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Experimental replications in animal trials

Florian Frommlet1 and Georg Heinze2

Abstract
The recent discussion on the reproducibility of scientific results is particularly relevant for preclinical
research with animal models. Within certain areas of preclinical research, there exists the tradition of repeat-
ing an experiment at least twice to demonstrate replicability. If the results of the first two experiments do not
agree, then the experiment might be repeated a third time. Sometimes data of one representative experiment
are shown; sometimes data from different experiments are pooled. However, there are hardly any guidelines
about how to plan for such an experimental design or how to report the results obtained. This article provides
a thorough statistical analysis of pre-planned experimental replications as they are currently often applied in
practice and gives some recommendations about how to improve on study design and statistical analysis.
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Introduction

The recent discussion about the non-reproducibility of
scientific research results1 brought statistical methods
used in laboratory animal studies under closer inspec-
tion (see, e.g., the recent book by Lazic2 for an exten-
sive discussion of the wide range of problems involved).
Minimal standards were defined that should be applied
in preclinical studies involving animals,3,4 but in prac-
tice, these existing guidelines are often not followed.
The warnings of statisticians about the consequences
of the commonly applied procedures of study design
and data analysis have a long history,5,6 but it seems
only recently that the research community has become
widely aware that there actually is a severe problem and
that action has to be taken to improve the quality of
preclinical research studies.7,8

Statistical expert reviewers in internal review boards
for animal studies usually see a large number of pro-
posals for animal trials and have the chance to develop
some insight into the problems in experimental design
and statistical analysis that frequently occur. To a cer-
tain extent, we see ourselves as consultants and want to
give advice to lab researchers in order to improve their
study designs. One particular point that we are regu-
larly confronted with is the problem of experimental
replication, where researchers claim that they have to

replicate each experiment at least twice or else their
research would not be accepted for publication.
Although scientific journals usually do not have such
statements in their guidelines, within certain research
communities, peer reviewers request experimental rep-
lications on a regular basis. How such replications are
summarised to prove reproducibility in practice
appears to be quite problematic from a statistical
point of view. There is also surprisingly little informa-
tion about this topic to be found in the literature on
study design for animal trials, apart from a very good
article by Fitts.9

The purpose of this article is to fill this gap in the
literature and to discuss the statistical consequences
when a whole experiment is repeated several times
by the same research group under exactly the same
conditions. Our intention is to provide a reference for
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preclinical researchers which allows them to choose a
powerful study design that fully adheres to replicability
demands. We will start with looking at 46 articles from
the latest volume of Immunity, a top journal in the field
of immunology, to illustrate the pervasiveness of the
problem we address. Often researchers provide only
the data from one ‘representative’ experiment, or they
pool data from several experiments. We will explain
why both strategies are problematic, particularly if
the procedure has not been clearly specified a priori.

In the majority of cases, two or three independent
experiments are performed. What often happens in
practice is that two experiments are made, and if
those have differing outcomes, then a third experiment
will be performed. We will discuss the statistical proper-
ties of such a ‘two-out-of-three’ rule and argue that this
design is not optimal in any case but that it only makes
sense under the assumption that the effect under ques-
tion does not vary too much between the separate
experimental replications.

However, when asking researchers why they think it
is a good idea to replicate the whole experiment, they
usually argue that there might be huge differences
between the observed effects due to unknown factors
influencing the different experimental replicates. If this
is actually the case, then three repetitions are not
enough to capture this variation of the effect to be
studied. Based on a simple simulation study, we will
show that the allocation of a given number of animals
can be optimised if more than three experimental rep-
lications are performed, each then including fewer
subjects.

What we definitely do not recommend is to plan a
single experiment with the usual settings, say at a sig-
nificance level of a¼ 0.05 and with a power of 0.8, and
then to repeat this experiment several times. On the one
hand, it is unclear which results researchers are then
actually going to report. Choosing a ‘representative’
experiment is certainly not a good idea because there
will always be the tendency to report the ‘best’ experi-
ment, which will introduce some bias. Pooling data is a
better option but will result in much larger power than
originally planned for and uses potentially more animals
than needed. It is particularly bad practice to pool
data only when this leads to significant results and other-
wise to show data from a ‘representative’ experiment.
A slightly better solution would be to report p-values
from all performed experiments and then combine
these p-values using, for example, Fisher’s combination
test or any other of a wide range of available meth-
ods.10–13 However, in that case, again, the whole study
based on independent experimental replicates is quite
overpowered and uses too many animals. Moreover, as
we will show, the approach is not valid in case of sub-
stantial between-replication variability.

Our favoured approach is to perform a pooled ana-
lysis of all experiments with a mixed model. This allows
the – obviously important – between-replicates variabil-
ity to be estimated explicitly, and one can finally report
an estimate of the effect size expected for a typical rep-
lication. By means of simulation, we illustrate that
this approach is superior to p-value combination if
the effect size differs largely between replicates and fur-
thermore allows the variation between replicates to be
estimated.

Methods

To quantify the usage of experimental replications in
practice, we looked at 46 articles from volume 51 of
Immunity, one of the leading journals in immunology
research. Figure legends from each article were exam-
ined for text passages which point towards replications
of animal experiments. Replications of in vitro studies
were not considered as relevant. A Microsoft Excel
sheet is provided in the Supplemental Material, which
contains the details of our findings, in particular how
many independent experiments were used for some
experiments, whether data were pooled or whether
data from a representative experiment were shown.

Type I error and power are computed for different
strategies how to report results from several inde-
pendent experiments. The elementary probability com-
putations involved are given in the Supplemental
Material. All other results are based on simulations.
The main simulation study involving mixed models
was performed in SAS 9.4(TS1M3) vXX (SAS
Institute, Cary, NC). Generation of plots and other
simulations was performed in R 3.6.0 vXX (R
Foundation for Statistical Computing, Vienna,
Austria). Commented R code is provided in the form
of an R Markdown report using knitr. The SAS code
for the main simulation study and the resulting csv files
used to generate Figures 2 and 3 are provided in the
Supplemental Material, making our findings fully
reproducible.

Results

The scope of the problem

The five issues from volume 51 of Immunity include 46
research articles. Six of those did not contain any
animal experiments at all, and another three articles
used zebrafish, drosophila or rabbits, respectively, as
the animal model. In our analysis, we will hence focus
on the 37 articles which include animal experiments
with mice. Among those are 25 articles having at least
one figure with data representative of several independ-
ent experiments. If the exact number of independent
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experiments is given, then most often this is either two
or three, quite rarely also four. However, the exact
number is frequently not even specified. Instead, the
information is given that data are ‘representative of at
least two experiments’, ‘of at least three experiments’,
‘of two or three experiments’ and so on.

In 22/37 articles, there is at least one figure legend
indicating that data were pooled from several experi-
ments. Again, in the majority of cases, data from
two or three experiments were pooled, but sometimes
also from four or more. Once again, the exact number
is often not clearly specified. In 13 articles, both rep-
resentation and pooling of independent experiments
occurred, sometimes within the same figure legend.
A particularly bad example can be found in the
legend of figure 1 of Bachem et al.,14 where it is
stated that ‘All experiments were performed at least
twice, and each experimental group included n� 3
animals. Data are representative or pooled’. Neither
the number of experiments nor the number of animals
per experiment is specified, and it is not even clear if
data are representative or pooled. Another example,
where pooling and representation are combined even
more creatively is Vacchio et al.15 where the legend of
Figure 1 states: ‘Data are representative of 4 independ-
ent experiments, 2 of which (with n¼ 5 [Zbtb7bAD]
and 7 [Ctrl] mice) are summarized in the graphs at
the right’.

Only 3/37 articles with mice experiments do not
mention any replication of experiments. None of the
other 34 articles describes in the statistical methods sec-
tion how independent experiments were accounted
for. All the information that can be found, which is
in virtually all cases insufficient, is given in the figure

legends. No objective decision criteria are presented
which would explain why a representative experiment
is shown or why data are pooled. Almost always, the
presented graphs are ornamented with different num-
bers of asterisks which are supposed to indicate certain
levels of statistical significance. The corresponding
p-values themselves are not provided, although this
would be much preferable.16 There seems to be no
awareness at all that after selecting data from different
experiments as one pleases, the concept of statistical
significance becomes entirely meaningless.

Given the current practice, there are just too many
ways that data sets can be tweaked to obtain p-values
which are below a desired significance level: choosing
the experiment with the most desirable result as repre-
sentative, continuing to repeat experiments until signifi-
cance has been achieved through pooling, potentially
not including data from experiments which do not fit
the hypothesis to be tested and so on. The reporting of
the number of animals per experiment is often even
worse, and undocumented attrition will further contrib-
ute towards biased results.

We want to point out that the problems described
here are not unique to the journal Immunity. This serves
only as a representative for a wide range of journals,
including for example Nature Immunology, Science
Immunology, Cancer Immunology Research, Journal of
Experimental Medicine and so on. Investigating figure
legends in these journals, as we did here, would lead to
similar results.

Most common reporting strategies

In this section, we will quantify the statistical problems
which arise for the most common reporting strategies
we have seen. Although the following results are
already alarming enough, our computations assume
that researchers stick to some pre-planned strategy of
how to analyse repeated experiments. If researchers
have the possibility of changing their strategy depend-
ing on their experimental results, then the probability of
type I errors will further increase. For that reason, we
think it is absolutely necessary that the research culture
changes and that journals request experimental designs
which are less prone to delivering false-positive results
and which have been clearly specified in advance.

Our brief survey of articles from Immunity suggests
that researchers most often perform two or three repli-
cations, which coincides with our experience as board
members of the animal ethics committee. Often, they
plan one experiment at a significance level of a¼ 0.05
with a power of 0.8 to detect a specific effect. Then, they
request two or three times the number of animals
needed for one such experiment but without actually
specifying how they want to analyse the resulting data
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Figure 1. Power of Fisher’s combination test as a function
of the sample size n for three independent experiments
analysed with two-sample t-tests at a significance level of
a¼ 0.05. Effect sizes are measured in standard deviations.
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from independent experiments. We will provide here
the consequences on type I error and on power when
using five different analysis strategies:

. Strategy 1: Report the best of two independent
experiments.

. Strategy 2: Two independent experiments must be
significant.

. Strategy 3: Report the best of three independent
experiments.

. Strategy 4: Three independent experiments must be
significant.

. Strategy 5: Two out of three experiments must be
significant.

Table 1 presents the empirical probability of a type I
error (reporting a significant effect although the null
hypothesis is correct) and the associated empirical
power (the probability of detecting an actual effect),
where we assume the same underlying effect size for
independent experiments. The corresponding probabil-
ity calculations are provided in the Supplemental
Material.

Strategies 1 and 3 assume that two or three inde-
pendent experiments were performed, and only the
results of the ‘best’ experiment are presented, that is,
the experiment with the most significant treatment
effect. For apparent reasons, and confirmed by our
results, this is not a good idea. While the resulting
power is close to 1, the probability of a type I error
becomes hugely inflated: 0.0975 for two experiments
and 0.143 for three experiments. However, given the
common practice of reporting a ‘representative’ experi-
ment, we are afraid that the ‘choose-the-best’ approach
is applied quite frequently.

With strategies 2 and 4, an effect is only concluded to
be significant if all experiments which were performed
gave significant results. Such a procedure is extremely
conservative, as its overall power to detect significant
treatment effects drops to 0.64 in the case of two experi-
ments and to 0.51 in the case of three experiments. It is
quite unlikely that any preclinical researcher would
actually want to adhere to such an approach.

The final strategy considers an effect to be significant
if at least two out of three experiments lead to a

p-value below the chosen significance level. With this
procedure, one could omit the third experiment if the
first two already led to the same result (with both either
significant or not significant). According to researchers
involved in such studies, this strategy is actually often
applied informally, even when in the end only one rep-
resentative data set is presented in the publication.
The two-out-of-three procedure gives an overall
power of 0.9 when planning for a nominal power of
0.8 for each individual experiment. At the same time,
the overall probability of committing a type I error
is< 0.01 for a¼ 0.05. In view of the ongoing discussion
of the problematic nature of taking p-values as the
exclusive basis of statistical analysis,6,17 these charac-
teristics are actually not too bad. If preclinical research-
ers followed such a protocol rigorously, it could help to
increase the reproducibility of published research
because the probability of reporting false-positive
results is substantially reduced. However, the ‘two-
out-of-three’ decision procedure does not make optimal
use of the data when there is reason to assume that the
actual effect size does not differ between replications of
the full experiment. Better alternatives include methods
for combining p-values or considering a combined ana-
lysis of all three experiments, as proposed below.

We have seen that apart from presenting a ‘represen-
tative’ data set, researchers also often present results
after pooling data from independent experiments.
This results in a larger sample size than planned,
which will apparently yield an increase in statistical
power. If the single experiment was already planned
to detect a specific effect size with a certain power,
then the pooled data set will be overpowered for the
same effect size. In other words, too many animals will
have been used. If the decision of pooling is made only
after the data have been looked at, then the procedure
just turns into some form of p-hacking, specifically if
there is no control over the number of experiments
which are used for pooling. Furthermore, if the results
from the independent experiments are not reported
individually, then the question of reproducibility is
actually no longer addressed. A first step in the right
direction would be to report p-values of each independ-
ent experiment and then perform some p-value combin-
ation. For the ease of presentation, in our discussion of

Table 1. Probability of type I error and power for the different strategies to report the
results from three experimental replicates, assuming a nominal type I error probability of
0.05 and a nominal power of 0.8.

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

Type I 0.0975 0.0025 0.143 0.000125 0.00725

Power 0.96 0.64 0.992 0.512 0.896
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the combination of p-values, we will focus on Fisher’s
method, although there are many other combination
procedures available which might perform better in cer-
tain situations.13

Combination of p-values

Fisher’s method for combining k p-values p1, . . . , pk is
based on the observation that under the null hypothesis
�2

Pk
j¼1 logpj � �

2
2k, which means that a random vari-

able equal to minus twice the sum of the logarithms
of the p-values follows a chi-square distribution.
In our case, this can be directly used to obtain a
combined p-value for the different independent experi-
mental replications. Note that the combination of
p-values only makes sense for one-sided hypothesis test-
ing. Otherwise, experiments with effects in opposing
directions would not cancel out when pooling the
information.

To illustrate the advantages of Fisher’s method over
the ‘two-out-of-three’ rule, consider a situation where
the three experiments led to p-values p1¼ 0.04, p2¼ 0.06
and p3¼ 0.06. Only the first experiment was significant
at the �¼ 0.05 level, and a rigorous application of strat-
egy 3 would lead to the conclusion that one cannot
reject the null hypothesis. However, Fisher’s method
gives a combined p-value of 0.007, resulting in a clear
rejection of the null hypothesis. Even in the case
that one experiment ‘did not work’ and gives a rather
large p-value – say, p3¼ 0.07 – the resulting combined
p-value of 0.047 is still< 0.05. Finally, consider a situ-
ation where p1¼ p2¼ p3¼ 0.1, that is, in all three
experiments, the significance criterion was just missed,
and thus none of the original three strategies would
suggest to reject the null hypothesis. Still, Fisher’s
method efficiently combines this information into a
combined p-value of 0.032.

These simple examples illustrate that the combin-
ation of p-values is more powerful than the strategies
presented in Table 1. The power curves in Figure 1
provide a more systematic overview for small sample
sizes ranging from n¼ 3 to n¼ 8. These were obtained
by simulating t-test statistics from three independent
experiments and then applying Fisher’s combination
procedure. Simulations were repeated 1,000,000 times
for each combination of sample size and effect size, and
the proportion of runs with a combined p-value
of< 0.05 was used to estimate power. The correspond-
ing R code is provided in the Supplemental Material.

Effect sizes are measured in standard deviations,
which is often done for convenience in preclinical
studies when not much information about the actual
variation of the outcome variable is available. Effect
sizes of 1.5 (or 2) standard deviations are quite typical
for animal experiments, and performing only a single

experiment, eight (or five) animals, respectively, would
be needed to achieve an approximate power of 0.8 at a
significance level of a¼ 0.05. In comparison, the power
of Fisher’s combination test is already very close to
1 both for n¼ 8 at effect size 1.5 and for n¼ 5 at
effect size 2. In fact, only four animals per group
would be needed at effect size 1.5 to achieve a power
close to 0.8, which is half the number needed according
to the sample-size calculation for a single experiment.
Figure 1 also shows that n¼ 8 would be sufficient to
achieve a power of 0.8 for an effect size of one standard
deviation, which is often considered a very small effect
for preclinical studies.

Simple pooling of data might lead to a similar increase
of power, but then one has no information about the
outcome of individual experiments. One advantage of
the p-value combination approach is that one can
report the results of the individual experimental replicates
but still has one valid p-value to summarise the conclu-
sion made from the combined evidence of all three
experiments. However, one caveat of Fisher’s method is
that it works best for one-sided tests. For two-sided
hypotheses, one has to split the problem into two one-
sided tests and perform the combination test separately
at the desired significance level divided by two. It should
be noted that Fisher’s method is simple and very efficient
if all experimental replicates have the same sample size. If
the sample size varies between experimental replicates –
which might occur for example in case of drop-outs –
then an alternative method based on weighted Z-scores
might be preferable.18

In the next section, we will illustrate the problems
that can arise with p-value combination tests when
there is a lot of variation in estimated effect sizes
between experiments. Furthermore, p-value combin-
ation does not address the question of replicability of
an experiment. To answer this question, we have to use
a different statistical approach.

Mixed-model analysis

The method of combining p-values is particularly suit-
able under the assumption that the effect of interest
does not vary between experimental replicates.
However, researchers and reviewers often argue that
they need to replicate whole experiments because the
measured effect may vary a lot between replicates.
Often, the cause of such variation is beyond the control
of the researcher. Hence, it is desirable to account for
that variation explicitly by a joint analysis of the data
from all three experiments. In such an approach,
the experimental replication is used as an additional
factor – a so-called blocking variable.19 Furthermore,
it would be desirable to estimate the amount of vari-
ation of the treatment effect between replications.

Frommlet and Heinze 69



This brings up a few questions which we are going to
illustrate using the following particularly simple setting.
Assume that in an experiment, the effect of some active
treatment is compared to a sham treatment or placebo
where the outcome Y is some metric variable. A suit-
able model to use in this situation is the two-factorial
analysis of variance:

EðYÞ ¼ �þ �i þ �j þ �ij

where � is the overall mean of the outcome variable, �i
and �j are additive main effects of treatment i and
experimental replicate j, respectively, and � ij (some-
times also denoted as (��)ij) models interaction effects
between treatment and experimental replicates. It
follows that if any �ij 6¼ 0, we have variability in the
treatment effects between replicates. The conditionsP

i �i ¼ 0,
P

j �j ¼ 0, and
P

i �i;j ¼ 0 for every j
and

P
j �i;j ¼ 0 for every i ensure that all parameters

of that model are identifiable.
One could now proceed and use the methodology

of general linear models to estimate the unknown par-
ameters of that model, that is, �, �i, �j, � ij. However,
compared to the analysis of a single replicate, there
are more parameters to be estimated. In case of two
treatments and three replicates, taking into account
the identifiability constrictions, the model would
require two further � parameters and even four � par-
ameters to be estimated. The number of degrees of free-
dom spent to estimate these parameters becomes very
large relative to the sample size, and this hampers
precise estimation. Therefore, so-called random effects
models were proposed, which do not require expli-
citly estimating some parameters of the model,
but rather assume that those parameters follow a
pre-specified distribution, for example a normal
distribution with a mean equal to 0. With this assump-
tion, all that is required now is the estimation of a single
parameter: the standard deviation of the random effect.

Mixed models which include a random effect for the
blocking variable were often shown to be more power-
ful than the so-called fixed-effects models, even if the
implicit distributional assumption is only a rough
approximation. In our case, it is reasonable to assume
that �j and � ij follow a bivariate normal, which extends
the univariate normal distribution by also assuming
some correlation between � and �. Still, only three par-
ameters (standard deviations of � and �, and their cor-
relation) would have to be estimated instead of six.
Moreover, the standard deviation of � is a relevant
quantity, as it allows the variability of the treatment
effect to be quantified. One can easily compare this
number to the estimated treatment effect to obtain
some impression of how much the latter varies across
replications.

Simulation study

To highlight the key principles involved, we simplify
the setting of the simulation study even further and
assume in the model above that �j ¼ 0. The treatment
is allowed to differ between replicates via the random
effect �ij. We consider two groups (active treatment¼ 1
vs. control¼ 0) and allow the effect of the active treat-
ment relative to control to differ between replications.
To this end, the overall treatment effect is defined
as �eff ¼ �1 � �0, and the variation of the treatment
effect between replications is modelled via �0j ¼ 0 and
�1j � Nð0,�2�Þ.

We consider three different effect sizes, �eff 2 f0,1,2g,
which once again are measured in standard deviations.
The error terms of our model are assumed to be inde-
pendent and standard normally distributed. �eff ¼ 0
corresponds to the null hypothesis that on average
the treatment does not have any effect. �eff ¼ 1
would be a rather small effect for an animal trial,
whereas �eff ¼ 2 is a rather large effect. With
respect to the variation between replications, we also
consider three different scenarios, with variance �2� 2
f0:01,0:25,1g.

In the previous section, we focused on the conse-
quence of repeating an experiment three times, where
n¼ 8 per group is a commonly chosen sample size.
Here, we want to compare experimental designs to dif-
ferent numbers of replication. Keeping the total
number of animals constant, we let the number of rep-
lications vary between k 2 f3,4,6,8g with corresponding
sample size per group n 2 f8,6,4,3g.

For each of the different simulation settings, identi-
fied by the values of �eff,�

2
� and n, 1000 data sets were

simulated from the corresponding data-generating
model and then analysed with mixed models and with
Fisher’s combination tests. The power for each method
was then estimated as the percentage of simulation runs
resulting in significant effects. Figure 2 compares the
achieved power to detect the overall treatment effect
with the linear mixed model or with the Fisher’s com-
bination test.

The first thing to observe is that in case of �eff ¼ 0, a
valid testing procedure should control the type I error
below the significance level (in our case a¼ 0.05).
The linear mixed model is actually quite conservative,
and particularly when there are only three replications,
the type I error is controlled at a level way below 0.01.
For larger numbers of replications, the type I error is
getting closer to the desired a level, but the mixed
model still remains conservative. Correspondingly, we
observe both for small effects (�eff ¼ 1) and large
effects (�eff ¼ 2) that the power to detect the treatment
effect systematically increases with the number of rep-
lications. This is the first indication that it might be
better to perform many replicates of small experiments
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rather than few replicates of larger experiments. Power
tends to decrease with increasing �� , which does not
come as a big surprise. The more variation there is
between replicates, the more difficult it should be to
detect the overall treatment effect.

The power curves of Fisher’s combination test tell a
completely different story. For both small and large
treatment effects, it seems that Fisher’s method provides
larger power than the linear mixed model, specifically in

cases when there are only few replicates. However, one
can see that the combination test controls the type I
error for the hypothesis �eff ¼ 0 only for very small
�� . If there is more variation of the treatment effect
between replication runs, then Fisher’s method detects
too many false-positives. In case of �� ¼ 1 and for three
replicates, the type I error rate even exceeds 0.5.
Increasing the number of replicates reduces the type I
error rate, but it remains unacceptably high. There are
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quite a number of instances where the one-sided Fisher’s
combination test rejects both the right- and left-sided
hypotheses. Stouffer’s Z-score method suffers less from
the last problem, but it still has a rather inflated type I
error rate for larger �� (results not shown here). This
leads to the conclusion that combination tests are
inappropriate to test the null hypothesis �eff ¼ 0 if treat-
ment effects are expected to vary across replications.

Figure 3 provides some information about the pos-
sibility of estimating the variation of treatment effects
between replications of experiments. The estimates do
not seem to depend too much on the overall treatment
effect, and the number of replicates also has a rather
negligible influence on the average of the variance esti-
mate. However, the second plot of Figure 3 clearly
shows that the standard deviation of the estimated vari-
ance �2� is reduced by increasing the number of repli-
cates. In other words, the estimates are becoming more
precise. This is the second indication that it is beneficial
to make more replications of smaller experiments
rather than fewer replications of larger experiments.

There remains the question of how the ‘two-out-of-
three’ decision procedure performs if the effect size
varies between replicates of experiments. Table 2 pro-
vides the results from our simulation study.

The first observation is that with increasing �2� the
type I error increases and rises to almost 0.12 for
�2� ¼ 1. For both moderate and large effect sizes, the
‘two-out-of-three’ rule has larger power than a mixed
model based on three replicates, but smaller power than
a mixed model based on eight replicates, except for
�2� ¼ 1. However, for such a large variation of effect
sizes, the ‘two out of three’ rule has an inflated type I
error rate and should not be used to begin with.

Discussion

A primary goal of study design in animal trials is to
ensure that the sample size is not too large and not too
small. If the sample size is too small, then no scientif-
ically meaningful conclusions can be drawn. However,
if the sample size is too large, then more animals have

to suffer than is strictly necessary, which is against
the ethical requirements summarised in the 3Rs
(Replacement, Reduction and Refinement). Clearly,
our discussion above shows that performing sample-
size calculations for a single experiment and then
repeating that experiment two or three times violates
these principles because the resulting total number of
animals used in the overall experiment is too large.
Performing sample size calculations for p-value com-
bination tests based on simulations can substantially
reduce the required number of animals, but this
approach only works when the effect size is fairly
stable between different replicates. If there is variation
between replicates, then the linear mixed model is def-
initely the best option to analyse the data, in terms of
both controlling the type I error and enabling quanti-
fication of the variation between replicates.

The estimates for the variance of effect sizes between
replications shown in the first plot of Figure 3 are
slightly larger than the nominal values for small
values of �� . This upward bias is expected, even when
using REML to estimate variance components, due to
the truncation of negative variance estimates at zero.20

A somewhat related problem occurs when trying to test
whether there is variation between replications. The
corresponding null hypothesis would be H0 : �2� ¼ 0.
Classical approaches of statistical testing based on the
theory of maximum likelihood estimates do not work
here because the value zero is just on the boundary of
admissible variance estimates. There are some rather
sophisticated solutions for this problem21,22 which
rely on distributional assumptions which are not neces-
sarily always fulfilled. Given the small sample sizes
involved in animal trials, it is also questionable if
there would be sufficient power to test this hypothesis
formally. We would recommend planning the sample
size of the study for testing the fixed treatment effect
�eff using the linear mixed model. Sample-size calcula-
tions will necessarily be based on simulations similar to
those presented in the previous section. The estimates
of �2� can then serve as an indicator for variability
between replicates, but we would refrain from formal
testing.

The problem of experimental replication and estab-
lishing whether there is a treatment effect and if it varies
between replicates is somehow similar to statistical
questions occurring in meta-analysis, where the vari-
ation of effect sizes between studies is also typically
modelled by a random effect.23,24 However, there are
a few particularities which make the situation of experi-
mental replications in animal trials different. First of
all, the researcher has the luxury of completely planning
the experimental setting, including the number of rep-
lications and sample size per replicate. This allows the
statistical properties of different designs to be studied

Table 2. Estimated probability of type I error
�eff ¼ 0
� �

and power �eff 2 f1, 2g
� �

for the ‘two-
out-of-three’ rule for different levels of vari-
ation �2

� between treatment effects.

�2
� 0.01 0.25 1

�eff¼ 0 0.007 0.032 0.117

�eff¼ 1 0.647 0.604 0.568

�eff¼ 2 1 0.995 0.923
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in advance and then the best one to be chosen, whereas
in meta-analysis, one typically has to work with the
number of published articles which are available for
one’s research question. On the other hand, the
sample sizes of articles included in a meta-analysis are
typically much larger than those considered in animal
trials, which makes distributional assumptions for the
mixed model more likely to hold.

Our simulation study suggests that given a fixed total
number of animals, that is, under economic constraints,
it is better to perform many smaller experiments
than only a few replications of larger experiments, par-
ticularly if one expects the observed effect sizes to
change between replications. This finding seems to be
quite intuitive because with more replicates, it becomes
easier to estimate the variation between individual
experiments. Having only three experiments, it is
almost impossible to obtain a reliable estimate of the
variance if there is actually variation between replica-
tions. This speaks against the ‘two-out-of-three’ rule if
it is enacted with the intention of showing replicability
of results and might actually be an important consider-
ation to increase reproducibility of preclinical results.

We are aware that in terms of logistics and time
constraints, it might not always be possible to repeat
experiments too often in the same lab and that having
many small experiments might be more expensive than
having fewer larger experiments. However, our recom-
mendation goes well with recent discussions that
increasing variation in animal trials might be important
in obtaining more reproducible results.25,26 One could
imagine, for example, that several small replications
are conducted in multiple labs which would naturally
provide heterogeneity. Effects observed under such a
design are certainly more likely to be reproducible
than studies performed only by one lab.

Our discussion focused on pre-planned experimental
replications, how these are applied in certain fields of
preclinical research and the statistical consequences of
this practice. We want to point out that replication
studies are usually performed quite differently where,
based on the results of one study, a replication study
is specifically planned to confirm the original results
(see Piper et al.27 for an in-depth discussion about
such replication studies). A different alternative to
design replication studies in animal trials could be
adaptive designs.28–31 The idea has been suggested
already recently32 but has not really been explored in
practice. Adaptive designs might help to derive suitable
sample sizes in experimental replicates, depending on
the outcome of the first experiment, or discard repli-
cates if appropriate. We believe that adaptive designs
might have quite some potential in the context of pre-
clinical research, but a more thorough discussion is
beyond the scope of this article.

Finally, in our opinion, it is really important that
journals publishing the results from animal studies
become stricter in terms or statistical methodology.
Shortcomings of experimental design and statistical
analysis of animal studies were already being discussed
extensively10 years ago,33,34 but changes in scientific
culture are rather slow.35 Recent efforts to establish
preregistration of animal trials are laudable, but there
is still much to be done. In particular, the practical
application of experimental replication we have
described here is extremely problematic. The reporting
on the number of experiments and the number of ani-
mals used per experiment is extremely poor, which is
bound to result in biased results. Researchers will tend
to present those results which fit and to conceal results
which contradict their hypotheses. Given the current
practice, there is often no way of knowing how many
experiments have actually been performed from which
the ‘representative’ experiment was chosen. It would be
a big improvement if journals requested study protocols
which were approved by animal ethics committees.
If not published, these could be given as a supplement.
In general, such a policy would increase the transpar-
ency of preclinical research. In view of our particular
discussion on replications of experiments, the relevant
strategies should be outlined already in advance in the
study protocol.
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Résumé

Le récent débat sur la reproductibilité des résultats scientifiques est particulièrement pertinent pour la
recherche préclinique utilisant des modèles animaux. Dans certains domaines de la recherche préclinique,
il est de coutume de répéter une expérience au moins deux fois pour démontrer sa reproductibilité. Si les
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résultats des deux premières expériences ne se corroborent pas, l’expérience peut être répétée une troi-
sième fois. Les données d’une expérience représentative sont parfois présentées. D’autres fois, des données
provenant de différentes expériences sont mises en commun. Cependant, il n’existe presque pas de lignes
directrices sur la façon de planifier une telle conception expérimentale ni sur la manière de communiquer
les résultats obtenus. Cet article fournit une analyse statistique approfondie de réplications expérimentales
préplanifiées, telles qu’elles sont actuellement souvent appliquées dans la pratique, et émet des recomman-
dations sur la façon d’améliorer la conception des études et l’analyse statistique.

Abstract

Die jüngste Diskussion über die Reproduzierbarkeit von wissenschaftlichen Ergebnissen ist besonders rele-
vant für die präklinische Forschung mit Tiermodellen. In bestimmten Bereichen der präklinischen Forschung
werden Versuche traditionell mindestens zweimal wiederholt, um die Replizierbarkeit nachzuweisen. Wenn
die Ergebnisse der ersten beiden Versuche nicht übereinstimmen, wird das Experiment unter Umständen ein
drittes Mal wiederholt. Manchmal werden dann Daten eines repräsentativen Experiments präsentiert, und
manchmal werden Daten aus verschiedenen Experimenten zusammengefasst. Es gibt jedoch kaum
Richtlinien dazu, wie ein derartiges Versuchsdesign geplant und wie über die erzielten Ergebnisse berichtet
werden soll. Dieser Artikel liefert eine gründliche statistische Analyse von vorab geplanten experimentellen
Replikationen, wie sie derzeit häufig in der Praxis angewendet werden, und gibt Empfehlungen, wie
Studiendesign und statistische Analyse verbessert werden können.

Resumen

La reciente discusión sobre reproducibilidad de resultados cientı́ficos es especialmente relevante para la
investigación preclı́nica con modelos de animales. En ciertas áreas de la investigación preclı́nica existe la
tradición de repetir un experimento al menos dos veces para demostrar la replicabilidad. Si los resultados de
los dos primeros experimentos no coinciden, entonces este puede repetirse una tercera vez. Algunas veces
pueden verse los datos de un experimento representativo, otras veces los datos de distintos experimentos
son agrupados en conjunto. No obstante, apenas existen directrices sobre cómo planificar este diseño experi-
mental y cómo transmitir los resultados obtenidos. Este artı́culo hace un análisis estadı́stico profundo sobre
replicaciones experimentales planificadas por adelantado ya que a menudo se aplican en la práctica y,
asimismo, hace algunas recomendaciones sobe cómo mejorar el diseño del estudio y los análisis estadı́sticos.
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