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Abstract

Breast cancers with PIK3CA mutations can be treated with PIK3CA inhibitors in hormone

receptor-positive HER2 negative subtypes. We applied a supervised elastic net penalized

logistic regression model to predict PIK3CA mutations from gene expression data. This

regression approach was applied to predict modeling using the TCGA pan-cancer dataset.

Approximately 10,000 cases were available for PIK3CA mutation and mRNA expression

data. In 10-fold cross-validation, the model with λ = 0.01 and α = 1.0 (ridge regression)

showed the best performance, in terms of area under the receiver operating characteristic

(AUROC). The final model was developed with selected hyper-parameters using the entire

training set. The training set AUROC was 0.93, and the test set AUROC was 0.84. The area

under the precision-recall (AUPR) of the training set was 0.66, and the test set AUPR was

0.39. Cancer types were the most important predictors. Both insulin like growth factor 1

receptor (IGF1R) and the phosphatase and tensin homolog (PTEN) were the most signifi-

cant genes in gene expression predictors. Our study suggests that predicting genomic alter-

ations using gene expression data is possible, with good outcomes.

Introduction

Targeted therapy has become a standard treatment for many cancer patients, however the

approach requires a test for a specific cancer genomic alteration, to treat patients. Several direct

genomic alteration tests have been developed and proven for their clinical utility to treat

patients [1, 2].

Machine learning approaches can be applied to detect genomic alterations. Machine learn-

ing algorithms can build prediction models from a large number of predictors, such as radio-

mic features [3], pathology image [4] or gene expression data [5]. Because most direct

genomic tests are more specific and sensitive than predictive models, machine learning

approaches may have limited roles in clinical practice, however, machine learning approaches

are ideal when direct tests are unavailable or fail.

RAS pathway activation predictions have been performed using gene expression data [5].

Authors used data from The Cancer Genome Atlas (TCGA), with a supervised elastic net

penalized logistic regression classifier, with stochastic gradient descent. Their model
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performance was 84% with an area under the receiver operating characteristic (AUROC)

curve, and 63% with an area under the precision-recall (AUPR) curve. Importantly, these

authors suggested their approach could be applied to other genomic alterations.

Breast cancer having PIK3CAmutations can be treated using PIK3CA inhibitors, in hor-

mone receptor-positive HER2 negative subtypes [6]. The PIK3CAmutation is the second most

common driver mutation after TP53, and is most frequently detected in endometrial carci-

noma (45%), followed by breast invasive carcinoma (24%), cervical squamous cell carcinoma,

endo-cervical adenocarcinoma (20%) and colon adenocarcinoma (16%) [7].

PIK3CA encodes the p110α catalytic subunit of phosphatidylinositol 30-kinase (PI3K). PI3K

is a protein kinase that phosphorylates phosphatidylinositol 4,5-biphosphate (PIP2) to generate

phosphatidylinositol 3,4,5-triphosphate (PIP3). The phosphatase and tensin homolog (PTEN)

converts PIP2 to PIP3 in contrast to PI3K. PIP3 is a second messenger that activates protein

kinase B (AKT), which is a serine/threonine-specific protein kinase. AKT inhibits apoptosis

and promotes cell proliferation [8].

We applied a supervised elastic net penalized logistic regression model to predict PIK3CA
mutations. We wanted to ascertain whether this prediction model approach could be applied

not only to RAS pathway activation, but also to PIK3CAmutation predictions. The purpose of

this study is to investigate the PIK3CAmutation prediction performance of machine learning

models.

Materials and methods

Dataset

We used the TCGA pan-cancer dataset. TCGA archives the following; exome sequencing,

gene expression, DNA methylation, protein expression, and clinical data from> 10,000 cancer

samples across 33 common cancer types. The TCGA dataset is publically available. PIK3CA
mutation data was extracted using cgdsr rpackage [9]. Gene expression data was downloaded

from the National Cancer Institute (NCI)’s Genomic Data Commons (GDC) website. This

archives data for TCGA (https://gdc.cancer.gov/about-data/publications/pancanatlas). Gene

expression in the TCGA pan-cancer dataset is batch-corrected with normalization.

The target variable was PIK3CAmutation status. PIK3CA status was considered positive

when the case had the following PIK3CA variants (C420R, E542K, E545A, E545D, E545G,

E545K, Q546E, Q546R, H1047L, H1047R, H1047Y) which were the target variants of the Ther-

ascreen PIK3CA RGQ PCR Kit, Qiagen, Hilden, Germany. This kit was approved as a com-

panion diagnostics test to treat with PIK3CA inhibitor by the United States Food and Drug

Administration.

Modeling process

To narrow down potential predictors, genes with a large median absolute deviation (> third-

quartiles) were selected. Thirty three cancer type dummy variables were included in predictor

variables. We split three-quarters of the dataset into the training set and one quarter into the

test set. Yeo-Johnson transformation was performed to correct skewness. Centering and scal-

ing were also performed. All preprocessing was performed using the recipe r package [10].

Penalized logistic regression was applied to prediction modeling. Ten-fold cross-validation

with target variable stratification was performed over the hyper-parameter grid: λ {10−5,

10−4,10−3,10−2,10−1, 100}, α {0.0, 0.25, 0.5, 0.75, 1.0}. Lambda (λ) is a penalty scaling parameter

and alpha (α) is a mixing parameter of penalty function (ð1 � aÞ=2 k b k2
2
þak b k1) [11].
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Assessing model performance

Model performance was evaluated using AUROC and AUPR curve approaches. The AUPR

approach is more informative than AUROC for imbalanced datasets [12]. The modeling pro-

cess and assessing model performance were performed with the tidymodels rpackage [13].

Results

Dataset summary

10,845 cases were available for both PIK3CAmutation and mRNA expression data. 5,128 out

of 20,502 genes were included in the modeling process, after filtering for median absolute devi-

ation, as described in the modeling process method. The prevalence rate for PIK3CAmutation

was 0.11 in all cases. The PIK3CAmutation prevalence rate in each cancer type varied. The

median prevalence rate of PIK3CAmutation for each cancer type was 0.03 (range 0–0.33)

(Fig 1).

Selecting model and performance estimation

For 10-fold cross-validation, the model with λ = 0.01 and α = 1.0 (ridge regression) showed

the best performance in terms of AUROC (S1 Fig). The final model was trained with the

selected hyper-parameters with the entire training set. The training set AUROC was 0.93 and

the test set AUROC was 0.84. The AUPR of the training set was 0.66 and the test set AUPR

was 0.39 (Fig 2A).

Performance of each cancer type

Because PIK3CAmutation prevalence varied across cancer types, the performance of each can-

cer type was investigated. The AUROC and AUPR were positively correlated between the

training sets and test sets in cancer type sub-analysis (Fig 2B). The AUPR was high in cancer

types with high PIK3CAmutation rates such as colon, breast and uterus cancer types. The

AUROC did not correlate with PIK3CAmutation rates of each cancer type (Fig 2C).

Important predictors

The top 30 important predictors are shown (Fig 3). The coefficient is the parameter of the pre-

dictor which represents the effect of the predictor on prediction. Insulin like growth factor 1
Receptor (IGF1R) mRNA expression was the strongest negative predictor, and PTEN was the

strongest positive predictor. Both IGF1R and PTEN are key players in the tyrosine kinase path-

way [8, 14]. The cancer types were important predictors. Some cancer types including uterine

carcinosarcoma (UCS), bladder urothelial carcinoma (BLCA), pancreatic adenocarcinoma

(PAAD), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC) were the strongest

predictors.

Discussion

Our model showed good performance in predicting PIK3CAmutations in various cancer

types. Our data suggested that the supervised elastic net penalized logistic regression model

could be applied not only to the RAS activation pathway, but also to other genomic alterations.

Both the RAS activation pathway and PIK3CAmutations are key, common cancer genomic

alterations. Because they exert significant effect on gene expression in cancer cells, prediction

from gene expression data can be good. However, the supervised elastic net penalized logistic
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regression model cannot be generalized or applied to other genomic alterations which have

have a weak effect on gene expression.

Prediction modeling from the TCGA pan-cancer dataset can be limiting in terms of data

preprocessing. The gene expression data is processed by between-sample normalization to

remove batch effects. If the model has been trained from between-sample normalization, a

new sample cannot be exactly processed with normalization which was done on trainset. A

model based on gene expression from the TCGA pan-cancer dataset has limitation in terms of

data preprocessing. It is necessary to develop a processing method that is independent of a

dataset, to apply gene expression data to the prediction model.

Fig 1. Prevalence rate of PIK3CA mutations across cancer types. Cancer type abbreviations are explained in the S1

Appendix.

https://doi.org/10.1371/journal.pone.0241514.g001
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Fig 2. Summary of modeling results. (A) Left: receiver operating characteristic (ROC) curve. Right: precision-recall

(PR) curve of training set and test set. The horizontal green line is the PIK3CAmutation rate (0.11) (B) Correlation

between training set and test set of the area under the receiver operating characteristic curve (AUROC), and the area

under the precision-recall curve (AUPR) among cancer types. The gray band is the 95% confidence interval.

Abbreviations are explained in the S1 Appendix. (C) Correlations between the PIK3CAmutation rate of the AUROC,

and the AUPR.

https://doi.org/10.1371/journal.pone.0241514.g002
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Our PIK3CA prediction model was similar to the RAS activation prediction model in terms

of AUROC (0.84). However the AUPR of our model was lower than the RAS activation model

(0.39 versus 0.63). The reason for our lower AUPR may be explained by an imbalanced dataset

that has the low prevalence rate of PIK3CAmutations [5]. The model for RAS activation

Fig 3. Coefficient model. (A) Top 30 high mRNA coefficients. (B) Cancer type coefficients. Cancer types

abbreviations are explained in the S1 Appendix.

https://doi.org/10.1371/journal.pone.0241514.g003
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trained with cancer types with more than 0.05 prevalence of RAS activation to avoid imbalance

classification problem. We included all cancer types in our modeling process. The lower preva-

lence rate of target variables meant our dataset had a lower AUPR baseline. In the sub-analysis

performance of each cancer type, the cancer types with higher PIK3CAmutation rates showed

better AUPRs.

Our model included cancer types as predictors, and they were stronger predictors than

gene expression. The varying prevalence of PIC3CA mutations across cancer types may be a

reason for the strong predictive power of cancer types.

Some significant gene expression predictors were closely related to the PTEN-PI3K path-

way. PTEN and IGFR1R were the strongest gene expression predictors, which has negative and

positive predictive powers. IGF1R is a tyrosine kinase receptor that activates PI3K [14], and

PTEN is an important regulator of PIP3 by dephosphorylating PIP3 [8].

Several studies have attempted to predict genomic alterations from gene expression data

[15, 16]. A study investigated PIK3CAmutation predictions using gene-expression signatures

which is a sum of the average of the logarithmic gene expression. The model showed good per-

formance AUROC 0.71 in an independent test set [15, 16]. Another study predicted copy

number alterations with gene expression, using a multinomial logistic regression model with

least absolute shrinkage and selection operator (LASSO) parameters [17]. The prediction of

the 1p/19q codeletion was very good, with an AUROC of 0.997, and gene-level predictions

were good, with an AUROC of 0.75 [17]. A logistic regression model was used forMYCN
Proto-Oncogene, BHLH Transcription Factor (MYCN) gene amplification in neuroblastoma

[18].

The clinical utility of PIK3CA mutation prediction from mRNA expression is unclear

because most direct genomic tests are more specific and sensitive than predictive models. Our

prediction model is not an application that is immediately applicable to a cancer patient for

detection of PIK3CA mutation. It is not known how it will be used, but finding out the muta-

tion prediction performance using gene expression data could play a role in advancing

machine learning to be helpful in patient treatment.

Our study suggested that the prediction of genomic alterations using gene expression data

was possible, with good performance. However, improved performances are required for clinical

tests, and the standardization of generation processing of gene expression data is also needed.

Supporting information

S1 Appendix. Abbreviations of cancer type.

(PDF)

S1 Fig. Hyperparameter tuning and performance assessment in 10-fold cross-validation

resampling. The x-axis is a penalty scaling parameter: λ {10−5, 10−4,10−3,10−2,10−1, 100}, color is

mixture hyperparameter of penalty function: α {0.0, 0.25, 0.5, 0.75, 1.0}. y-axis is estimates of area

under the receiver operating characteristic (AUROC) using 10-fold cross-validation resampling.

(TIF)
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