammatory

strategies of HCMV [57, 166] can effectively counterbalance
immune activation and tissue damage.

We have surveyed the currently available literature for
evidence on HCMV association with onset or exacerbation
of certain autoimmune disease. While a causative linkage
between HCMV and systemic lupus erythematosus, systemic
sclerosis, diabetes mellitus type 1, and rheumatoid arthritis
is suggested by some findings reported by the literature, the
overall evidence does not convincingly support this notion.
Albeit an association of HCMV seroprevalence and AID
could not be established, HCMV could still play a corespon-
sible role for the onset of disease, disease progression, or
amelioration. For convincing conclusions population-based
prospective studies are urgently needed in the future.

Several studies provide evidence for an exciting interplay
between adaptive immune responses to HCMV and mani-
festations of certain autoimmune disorders, for example, in
RA and SLE. Specifically, immunopathogenicmechanisms by
which HCMV could contribute to the course of autoimmune
disease have been indicated, for example, molecular mimicry
by the UL94 antigen in SSc patients and UL83/pp65 in
SLE patients, as well as aggravation of joint inflammation
by induction and expansion of CD4+/CD28− T-cells in
HCMV infected RA patients. Future studies should provide
more detailed insight into the immunopathological potential
of HCMV-reactive immune cells to develop potential new
strategies of targeted therapeutic intervention.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by VISTRIE (BMBF/Helmholtz
VH-VI-424-2 to AH and HH).

References

[1] A. Ascherio, K. L. Munger, E. T. Lennette et al., “Epstein-Barr
virus antibodies and risk of multiple sclerosis: a prospective
study,” Journal of the AmericanMedical Association, vol. 286, no.
24, pp. 3083–3088, 2001.

[2] H. Hengel, W. Brune, and U. H. Koszinowski, “Immune evasion
by cytomegalovirus—survival strategies of a highly adapted
opportunist,” Trends in Microbiology, vol. 6, no. 5, pp. 190–197,
1998.
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