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Abstract: Mantle cell lymphoma (MCL) is a heterogeneous malignancy with a broad spectrum of
clinical behavior from indolent to highly aggressive cases. Despite the fact that MCL remains in most
cases incurable by currently applied immunochemotherapy, our increasing knowledge on the biology
of MCL in the last two decades has led to the design, testing, and approval of several innovative
agents that dramatically changed the treatment landscape for MCL patients. Most importantly, the
implementation of new drugs and novel treatment algorithms into clinical practice has successfully
translated into improved outcomes of MCL patients not only in the clinical trials, but also in real
life. This review focuses on recent advances in our understanding of the pathogenesis of MCL, and
provides a brief survey of currently used treatment options with special focus on mode of action
of selected innovative anti-lymphoma molecules. Finally, it outlines future perspectives of patient
management with progressive shift from generally applied immunotherapy toward risk-stratified,
patient-tailored protocols that would implement innovative agents and/or procedures with the
ultimate goal to eradicate the lymphoma and cure the patient.
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1. Introduction

Mantle cell lymphoma (MCL) accounts for approximately 7% of newly diagnosed non-Hodgkin
lymphomas and in most instances is characterized by overexpression of cyclin D1 (CCND1) as a
result of translocation t(11;14) (q13;q32). MCL is a heterogeneous disease with a broad spectrum
of clinical behavior from indolent cases that do not require therapy for years to highly aggressive,
hyperproliferative blastoid MCL [1]. It was repeatedly demonstrated that the clinical behavior directly
or indirectly correlates with the genetic background of the disease. According to the WHO 2016
update of lymphoid malignancies, MCL now exists in two distinct categories (Figure 1) [2]. The first is
nodal MCL (80–90% of cases) with unmutated immunoglobulin heavy chain variable region genes
(IGHV), Sex-Determining Region Y-Box 11 (SOX11) overexpression, nodal and frequent extranodal
involvement, and generally aggressive clinical behavior as a result of a higher degree of genomic
instability. The cell of origin of the nodal MCL is believed to be a naïve, pre-germinal B-cell. The second
is non-nodal leukemic MCL (10–20% of cases) with mutated IGHV, SOX11 negativity, lymphocytosis,
splenomegaly, and typically indolent biological behavior due to low numbers of genetic lesions and
epigenetic modifications. The cell of origin of the non-nodal leukemic MCL is presumably a memory
B-cell with germinal center experience. Histologically, MCL can be divided into classical, pleomorphic,
and blastoid morphology. MCL can also undergo histological transformation from classical to blastoid
morphology, called blastoid transformation. In addition to this “classical” blastoid transformation, we
have described and molecularly characterized the transformation from chronic lymphocytic leukemia
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(CLL) to blastoid MCL (MCL-variant Richter transformation) [3]. MCL affects more often men than
women (2–3:1). The typical presentation at diagnosis includes generalized lymphadenomegaly (often
in the form of bulky masses), splenomegaly (30–50%), bone marrow infiltration (70–80%), peripheral
blood leukemization, and frequent extranodal (extramedullary) involvement (40–50%), typically of the
gastrointestinal tract [4,5]. Central nervous system (CNS) involvement is detectable in <5% of patients
at diagnosis, most frequently as leptomeningeal disease [6]. Diagnostic work-up includes lymph
node and trephine biopsy with confirmation of overexpression of cyclin D1 and translocation t (11,14)
by fluorescence in situ hybridization (FISH). Positron emission tomography–computed tomography
(PET-CT) scan reveals 2-deoxy-2-fluoro-D-glucose (FDG)-avid lymphoma in a vast majority of cases.
Flow cytometry usually confirms the presence of MCL clone with typical immunophenotype (CD20+,
CD5+, CD22+, CD79b+, FMC-7+, CD23−, CD200−).
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MCLs) to aggressive disease with TP53 aberration, complex molecular–cytogenetic alterations or even
complex karyotype changes.

2. Pathogenesis of MCL

MCL cells are derived from antigen-experienced B lymphocytes [7,8]. Nodal and non-nodal MCLs
are derived from different B-cell counterparts: germinal center (GC)-inexperienced naïve B-cell in
the case of nodal MCL and GC-experienced memory B-cell in the case of non-nodal, leukemic MCL
(Figure 1). The major factor that prevents naïve B-cells of the nodal MCLs to enter GC reactions is
expression of sex-determining region Y-Box 11 (SOX11) neural transcription factor (see later).

2.1. Cyclin D1

Overexpression of cyclin D1 belongs to very early events in the process of oncogenic transformation.
Apart from overexpression of full-length cyclin D1, a subset of hyperproliferative MCL was shown
to harbor a truncated form of cyclin D1 in most cases as a result of genomic deletions in the CCND1
3′UTR region leading to transcription of short variants of cyclin D1 mRNA with increased stability [9].
In addition, cyclin D1 protein overexpression is further enhanced by its increased stabilization
mediated by aberrant overactivation of the PI3K pathway [10]. Rare cases of cyclin D1-negative
MCL are characterized by frequent rearrangements of CCND2 and CCND3 [11]. A subset of cyclin
D1-/D2-/D3-negative MCL with aggressive features has cyclin E dysregulation [12].

2.2. Recurrent Molecular Cytogenetic Aberrations

Cyclin D1 overexpression alone is insufficient for malignant transformation of lymphocytes,
which has been confirmed to require additional molecular aberrations [13–15]. Secondary genetic and
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epigenetic lesions leading to deregulation of key signaling pathways drive MCL pathogenesis. MCL
represents a lymphoma subtype with high numbers of recurrent cytogenetic–molecular aberrations
at diagnosis. Delfau-Larue et al. reported that as few as 20% of patients had no detectable copy
number alteration besides the translocation t(11;14), while 80% of patients had one or more of the
analyzed aberrations including deletions of tumor suppressor P53 (TP53), ataxia-telangiectasia mutated
(ATM), cyclin-dependent kinase inhibitor 2A (CDKN2A), CDKN1B, and retinoblastoma 1 (RB1), or
amplifications of B-cell lymphoma 2 (BCL2), V-Myc myelocytomatosis viral oncogene homolog (MYC),
CDK2, CDK4, and human homolog of mouse double-minute 2 (MDM2).

In recent years, whole exome sequencing by next-generation sequencing approach enabled
identification of recurrent somatic mutation in large numbers of patients at diagnosis and at disease
relapse [13,14,16–21]. This enabled gaining insight into a complex interplay of genetic lesions and
our better understanding of cell-intrinsic mechanisms that underlie lymphoma progression and drive
drug resistance [22]. The most frequently mutated genes in MCL include ATM (40–50%), CCND1
(14–35%), TP53 (14–31%), mixed lineage leukemia protein 3 (MLL3, 16%), MLL2 (12–20%), tumor
necrosis factor associated factor 2 (TRAF2, 7–10%), RB1 (10%), nuclear receptor binding SET domain
protein 2 / Wolf-Hirschhorn syndrome candidate 1 (NSD2/WHSC1, 7–31%), baculoviral inhibitor of
apoptosis (IAP) repeat containing 3 (BIRC3, 5–8%), NOTCH1 (5–14%), NOTCH2 (5%), CDKN2A (6%),
and caspase recruitment domain family member 11 (CARD11).

3. Recurrent Molecular/Cytogenetic Lesions

Genetic lesions recurrently found in patients with newly diagnosed MCL can be grouped into
several functional categories including cell cycle control (CCND1, RB1, CDK2, CDK4, CDKN2A,
CDKN1B, TP53, MYC), genotoxic stress pathways (TP53, ATM, CDKN2A, MDM2), apoptosis (BCL2,
MDM2, TP53, CDKN2A), key prosurvival cell signaling pathways (TRAF2, BIRC3, CARD11), and
epigenetic regulation (NSD2/WHSC1, MLL2, MLL3, or SWI/SNF related, matrix associated, actin
dependent regulator of chromatin SMARCA4) (Figure 1).

3.1. Genotoxic Stress Pathways

Deletions of 17p13 or mutations of TP53 genes belong to the most frequent findings in MCL
(20–34%) and were associated with poor outcome in the majority of studies published so far [23,24].
Interestingly, Eskelund et al. recently reported that TP53 mutations correlated with significantly worse
outcome compared to TP53 deletions [25]. Immunohistochemistry (IHC) analysis of p53 protein
expression correlated high p53 expression and lack of p53 expression with adverse outcome [26].
Curiously, lack of p53 protein expression did not correlate with biallelic TP53 gene deletion and the
reasons remain speculative. In a subset of MCL, TP53 inactivation can proceed through upregulation
of MDM2 E3 ubiquitin-protein ligase.

Deletions of 9p lead to inactivation of CDKN2A, which encodes two different tumor suppressors:
p16INK4A, an inhibitor of CDK4, and structurally unrelated p14ARF, transcribed by alternate open
reading frame (ARF). P14ARF sequesters MDM2, which leads to p53 stabilization. Similarly to TP53
alterations, CDKN2A deletions (monoallelic and biallelic) have been associated with adverse outcome
in the majority of reports published so far, even in the context of high-dose cytarabine-based front-line
therapies [23].

The ataxia-telangiectasia mutated (ATM) gene belongs to one of the most frequently deleted or
mutated genes in newly diagnosed MCL patients (40–50%). Rarely, gains of ATM have been described
too. ATM encodes a tumor suppressor involved in DNA damage response. Isolated ATM aberrations
have never been associated with survival in MCL [19,23,27]. It was reported that ATM-deficient cells
might be more susceptible to PARP1 inhibitors (e.g., olaparib, veliparib) and to radiotherapy [28,29].
To our best knowledge, these preclinical observations were unfortunately not validated in patients in
clinical trials up to the present. Remarkably, ATM deletions have never correlated with inferior outcome
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for MCL. One plausible explanation is that ATM aberrations might on one hand increase genetic
instability, but on the other hand might render lymphoma cells more sensitive to chemotherapy [30].

3.2. Cell Cycle Deregulation

Cell cycle deregulation is a hallmark of MCL. Overexpression of cyclin D1, amplification of CDK4,
and deletion of CDKN2A synergistically enhance activity of the cyclin D1-CDK4 complexes, which
mediate their oncogenic activity by sequestering a tumor suppressor retinoblastoma protein (RB1)
by phosphorylation (Figure 2). RB1 protein inactivation by (hyper) phosphorylation (mediated by
cyclin D1-CDK4 complexes) or by RB1 gene deletion (observed in up to 30% of MCL) results in release
of E2F transcription factor, a key trigger of G1-S phase transition [31]. E2F activity can be further
boosted by MYC gains/amplifications, which has been associated with highly aggressive blastoid
phenotype [32,33]. E2F activity induces accumulation of cyclin E-CDK2 complexes, the activity of
which is enhanced by frequent CDK2 gene amplifications and functional blockage of CDK2 inhibitors
p21 and p27.
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3.3. Deregulation of Apoptosis

B-cell lymphoma 2 (BCL2) protein belongs to key antiapoptotic molecules with frequent
overexpression across B-NHL subtypes. Virtually all MCL primary cells (over)express BCL2. Molecular
mechanisms of BCL2 overexpression in MCL are complex and comprise BCL2 genomic gains (24%)
and BCL2 mRNA overexpression as a result of aberrant activation of prosurvival pathways (e.g.,
nuclear factor kappa B (NFκB)) or as a result of loss of its negative regulators (e.g., loss of micro RNA
miR-15/16 as a result of frequent 13q deletions). In addition, post-translational deregulations might
contribute to BCL2 protein stabilization (e.g., decreased BCL2 degradation as a consequence of FBXO10
deficiency) [34–37]. Overexpression of myeloid cell leukemia 1 (MCL1), another key antiapoptotic
protein, has been reported in MCL [38]. Biallelic deletions of BCL2-like 11 (BCL2L11/BIM) have been
described in some studies, but not confirmed in our own study [39–42].
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3.4. Prosurvival Signaling Cascades in MCL

3.4.1. B-Cell Receptor (BCR) Signaling

BCR signaling plays a central role in the survival and proliferation of MCL cells (Figure 3) [43].Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 21 
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diacylglycerole; PDK1 = phosphoinositide-dependent kinase 1).

Indeed, the innovative anti-lymphoma drugs were designed to interfere with the aberrant BCR
signaling to inhibit tumor proliferation and trigger apoptosis. BCR signaling leads to activation of
the signalosome complex that triggers key downstream effector molecules, the aberrant activation
of which orchestrates biology of MCL cells. At the same time, some of these molecules represent
established or promising druggable targets in therapy of MCL including the spleen tyrosine kinase
(SYK), Bruton’s tyrosine kinase (BTK), phosphoinositide-3 kinase (PI3K), protein kinase B (AKT),
mammalian target of rapamycin (mTOR), nuclear factor kappa B (NFκB) transcription factors and their
regulators, mucosa-associated lymphoid tissue lymphoma translocation protein (MALT1), and others.
So-called chronic BCR signaling is activated by ligation of antigen to BCR and results in activation
of BTK, phospholipase C gamma 2 (PLCγ2), protein kinase C (PKC), and CBM complex comprising
caspase recruitment domain family member 11 (CARD11), B-cell lymphoma 10 (BCL10), and MALT1.
So-called tonic BCR signaling is active even in the absence of antigen and signals predominantly
through phosphoinositide 3-kinases (PI3Ks).
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3.4.2. PI3K–AKT–mTOR Pathway

PI3K is activated through BCR and CD19, as well as by oncogenic lesions, for example,
overexpression of microRNA (miRNA) cluster miR-17–92 by chromosome 13q31-2 gains, which
suppresses expression of PTEN and PHLPP2 phosphatases, key negative regulators of the
PI3K–AKT–mTOR pathway [44]. A PI3K δ inhibitor, idelalisib, approved for the therapy of follicular
lymphoma and chronic lymphocytic leukemia, demonstrated promising anti-lymphoma efficacy in
R/R-MCL with 40% ORR, and a new generation PI3K δ inhibitor, parsaclisib, is currently tested in a
phase II clinical trial in patients with R/R MCL (ClinicalTrials.gov number NCT03235544) [45].

3.4.3. Nuclear Factor kappa B (NFκB) Pathway

BCR signaling leads to activation of the canonical NFκB pathway (BCR-NFκB), namely through
the CARD11–BCL10–MALT1 (CBM) complex [46]. Upon CBM-mediated activation, the NFκB family
of transcription factors (p65/RelA, c-Rel, RelB, p50/p105/NFκB1, and p52/p100/NFκB2) are released
from their inhibitors belonging to the IκB family, and are translocated to the nucleus [47]. It was
reported that ibrutinib-resistant MCL cell lines demonstrated genetic lesions leading to aberrant
activation of the alternative NFκB pathway, namely activation of mitogen-activated protein kinase 14
(MAP3K14)/NFκB-inducing kinase (NIK). These genetic lesions comprise recurrent mutations of TRAF2
and BIRC3 in 6 and 10% of primary cell samples, respectively [18]. BIRC3/cIAP2 belongs to the family
of inhibitors of apoptosis. Despite this denomination, BIRC3/cIAP2 is a poor inhibitor of caspases.
Instead, BIRC3 functions as E3 ubiquitin ligase that regulates classical NFκB signaling [48]. Together
with BIRC2/cIAP1, TRAF2, and TRAF3, BIRC3/cIAP2 forms a multiprotein complex that degrades
MAP3K14/NIK kinase, thereby shutting down alternative NFκB pathway [49]. Loss-of-function
mutations of BIRC3, TRAF2, and TRAF3 thus result in aberrant overactivation of alternative NFκB
signaling, which was repeatedly associated with drug resistance. Recurrent BIRC3 mutations in
patients with CLL were associated with resistance to fludarabine and independently correlated with
inferior survival [50,51]. It was demonstrated that these genetic lesions conferred dependence of MCL
cells on the protein kinase MAP3K14/NIK, which thus represents a promising druggable target in
this subgroup of MCL. Another study reported recurrent mutations of CARD11 (5.5% of 173 MCL
samples) coding for a scaffold protein, an essential component of the CBM complex, which is required
for BCR-induced NFκB activation in MCL primary cells [20]. By analogy with TRAF2 and BIRC3,
CARD11 mutations conferred resistance to ibrutinib and to NFκB inhibitor lenalidomide [20]. MALT1,
another key component of the CBM complex, was also reported to stabilize MYC oncoprotein, and its
inhibition was associated with cytotoxicity in vitro and in vivo [52].

3.4.4. Notch Pathway

During the canonical Notch signaling, ligands of the Delta-like (DLL1, 3, 4) and Jagged family
(JAG1, JAG2) expressed on the surface of neighboring cells bind to the single-pass transmembrane
Notch receptors (Notch1–4) on the target cells, thereby triggering γ-secretase-mediated cleavage of
the intracellular part of Notch called INC that translocates to the nucleus, forming a short-lived
multiprotein transcription factor complex [53]. C-terminal PEST (rich in proline (P), glutamic acid (E),
serine (S), and threonine (T)) domain of INC is responsible for its rapid ubiquitin ligase-mediated
degradation/inactivation. Like in CLL, NOTCH mutations recurrently found in 5–12% of MCL patients
cluster mainly in the C-terminal PEST domain leading to enhanced stability of INC protein and aberrant
(over)activation of Notch signaling, which is associated with shorter survival [17,54]. Therapeutic
Notch targeting, however, remains so far a domain of preclinical research.

3.5. Epigenetic Modifiers in Pathogenesis of MCL

Mutations NSD2 alias WHSC1 (alias multiple myeloma SET domain-containing protein type III
(MMSET)) coding for a histone methyltransferase specific for methylation of histone 3 lysine 36 (H3K36)

ClinicalTrials.gov
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results in reduced apoptosis and enhanced proliferation, clonogenicity, adhesion, and migration of the
mutated cells [55]. It was reported that NSD2 mediates methylation of PTEN, thereby enhancing its
ability to repair double-strand DNA breaks through dephosphorylation of yH2AX in the nucleus [56].
Inhibition of NSD2 sensitized cancer cells to PI3K inhibitors and DNA-damaging agents. In MCL,
mutations of NSD2/WHSC1 correlated with shorter survival and blastoid transformation [19,57].
NSD2/WHSC1 thus emerged as a new relevant druggable target in MCL and other cancers with
recurrent gene mutations [58].

The other epigenetic modifiers recurrently mutated in MCL comprise MLL2, MLL3, and SMARCA4.
Loss-of-function mutations of MLL2, an H3K4 methyltransferase, has been described in diffuse large
B-cell lymphoma [59]. Histone-deacetylase (HDAC) inhibitors belong to innovative anticancer drugs.
Unfortunately, HDAC inhibitors tested so far (vorinostat, panobinostat, and abexinostat), single-agent
or in combination with various anti-lymphoma drugs, demonstrated modest anti-MCL efficacy in
clinical trials published so far [60–64]. Mutations in SMARCA4 have been associated with poor response
to ibrutinib plus venetoclax therapy through upregulation of BCL2L1/BCL-XL [65].

3.6. SOX11

As already mentioned, MCL can be divided into nodal and non-nodal, leukemic MCL [66]. Nodal
MCL tends to be biologically aggressive and is characterized on a molecular level by unmutated
status of the IGHV gene locus, and de novo expression of SOX11 transcription factor, which is
not expressed in normal B-cells. Non-nodal, leukemic MCL is typically an indolent disease with
high levels of somatic hypermutation of IGHV and lack of SOX11 expression. A recent study
identified differentially methylated regions in the SOX11 promotor of nodal MCL cells, thereby
providing at least partial explanation for the aberrant SOX11 expression in this MCL category [67].
SOX11 indeed has widespread impact on MCL biology. It contributes to tumor development by
altering the terminal B-cell differentiation program and preventing MCL cells from entering germinal
center reactions [68]. SOX11-mediated transactivation of PAX5 transcription factor leads to indirect
blockage of plasma cell differentiation through suppression of PR/SET domain 1 (PRDM1), also
known as B-lymphocyte-induced maturation protein 1 (BLIMP1) [69]. Overexpression of SOX11 in
a transgenic mouse model (Eµ-SOX11-EGFP) led to enhanced BCR signaling in murine B-cells and
induced oligoclonal B-cell hyperplasia in the spleen with an immunophenotype (CD5+CD19+CD23−)
identical to human MCL [70]. In MCL cells, SOX11 regulates cell migration, invasion, growth, and
angiogenesis [71,72].

In conclusion, pathogenesis of MCL probably proceeds over years with step-by-step accumulation
of disease-critical mutations since early acquisition of t(11,14), de novo expression of SOX11 (in
nodal MCLs) to aggressive disease with complex molecular–cytogenetic alterations (or even complex
karyotype changes) (Figure 1). Not all patients are diagnosed with clinically manifest MCL, but
rather, thanks to regular medical check-ups, based on detection of lymphocytosis during routine blood
cell collections.

4. Prognostic Factors before Therapy

Mantle cell lymphoma prognostic index (MIPI) is a generally accepted, widely used, MCL-specific
prognostic score based on four inputs: age, leukocytosis, lactate dehydrogenase (LDH), and performance
status according to Eastern Cooperative Oncology Group (ECOG) [73,74]. MIPI can divide patients
into three prognostic groups: high, intermediate, and low risk with five-year overall survival (OS)
of 83%, 63%, and 34%, respectively [74]. Complex karyotype was repeatedly associated with dismal
outcome [75,76]. Several important prognostic markers are derived from immunohistochemistry
analysis of formalin-fixed, paraffin-embedded tissue sections. They include proliferation index by
Ki-67, expression of SOX11, and morphology (classic versus pleomorphic/blastoid). In most published
studies, Ki-67 ≥ 30% correlated with shorter survival [77,78]. A simple combination of MIPI and
Ki-67 leads to so-called combined MIPI (MIPIc) that can divide patients into four prognostic groups
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with five-year OS of 85%, 72%, 43%, and 17% [78]. Blastoid variant MCL was associated with dismal
outcome [79]. Absence of SOX11 expression was associated with non-nodal indolent forms of MCL
(discussed above). The major disadvantage of these markers is their dependence on tissue biopsy. Not
all patients are, however, necessarily subject to lymph node biopsy. Many patients with bone marrow
infiltration can be diagnosed based on trephine biopsy, let alone the fact that patients with sufficient
numbers of circulating MCL cells can be safely diagnosed based on flow cytometry and confirmation
of t (11;14) translocation by locus-specific FISH.

Reliable prognostic markers that would enhance prognostic value of MIPI are needed for future
proper stratification of front-line therapies. Many patients with low-risk disease benefit from a standard
immunochemotherapy regimen (i.e., induction and maintenance therapy), or might be candidates for
a diverse chemo-free regimen [80]. Patients with adverse prognostic factors (high-risk MIPI, Ki-67 ≥
30%, TP53 and CDKN2A mutations, blastoid morphology) do not benefit even from the intensified
immunochemotherapy regimen followed by autologous stem cell transplantation and maintenance.

Our better understanding of the pathophysiology of the disease will lead to more reliable
prognostic (and predictive) markers, more efficient and less toxic treatment, improved outcome, and
ultimately the eradication of MCL cells and curing of the patients.

5. Current Treatment Approaches and Outcomes of Patients after First-Line Treatment
Approaches

Currently, the therapy of MCL is stratified basically by age (younger versus elderly), or
more precisely, by the capability to undergo high-dose therapy (HDT) with autologous stem cell
transplantation (ASCT) (i.e., transplantable versus nontransplantable patients). The physician’s
decision, based on medical history, diagnostic work-up, and preferences of the patient, belongs to
decisive factors in choosing the most suitable type of therapy [81]. For example, in the case of non-nodal
MCL with no clinical symptoms that would indicate a need for therapy (e.g., B-symptoms, cytopenia,
etc.), many patients are subject to watchful observation. In patients in the grey zone between younger
and elderly (usually 65–70 years), adverse cytogenetics, blastoid morphology, high proliferation index by
Ki-67, or extensive extranodal involvement might topple the decision-making in favor of an intensified
approach with ASCT. Better stratification of upfront therapies with implementation of new targeted
agents is an urgent task for the upcoming decade. At most centers, younger patients are treated with
an intensified immunochemotherapy regimen based on anthracyclins, high-dose cytarabine, cisplatin,
and anti-CD20 antibody (R)ituximab (alternation of R-CHOP, i.e., cyclophosphamide, vincristine,
doxorubicin, and prednisone, and R-DHAP, i.e., cisplatin, high-dose cytarabine, and dexamethasone,
Nordic MCL2 protocol, or MD Anderson protocol) [82–85]. Currently, the standard of care still
implements consolidation in responders with HDT-ASCT, even if the benefit of HDT-ASCT is uncertain,
especially in patients with TP53 aberrations [83,84,86]. All patients should be treated with rituximab
maintenance (RM), usually every 2–3 months for 2–3 years [4,87–90]. The median OS of younger
patients who finish the induction therapy and HDT-ASCT consolidation and start RM is more than 12
years [91,92]. Relapses in the low-risk MIPI patients are rare, indicating potential cure at least in some
of these patients. Elderly patients are treated with an R-CHOP-like regimen or R-bendamustine, with
or without cytarabine [85,93,94]. Bortezomib, in combination with cyclophosphamide, doxorubicin,
and prednisone (so-called VR-CAP), was the only immunochemotherapy regimen that was associated
with prolonged overall survival (OS) compared to R-CHOP in a phase III randomized trial [95].
Elderly patients treated with an R-CHOP-like regimen benefit from RM [5,96–98]. Maintenance
therapies other than rituximab are currently tested in diverse clinical trials including lenalidomide or
bortezomib [99,100]. Median progression-free survival (PFS) of the elderly patients who start RM is
>5 years.
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6. Prognostic Factors during and after Induction

Achievement of complete remission (CR) by CT or PET-CT has been repeatedly correlated with
longer PFS [101]. Interestingly, time to progression is a strong, independent prognostic factor in
patients with R/R MCL [102]. Minimal residual disease (MRD) is detection of a residual disease clone,
which is not detectable by standard restaging procedures including CT, PET-CT, or trephine biopsy. It
was repeatedly demonstrated that MRD status after induction therapy correlates with PFS [103]. Bone
marrow is a better source for MRD detection compared to peripheral blood [101]. Reappearance of an
MCL clone in a patient who had achieved MRD negativity is called “molecular relapse”, and it was
demonstrated that molecular relapse precedes clinical relapse by several months. Regular monitoring
of MRD in the follow-up period (i.e., after end of induction) thus enables identification of patients
with molecular relapse of an MCL clone and subsequent therapeutic intervention, most commonly
repeated administrations of anti-CD20 rituximab until MRD negativity has been restored [104]. In
most centers, MRD is assessed by flow-cytometry (with sensitivity up to 10−4) or quantitative PCR
(with sensitivity <10−4) [105]. Other targets for MRD detection (e.g., SOX11, cyclin D1 mRNA) are less
commonly used [105]. Prognostic significance of MRD status after induction depends on the type of
induction, as well as maintenance therapy. We have demonstrated that at least in the elderly patients
treated with R-CHOP-like induction and rituximab maintenance, MRD status by quantitative PCR
after induction loses its prognostic significance, most probably due to sustained immune-mediated
control of the residual lymphoma clone (by rituximab) [101].

7. Salvage Therapy of Relapsed/Refractory MCL and Clonal Evolution of the Disease

Relapse/refractory (R/R) MCL is an incurable disease with median overall survival of 1–2
years [91]. Despite that, with our increasing knowledge on the biology of MCL achieved in the last two
decades, several innovative agents have been designed, tested, and approved for the therapy of MCL,
dramatically changing the treatment landscape for MCL patients. Most importantly, the improvements
from clinical trials appear to have translated into real life [106,107]. Cell-intrinsic molecular mechanisms
associated with relapse after first-line immunochemotherapy are still poorly understood. We have
demonstrated that downregulation of deoxycytidine-kinase (dCK), the rate-limiting enzyme of the
nucleotide salvage pathway, is responsible for acquired resistance not only to cytarabine, but also to
other nucleoside analogues including fludarabine, gemcitabine, and cladribine [108]. In recent years,
there have been emerging data on clonal evolution of MCL after failure of front-line therapies. Our
better understanding of the molecular basis of the relapse will lead to better choices of the subsequent
therapy, which is vital because, fortunately, there are many effective options now.

7.1. Bruton’s Tyrosine Kinase (BTK) Inhibitors

BTK inhibitors ibrutinib and acalabrutinib have revolutionized the therapy of R/R MCL. Ibrutinib
and acalabrutinib were approved by the U.S. Food and Drug Administration (FDA) in 2013 and
2017, respectively [109,110]. Ibrutinib is currently the drug of choice for patients with R/R MCL
who have undergone at least one systemic therapy [111]. In a phase 3 clinical trial, ibrutinib led to
significant improvement in PFS and better tolerability compared to temsirolimus in patients with
R/R MCL [112]. In prospective and retrospective studies published so far, ibrutinib monotherapy
achieved an overall response rate (ORR) in 55–68% patients with median duration of response of 6–18
months [111–115]. Unfortunately, virtually all patients on ibrutinib sooner or later relapse. Relapses in
patients who discontinue BTK inhibitors (for disease progression, blastoid transformation, or ibrutinib
intolerance) represent an unmet medical need in the management of MCL patients. The majority of
patients with relapses/progressions on ibrutinib have an especially dismal prognosis. The median OS
after ibrutinib ranged between 3 and 10 months in most studies published so far [57,113–115]. No
treatments that would improve the outcome of postibrutinib patients have been identified so far and
this remains the major challenge for future clinical trials [113]. In transplant-eligible patients, ibrutinib



Int. J. Mol. Sci. 2019, 20, 4417 10 of 21

bridging to allogeneic stem cell transplantation should be considered, especially in ibrutinib-sensitive
R/R-MCL [116,117].

Molecular mechanisms of primary or acquired resistance to ibrutinib are a matter of extensive
investigation [118,119]. In trials published so far, primary resistance to ibrutinib was observed in
10–35% patients. Mutations of BTK, for example, C481S, which alters the binding site of BTK from
irreversible to reversible, leading to secondary ibrutinib resistance, have been detected only in a
minority of ibrutinib-resistant MCL cells (15–20%). Aberrant activation of prosurvival signaling
pathways, which substitute for the inhibited proximal BCR signaling, namely PI3K–AKT–mTOR,
classical and alternative NFκB, or integrin-β1, was identified as a major player responsible for the
acquired resistance to BTK inhibitors [118,120]. Molecular mechanisms underlying the reciprocal
activation of prosurvival pathways are complex and are associated with both cell-intrinsic clonal
evolution (selection of “favorable” somatic mutations) as well as cell-extrinsic dynamic feedback of
MCL cells with the tumor microenvironment resulting in kinome adaptive reprogramming [121].
Mutation of CARD11, MALT1, TRAF2, TRAF3, or BIRC3 lead to aberrant activation of classical or
alternative NFκB [20]. In line with these observations, two of five patient-derived lymphoma xenografts
used in our recent study on experimental therapy of MCL with the combination of venetoclax and
MCL1 inhibitor S63845 harbored mutations of TRAF2, and both these PDX models were resistant
to experimental therapy with ibrutinib (unpublished data) [42]. Enhanced dependence on BCL2
antiapoptotic signaling has been observed in ibrutinib-resistant cells. Concurrent mutations of TP53
and NSD2 were observed in three out of four patients with blastoid transformation on ibrutinib therapy.
In a proportion of patients, relapses on ibrutinib tend to be especially aggressive. Aberrant activation
of the PI3K–AKT–mTOR pathway might partially explain the aggressive phenotype of postibrutinib
R/R MCL. In addition, Compagno et al. recently demonstrated that prolonged exposure to idelalisib,
and to a lesser extent to ibrutinib, results in increased levels of activation-induced cytidine deaminase
(AID), which results in enhanced genomic instability of malignant (and normal) B-cells. Increased AID
expression could thus accelerate resistance to ibrutinib through increased mutational rate [122–124].

Rational combinations of ibrutinib and other targeted agents have shown promise in the therapy of
R/R MCL including anti-CD20 rituximab, BCL2 inhibitor venetoclax, or CDK4 inhibitor palbociclib [125].

7.2. Bortezomib, Lenalidomide, Temsirolimus, and Bendamustine

Bortezomib was approved by the FDA in 2006 for therapy of R/R MCL [126]. The overall response
rate after use of single-agent bortezomib reached 33% (8% CRs) with median PFS 9.2 months [127].
Bortezomib combinations with rituximab and either dexamethasone or bendamustine belong to options
for R/R MCL [128–130].

Lenalidomide, another backbone antimyeloma drug, belongs to immunomodulatory agents.
Lenalidomide was approved by the FDA for the therapy of R/R MCL in 2013. Several studies
demonstrated efficacy of single-agent lenalidomide in patients with R/R MCL [131,132]. The overall
response rate ranged from 26% to 40% with low rate of CRs and median PFS 4–9 months. The
anti-lymphoma mode of action of lenalidomide appears to be mediated in large part by enhanced
natural killer (NK) cell-mediated cytotoxicity via increased lytic immunological synapse formation
and secretion of granzyme B [133].

Temsirolimus is an mTOR inhibitor approved for therapy of R/R MCL by European Medicines
Agency (EMEA) in 2009. The overall response rate in studies published so far ranged from 22 to 40%
with no CRs and median PFS 5–6 months [112,134].

Bendamustine is a “new-old” cytostatic agent originally developed in 1963 in Eastern Germany.
In 2008 it was approved for the treatment of CLL. Bendamustine belongs to backbone cytostatic agents
in the therapy of indolent and mantle cell lymphomas, as part of both front-line and salvage regimens,
usually in combination with rituximab (R-B), with or without cytarabine (R-BAC) [93,94,97].
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7.3. BCL2 Inhibitors

Venetoclax is a small-molecule, high-affinity BCL2 inhibitor that belongs to the family of BCL2
homology 3 (BH3) mimetics. Venetoclax displaces BH3-only proapoptotic proteins, like BCL2L11/BIM,
from BCL2, thereby activating effector proapoptotic proteins BAX/BAK1 that disrupt mitochondria,
thereby triggering apoptosis. Venetoclax demonstrated promising anti-lymphoma activity in R/R
MCL including patients who discontinued ibrutinib [135,136]. Venetoclax is capable of inducing
molecular remissions in a proportion of MCL patients. The combination of venetoclax and ibrutinib
demonstrated safety and efficacy in a small clinical trial, and is currently being tested in a large
randomized, placebo-controlled international phase 3 trail (NCT03112174) [125]. Another promising
strategy is the combination of venetoclax and S63845, an inhibitor of MCL1, another key antiapoptotic
molecule whose overexpression has been associated with venetoclax resistance [42].

7.4. PI3K Inhibitors and Inhibitors of Other Prosurvival Pathways

Based on increasing knowledge on molecular mechanisms associated with secondary ibrutinib
resistance, PI3K inhibitors appear to belong to most promising class agents for the therapy of
postibrutinib R/R MCL. The proof-of-concept study with idelalisib, the first-in-class PI3K δ inhibitor
approved for the treatment of cancer (specifically, chronic lymphocytic leukemia and follicular
lymphoma), demonstrated that targeting PI3K is a viable strategy in MCL [45]. Results from the phase
2 study with parsaciclib, a second-generation PI3Kδ inhibitor, in patients with R/R MCL are pending
(ClinicalTrials.gov Identifier NCT03235544).

Inhibitors of spleen tyrosine kinase SYK (entosplentinib) and protein kinase C PKC (enzastaurin)
demonstrated modest single-agent anti-lymphoma efficacy in R/R MCL, but either of these agents or
second-generation inhibitors might in future prove effective as part of drug combinations or diverse
maintenance therapies [137,138].

7.5. Immunotherapy Approaches in Experimental Therapy of R/R MCL

Immunotherapy already has an established place in treatment algorithms of MCL. Specifically,
RM significantly prolongs survival of patients with MCL, in large part by engaging natural killer (NK)
cell-mediated cytotoxicity. In analogy, lenalidomide mode of action also relies predominantly on NK
cells. The combination of rituximab and lenalidomide (R2 regime) is a promising strategy both as a
front-line therapy and as a maintenance [80].

Apart from NK-cell-based approaches, the recent introduction of T-cell-based immunotherapy
approaches into clinical hemato-oncology, including immune checkpoint inhibitors (e.g., ipilimumab,
nivolumab, or pembrolizumab) or bispecific T-cell engagers (e.g., blinatumomab), has revolutionized
treatment of many types of solid tumors and hematologic malignancies including acute lymphoblastic
leukemia or Hodgkin’s lymphoma. Unfortunately, MCL cells express very low levels of programmed
cell death (PD) ligands (PDL1, PDL2), and almost no PD-1-expressing T-cells were found in MCL
biopsies [139]. In consequence, unlike other types of cancer, the role for immune checkpoint inhibitors
appears limited in the therapy of R/R MCL, at least from the perspective of current knowledge.

Genetically engineered T-cells that express chimeric antigen receptor (i.e., CAR T-cells) belong to
adoptive T-cell approaches approved for the therapy of many malignancies including diffuse large
B-cell lymphoma [140]. Results from the ZUMA-2 (NCT02601313) phase 2 study evaluating efficacy of
autologous CD19 CAR T-cells (KTE-C19) in patients with R/R MCL are eagerly awaited.

Besides CAR T-cells, other T-cell-based immunotherapy approaches including adoptive
T-cell-based strategies and dendritic cell (DC) vaccination have shown promise in experimental
therapy of MCL, especially in eradication of minimal residual disease after successful debulking
(by analogy with long-term clinical experience with allogenetic stem cell transplantation). These
strategies include activation of cytotoxic T-cells generated with autologous dendritic cells conditioned
with interferon (IFN-DC) and pulsed with immunogenic tumor cell lysates [141]. Importantly,
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the combination of both NK-cell- and T-cell-based approaches (e.g., rituximab and IFN-DC-based
vaccination) might lead to antitumor synergy for more effective combination therapy of lymphoma
patients [142].

8. Conclusions

In the last decade, our knowledge on the biology and clonal evolution of MCL has significantly
improved. New treatment algorithms based on intensified chemotherapy regimens that implemented
high-dose cytarabine, platin derivatives, and rituximab maintenance led to better control of the disease
in newly diagnosed patients, while the advent of many effective innovative molecules, including
ibrutinib, lenalidomide, bendamustine, or venetoclax, have revolutionized the therapy of patients
with relapsed/refractory disease. In the near future, the therapy of MCL will become risk-stratified
and patient-tailored. New agents or novel rational drug combinations and treatment protocols will
hopefully lead not only to better control of the disease, but also to the effective eradication of the
residual MCL clone with permanent disease cure (Figure 4).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 12 of 21 
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