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Abstract

Background: Travel restrictions were implemented on an unprecedented scale in 2015 in

Sierra Leone to contain and eliminate Ebola virus disease. However, the impact of epi-

demic travel restrictions on mobility itself remains difficult to measure with traditional

methods. New ‘big data’ approaches using mobile phone data can provide, in near real-

time, the type of information needed to guide and evaluate control measures.

Methods: We analysed anonymous mobile phone call detail records (CDRs) from a lead-

ing operator in Sierra Leone between 20 March and 1 July in 2015. We used an anomaly

detection algorithm to assess changes in travel during a national ‘stay at home’ lock-

down from 27 to 29 March. To measure the magnitude of these changes and to assess ef-

fect modification by region and historical Ebola burden, we performed a time series

analysis and a crossover analysis.

Results: Routinely collected mobile phone data revealed a dramatic reduction in human

mobility during a 3-day lockdown in Sierra Leone. The number of individuals relocating

between chiefdoms decreased by 31% within 15 km, by 46% for 15–30 km and by 76%

for distances greater than 30 km. This effect was highly heterogeneous in space, with
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higher impact in regions with higher Ebola incidence. Travel quickly returned to normal

patterns after the restrictions were lifted.

Conclusions: The effects of travel restrictions on mobility can be large, targeted and

measurable in near real-time. With appropriate anonymization protocols, mobile phone

data should play a central role in guiding and monitoring interventions for epidemic

containment.

Key words: Ebola epidemic, travel restrictions, quarantine, mobile phone data, big data, human mobility, population

mobility, Sierra Leone

Introduction

Travel restrictions are some of the oldest, yet most contro-

versial, approaches for epidemic control. This class of in-

tervention ranges from ancient restrictions of the free

association of people with leprosy1 to maritime quaran-

tines in 13th century Venice2 and international air travel

restrictions in the highly interconnected world of the 21st

century.3 The ultimate goals of travel restrictions (e.g. geo-

graphical containment and transmission interruption) de-

pend first and fundamentally on the impact of travel

restrictions on changes to human travel behaviour.

Previous attempts to empirically measure the impact of

travel restrictions have met limited success. Surveys have

shown decreases in self-reported travel during outbreaks,

but are qualified by recall, interviewer and social desirabil-

ity biases.4,5 In a 2006 study, observed reductions in airline

travel were correlated with delayed influenza spread,6 but

important caveats7 remain for this approach which focuses

only on airline travel—which may be in order of magni-

tude less frequent than local and regional travel.8

Specifically for travel bans and border closures during the

2014–15 Ebola epidemic, simulations assuming travel

reductions exceeding 80% predicted limited impact on in-

ternational disease diffusion;9 joining the call for quantifi-

cation of previously unmeasured changes in mobility

during the epidemic.10

Recently, mobile phone data have paved the way for new

insights into human mobility dynamics. Researchers have

previously used mobile phone CDRs to measure acute

changes in human mobility patterns in response to events

ranging from natural disasters to religious festivals.11–13

Although this new data source is accompanied by some

known biases,14 CDRs can provide the necessary type of in-

formation for near real-time guidance, monitoring and evalu-

ation of travel restrictions applied within a country.

Members of the international community recognized the rich

potential of these data and called for its responsible use dur-

ing the epidemic of Ebola virus disease in West Africa.15,10

To demonstrate the utility of mobile phone CDRs for

measuring the mobility impact of travel restrictions, we

analyse the unprecedented travel restrictions implemented

by the Government of Sierra Leone in an effort to eliminate

Ebola in 2015. Much attention was given to the role of po-

rous international borders in spreading the disease,16,17

but a recent comprehensive genomic analysis demonstrated

that whereas international borders did provide some resis-

tance to geographical spread, migration events within ad-

ministrative areas were key drivers of disease spread.18 It

follows that travel restrictions applied at a sub-national

level may play a larger role in disease control than interna-

tional travel restriction interventions, which were espe-

cially criticized by the international medical community as

Key Messages

• Although there have been multiple modelling studies of the impact of travel restrictions, the empirical evidence base

for this key class of epidemic intervention is weak.

• Mobile phone call detail records (CDRs) hold potential for measuring the mobility impact of travel restrictions, lock-

downs and regional quarantines in near real-time during epidemics.

• We reveal that the 2015 lockdown in Sierra Leone in particular had a large, and easily measurable, impact on human

mobility during this key phase of Ebola elimination.

• Novel data sources such as mobile phone data can, at minimum cost, provide key information needed for monitoring

and evaluating travel restrictions with respect to the possible benefits (e.g. on disease transmission, spatial spread

and progress towards eradication) and harms (e.g. to human rights and commerce).
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potentially ineffective9 and even counter-productive.19,20

In this paper, we aim to use routinely collected mobile

phone data to measure changes in human mobility due to

travel restrictions within Sierra Leone.

Methods

Data sources

We conducted a retrospective analysis of CDRs from over

1.6 million subscribers of a leading mobile phone operator

in Sierra Leone between 20 March and 1 July 2015

(Figure 1). All identifiers were removed and subscribers

were given a study-specific hashed ID that was not pro-

vided to the analysis team. Available data included the

time-stamp of each call or short message service (SMS)

event and the global positioning system (GPS) location of

the tower that managed the request. Tower locations

closely matched population density (Supplementary

Figure 1, available as Supplementary data at IJE online).

During this 103-day window with mobile phone data,

several travel restriction policies were implemented in an

effort to eliminate Ebola from Sierra Leone. We compiled

a list of travel restrictions deployed between May 2014

and September 2015, by searching academic literature,

news media outlets, reliefweb [http://www.reliefweb.int/di

saster/ep-2014–000041-gin], World Health Organization

(WHO) situation reports [http://www.who.int/csr/disease/

ebola/en] and National Ebola Response Centre (NERC)

reports [www.nerc.sl]. The principal travel restrictions

studied here are the 2015 national ‘stay at home’ lockdown

and Operation Northern Push.

The 2015 national lockdown began at 06:00 on 27

March and ended at 18:00 on 29 March, with minimal

breaks such as for Friday prayers and Palm Sunday church

service. Essential workers were exempted, including health

workers, fuel station workers and staff involved in the

Zero Ebola Campaign.21 All other individuals were asked

to stay at home, even those living in districts with no recent

transmission.22

Operation Northern Push began on 16 June 2015 with

a 21-day surge of interventions targeted at the two north-

ern districts of Port Loko and Kambia, where the recent

Ebola burden remained high.23 During Phase 1, for which

we have some CDR coverage, curfews were instituted from

18:00 to 6:00 each night.

To assess effect modification by cumulative Ebola bur-

den, we collected daily suspected, confirmed and total

cases by chiefdom, compiled and made publicly available

by Fang et al.24 For reference on districts and the chiefdom

boundaries contained within, see Supplementary Figure 2,

available as Supplementary data at IJE online.

Data preparation

In order to protect the privacy of subscribers, we defined the

daily location of each unique subscriber as the chiefdom

containing the towers that managed the majority of calls by

that subscriber on that day. For time series analysis, we ag-

gregated the number of anonymous subscribers relocating

from chiefdom i on day t to chiefdom j on day tþ 1 as the

number of trips, Y(i,j),t. Thus, each directional chiefdom pair

has a number of trips on each day from 20 March to 30

Figure 1. Temporality of Ebola virus disease, interventions, and available

mobile phone data. The timespan of available mobile phone data (green)

includes: the late stage of the national epidemic curve (bars); Operation

Northern Push (blue); and one of the two national lockdowns (red).

Figure 2. Travel anomalies during the elimination phase of Ebola in

Sierra Leone. (A) The daily number of trips between Freetown and

Magbema, the largest chiefdom in the northern district of Kambia, re-

veal significant negative anomalies during the 2015 national lockdown

(light grey) and suggest a downward trend during Operation Northern

Push (darker grey). (B) The daily number of positive (grey) and negative

(black) travel anomalies detected between all chiefdom pairs with an

average of at least 10 trips per day.
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June 2015. A time-series of the data in Freetown, the capital

city, and Magbema, the largest chiefdom in the northern dis-

trict of Kambia, is shown as an example visualizing the data

structure and travel restriction impacts for one chiefdom-

pair including a northern chiefdom targeted by Operation

Northern Push (Figure 2A). We adapted the time series

panel data structure for the programming language R devel-

oped by Christopher Adolph.25 For each directional chief-

dom pair (e.g. Supplementary Figure 4, available as

Supplementary data at IJE online), we used the lagpanel

function of the simcf package in R to generate lagged and

differenced time series necessary to assess stationarity.26

To prepare the data for crossover analysis, in which we

assess whether travel behaviour was abnormal during the

lockdown, we selected time periods to represent the interven-

tion weekend (06:00 on 27 March to 18:00 on 29 March), a

control period the preceding weekend (06:00 on 20 March

to 18:00 on 22 March) and a control period the following

weekend (06:00 on 3 April to 18:00 on 5 April). We

recorded the sequence of towers visited by each subscriber in

each of the three time periods, rather than a summary daily

location for each user, as needed for the time series analysis

data preparation. Therefore, only a small sample of the CDR

data were considered for the crossover analysis—specifically

the 3-day intervention period and a comparator period of

the weekend before and/or the weekend after.

Data analysis

To observe anomalies in travel behaviour without pre-

specified interventions, we use an agnostic anomaly detec-

tion algorithm for time series data [https://github.com/twit

ter/AnomalyDetection]. The method uses a generalized ex-

treme studentized deviate many-outlier procedure27 to de-

tect positive and negative deviants of statistically significant

magnitude in the presence of periodic (in this application,

weekly) and long-term trends. We applied this algorithm to

the count of daily trips between each chiefdom pair in each

direction. As compared with the expected trip count be-

tween given locations on a given day, we recorded each time

that the observed trip count was above or below the critical

anomaly threshold determined using an a-level of 0.05.

To measure the effect size of travel restrictions, we per-

formed what is commonly referred to as ‘intervention ana-

lysis’.28 Following the framework of Cryer and Chan29,

the time series Y(i,j),t of trips from chiefdom i to chiefdom j

on day t is given by:

logYði;jÞ;t ¼ Nði;jÞ;t þmði;jÞ;t þ eði;jÞ

where Nði;jÞ;t is modelled as some autoregressive integrated

moving-average (ARIMA) process for chiefdom pair (i, j) if

there were no intervention; mði;jÞ;t is the change in the log-

transformed expected number of trips for pair (i, j) on day

t by an exogenous intervention; and eði;jÞ is a random inter-

cept for each directional chiefdom pair to account for dif-

ferent degrees of average traffic between two chiefdoms,

and is drawn from a normal distribution with mean zero.

We used the auto.arima function in the forecast package in

R (Hyndman and Khandakar30) to identify the best-fitting

parameters for the periodicity of the time series, and the

linear mixed effects lme function in the nlme package in R

(Pinheeiro et al.31) to fit the time series model in the pres-

ence of the ARIMA process as well as intervention main

effects and effect modification with cumulative Ebola bur-

den in each chiefdom (Table 1) (see Supplementary data

for more details, available at IJE online).

In our crossover analysis, we tested for differences in

stationarity and distance travelled matched by subscriber.

Subscribers were labelled ‘stationary’ during a time period

if all towers used by that subscriber were within a 10 km

radius of the first tower. This distance was reduced to 0 km

and 3 km for sensitivity analysis in addition to adjustment

for differences in call volume (see Supplementary data,

available at IJE online). The primary metric used to mea-

sure distance travelled by non-stationary individuals is the

sum of inter-tower distances. The distance between tower

geolocations was calculated in kilometers using ArcGIS

with the World Geographic Survey 1984 projection.

Secondarily, we measured distance as the convex hull area

using the sp package in R, whereby we functionally mea-

sure the area of a polygon that encloses the locations of all

towers used by that individual (imagine a rubber band

stretched around all towers used).32,33 We used

McNemar’s test for changes in stationarity and the paired

t-test of means for changes in distance travelled.

Results

Travel restrictions during the Ebola elimination phase in

Sierra Leone had a substantial impact on travel patterns in

the country. We detected anomalously low travel volume

during the 2015 national lockdown using a simple, non-

parametric method capable of real-time monitoring of

travel restrictions and population displacement (Figure 2).

Interestingly, few anomalies were detected during Phase 1

of Operation Northern Push, which began towards the end

of the available CDR data. We focus our attention on the

national lockdown for the following time-series and cross-

over analyses.

Using time-series intervention analysis, we record sub-

stantial decreases in travel during the lockdown, especially

for long distance trips. The number of individuals relocat-

ing between chiefdoms decreased by 31% within 15 km,
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by 46% for 15–30 km and by 76% for distances greater

than 30 km (Table 1; Supplementary Figure 3, available as

Supplementary data at IJE online). Importantly, we mea-

sured no increase in travel during the days immediately fol-

lowing the lockdown, which suggests that individuals did

not compensate for the lockdown by increasing travel

later. The impact of the national lockdown was up to two

times larger in populations that experienced higher Ebola

burdens (Figure 3). Adding an interaction term between

cumulative Ebola case reports and number of relocations,

we measured a 28.7% boost in intervention effect size for

each additional Ebola case reported in either chiefdom (per

1000 population).

A subscriber was substantially less likely to have travelled

during the national lockdown as compared with control

periods on the weekend before or after, (McNemar odds ra-

tio 0.212 and 0.213, respectively; P< 0.0001) (Table 2).

The average inter-tower distance of 3.3 km travelled during

the lockdown was a significant decrease compared with the

control periods before and after the lockdown, respectively

12.5 km and 12.7 km (paired t-tests P<0.0001)

(Supplementary Table 1 and Supplementary Figure 3, avail-

able as Supplementary data at IJE online). This difference

increases by up to 5-fold if we restrict our analysis to indi-

viduals who were mobile during one or both periods, or

consider the convex-hull distance metric (Supplementary

Table 2, available as Supplementary data at IJE online).

Mobile phone data are commonly difficult to acquire for

analysis, due to a variety of current challenges. The cross-

over analysis importantly can be performed in near real-

time with only 1 week of pre- or post-intervention data.

In addition to the national lockdown, another key inter-

vention for Ebola elimination was Operational Northern

Push, during which two northern districts of Sierra Leone

with relatively high recent incidence were targeted with a

range of interventions, including a 12-h curfew beginning

at 18:00 each night.23 Using the same time-series model as

before, we detect a decrease in travel into targeted chief-

doms (6.1%, 95% confidence interval: 1.9%–10%) and

out of targeted chiefdoms (4.5%, 95% confidence interval:

0.1%–8.6%) (Table 1). Although the magnitude of these

results are indistinguishable in this sample, this approach

can distinguish the potentially asymmetrical nature of

travel restrictions into and out of a targeted region.

Discussion

Through retrospective study of mobile phone CDR data to-

wards the end of the Ebola epidemic in Sierra Leone, we

documented a large, targetable, reversible mobility impact

Table 1. Results of a mixed effects ARIMA(p¼1, q¼0, d¼ 2) model estimating the log-transformed trip count between chiefdom

pairs

Parameter Effect size

Name Definition Value P-value

National lockdown Distance (0-15 km) ¼
1; day 2 ðMarch 27; 28; 29Þ

0; otherwise

 !
1; distance < 15 km

0; otherwise

( ! 
0.311 <0.0001

National lockdown Distance (15-30 km) ¼
1; day 2 ðMarch 27; 28; 29Þ

0; otherwise

 !
1; 15 < distance < 30 km

0; otherwise

( ! 
0.458 <0.0001

National lockdown Distance (>30 km) ¼
1; day 2 ðMarch 27; 28; 29Þ

0; otherwise

 !
1; distance > 30 km

0; otherwise

( ! 
0.761 <0.0001

Cumulative Ebola incidence ¼ Total Ebola incidence up to day t in both chiefdoms
Total chiefdom population=1000 0.083 0.0181

Operation Northern Push (destination chiefdom) ¼

1; chiefdom is in Kambia or Port Loko district

and day � June 16

0; otherwise

8>><
>>: 0.061 0.0043

Operation Northern Push (origin chiefdom) ¼

1; chiefdom is in Kambia or Port Loko district

and day � June 16

0; otherwise

8>><
>>: 0.045 0.0447

Model coefficient values are shown before exponentiation.

AIC¼ 39 386.11.
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of a national lockdown, using methods that could be

implemented in near real-time to guide an outbreak re-

sponse. At a minimum cost, routinely collected CDRs can

uniquely enable monitoring and evaluation of this poorly

documented class of interventions within national bound-

aries. Analysis of these data using both time series and

crossover methods, we present decreases in mobility of

large magnitude during travel restrictions in Sierra Leone.

Travel reductions were particularly large in areas with

high recent burden of Ebola and for travel over longer dis-

tances. During the lockdown, trips longer than 30 km de-

creased by a remarkable 76%. Future qualitative or mixed-

methods approaches may reveal what fraction of this de-

crease is due to travel eliminated altogether, and what frac-

tion is to due a reduction in travel distance, which may

partially account for the smaller impacts observed for the

number of shorter trips. Whereas 6.8% of users still

recorded travel of at least 10 km during the national

Table 2. The number of subscribers stationary or mobile in each period

Intervention period

Stationary users Mobile users

Control (pre-) Stationary users 360 506 12 750 Control (pre-)

Mobile users 60 229 14 233 Stationary users Mobile users

Control (post-) Stationary users 305 871 11 060 346 449 42 703

Mobile users 51 875 12 607 45 426 31 712

‘Intervention period’ is 27–29 March’ ‘Control (pre-)’ is 20–22 March’ ‘Control (post-)’ is 3–5 April.

Bolded values are used for McNemar’s test.

Figure 3. District heterogeneity in lockdown impact. Reduction in travel by users from each district during the national lockdown ranges from over

70% (dark red) to nearly 30% (light red). Each dot represents 10 cumulative Ebola cases reported in each district between May 2014 and 26 March

2015, before the lockdown. Districts with larger Ebola case counts (italicized numbers adjoining to districts) tended to have larger changes in mobility

during the lockdown. Dashed border outlines Magbema chiefdom, discussed in Figure 2a. Thick grey borders outline the districts targeted during

Operation Northern Push.

International Journal of Epidemiology, 2018, Vol. 47, No. 5 1567



lockdown [as compared with approximately 17% during

the control periods (Supplementary Table 7, available as

Supplementary data at IJE online)], compliance with the

voluntary travel restriction resulted in decreases in distance

travelled and did not result in a subsequent increase in

travel after the travel restriction was lifted.

With the capacity to measure the impact of travel restric-

tions on human mobility, there is now an opportunity to re-

evaluate travel restrictions with respect to the possible bene-

fits (e.g. on disease transmission, spread and eradication)

and harms (e.g. to human rights and commerce34).

Estimating these second-level consequences of travel restric-

tions requires additional assumptions and data that are out-

side the scope of this paper, such as the role of density-

dependent transmission in settings where restrictions may

increase or decrease close congregation, the role of long

distance travel on spatial epidemic expansion,18 isolating

the changes in travel for burials attributable to restrictions

(which may account for highly local super-spreading even-

ts)35 and the infection and susceptibility status of observed

travellers. In each of these important examples, a reliable

and timely estimate of the impact of travel restrictions on

mobility, as shown here, can serve as a foundation for fur-

ther, sector-specific research.

Whereas the lockdown in Sierra Leone was national in

scope, the mobility impact was highly heterogenous

throughout the country. The observed effect modification

could be due to differences such as intervention compli-

ance, advertising or enforcement. Amid concerns of unin-

tended side effects of travel restrictions,19,20 our results

instead suggest that the effects of travel restrictions may be

larger in affected regions and may thereby spare low-

burden regions from excessive collateral costs.

The spatial resolution of CDR data is limited by the

density of cell towers, which is sparse in some regions of

Sierra Leone but closely matches population densities

(Supplementary Figure 1, available as Supplementary data

at IJE online). Although socioeconomic status may be re-

lated to phone use14 and disease burden,36 we have not

seen evidence indicating differences in travel behaviour to

an extent that would change the overall results of this

study. These analyses were robust to sensitivity analyses in-

cluding alternative definitions of ‘trips’, minimum detect-

able travel distance and after excluding travel from the

capital and largest city, Freetown (see Supplementary data,

available at IJE online). Our results remain qualitatively

unchanged after down-sampling the control period call ac-

tivity by the observed 22–26% decrease in call activity as

compared with the lockdown; indeed, call activity during

the control periods needed to be down-sampled by over

80% in order to eliminate the significance of the observed

effect (see Supplementary data, available at IJE online).

CDRs are routinely collected and provide an ideal

source of near real-time data on human mobility during an

emergency. However, strong regulatory guidelines that

protect individual privacy must be considered. The ethics

and logistics of how mobile phone operators should pro-

vide access to these data, and to whom, are vital conversa-

tions for the international community to engage in before

we face new pandemics, such as unprecedented and hyper-

local travel advisories in response to the zika virus.37

In addition to sensitivity analyses within each method,

we present results from two analysis methods, to address

some limitations of each. Data preparation for the time-

series analysis reduces call activity to a primary chiefdom

for a user on each day. Underestimation of travel activity

for a given user can result from lower call activity or cover-

age during trips to that chiefdom. This limitation is offset

by the data preparation for crossover analysis, which

accounts for each tower visited by each user during a day

and estimates, using the tower locations and order of use,

the distance travelled by that user. However, the crossover

analysis reduces the dataset to the intervention period (27–

29 March) and two control periods (20–22 March and 3–5

April), whereas the time-series analysis leverages fluctua-

tions in the complete dataset to estimate differences in

travel during the interventions. Additional CDR data

before the lockdowns, if available, could have been used to

establish a more stable pre-intervention baseline.

Comparisons between the pre-intervention and post-

intervention control periods revealed limited differences in

metrics related to distance travelled and proportion sta-

tionary, although of sufficient sample size to be statistically

significant (Supplementary Tables 1, 2, 6–9, available as

Supplementary data at IJE online).

In order to leverage mobile phone data sources for mon-

itoring and evaluating mobility interventions in near real-

time during unpredictable emergencies such as natural or

biological disasters, governments must design policies to

facilitate rapid and safe data use strategies. With the mod-

ern data streams and methodologies available today, the

impact of travel restrictions on mobility, and subsequently

health, can now be measured and used for data-driven

decisionmaking.

Supplementary Data

Supplementary data are available at IJE online.
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