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Introduction
Hepatocellular carcinoma (HCC) is the sixth most common 
cancer and the third leading cause of cancer-related death 
worldwide.1,2 Patients with intermediate stage HCC have 
poor prognosis and always require dynamic disease surveil-
lance during comprehensive treatments, which consists of 
interventional therapies, targeted therapies and immuno-
therapy.3,4 The reported median survival time of patients 
with intermediate stage HCC ranges from 16.0 to 23.9.5,6

The 2022 update of BCLC strategy added two new concepts, 
the treatment stage migration (TSM) and untreatable progres-
sion, to facilitate dynamic adjustments of treatment plan when 
recommended treatment is not optimal.7 In 2023, Alessandro 
Vitale proposed an evidence-based framework for treatment of 
HCC based on the novel concept of “multiparametric therapeutic 
hierarchy,” which allows dynamic adaption of the staging based 
algorithms.8 Although considerable efforts had been made for 
optimizing and standardizing dynamic management of HCC 
patients, high-quality evidence is scarce to support refined adjust-
ment of treatment plan.9 Harnessing clinical big data to facilitate 
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ABSTRACT

Objectives: Patients with intermediate or advanced hepatocellular carcinoma (HCC) require repeated disease monitoring, prognosis 
assessment and treatment planning. In 2018, a novel machine learning methodology “survival path” (SP) was developed to facilitate dynamic 
prognosis prediction and treatment planning. One year after, a deep learning approach called Dynamic Deephit was developed. The per-
formance of the two state-of-art models in dynamic prognostication have not been compared.

Methods: We trained and tested the SP and Dynamic DeepHit models in a large cohort of 2511 HCC patients using time-series data. The 
time-series data were converted into data of time slices, with an interval of three months. The time-dependent c-index for OS at given pre-
diction time (t = 1, 6, 12, 18 months) and evaluation time (∆t = 3, 6, 9, 12, 18, 24, 36, 48 months) were compared.

Results: The comparison between SP model and Dynamic DeepHit-HCC model showed the latter had significant better performance at 
the time of initial admission. The time-dependent c-index of Dynamic DeepHit-HCC model gradually decreased with the extension of time 
(from 0.756 to 0.639 in the training set; from 0.787 to 0.661 in internal testing set; from 0.725 to 0.668 in multicenter testing set); while the 
time-dependent c-index of SP model displayed an increased trend (from 0.665 to 0.748 in the training set; from 0.608 to 0.743 in internal 
testing set; from 0.643 to 0.720 in multicenter testing set). When the prediction time comes to 6 months or later since initial treatment, the 
survival path model outperformed the dynamic DeepHit model at late evaluation times (∆t > 12 months).

Conclusions: This research highlighted the unique strengths of both models. The SP model had advantage in long term prediction while 
the Dynamic DeepHit-HCC model had advantages in prediction at near time points. Fine selection of models is needed in dealing with differ-
ent scenarios.
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dynamic prognosis prediction and treatment planning for HCC 
patients represents a substantial challenge currently.10

During the dynamic surveillance of patients with HCC, the 
time-series clinical data rapidly accumulate.11 Modeling of 
these data may delineate the biological behaviors of HCC and 
help guide dynamic management. The classical autoregressive 
integrated moving average model (ARIMA) does not fit for 
survival data.12 Temporal abstraction,13 hidden Markov mod-
els,14 and dynamic bayesian networks could be utilized for 
time-series survival data.15 In recent years, a deep learning 
model called Dynamic Deephit based on RNN and attention 
mechanism was proposed, which theoretically can utilize a 
large fraction of repeated measurements and provide predic-
tions with high consistency.16,17 Although these model have 
high accuracy in prediction, the nature of black box models 
make the results difficult to interpret.

In clinical practice, an ideal model should predict prognosis 
precisely while also being user-friendly and can provide guid-
ance on treatment.18 Our previous study in 2018 proposed a 
novel analytical approach called survival path, which converts 
the timeseries data into a cascading survival map, in which each 
survival path bifurcates at fixed time interval depending on 
selected prognostic features.11 The model demonstrated to 
have higher superior or equal value than conventional staging 
systems in dynamic prognosis prediction for HCC patients at 
specific time interval. On the other hand, with the emergence 
of Dynamic DeepHit model in 2020, the value in dynamic 
prognostication between survival path model and Dynamic 
Deephit model for HCC patients haven’t been compared.

Therefore, in this study, we set out to compare the Survival 
Path model and Dynamic-Deephit model for dynamically prog-
nosticating patients with HCC. Our study yielded significant 
findings on multiple aspects. Firstly, feature engineering was 
found playing a central role in enhancing SP model’s perfor-
mance as well as its ability in generalization. Secondly, either the 
SP model or the Dynamic DeepHit model have its unique 
strengths in dynamic prognostication of patients with HCC. 
These advancements lay the groundwork for future research on 
developing novel machine learning tools for dynamic prognosti-
cation and management of HCC.

Methods
Study design and patient cohorts

Between January 2007 and Jan 2015, 10621 consecutive patients 
with newly diagnosed HCC at Sun Yat-sen University Cancer 
Center (SYSUCC) were retrospectively reviewed to develop the 
derivation (training) cohort. Between February 2015 and January 
2016, an independent consecutive series of 2105 HCC patients 
treated at SYSUCC were reviewed to develop the internal valida-
tion cohort. Besides, between February 2016 and August 2018, 
6055 patients from SYSUCC were reviewed to develop the inter-
nal testing cohort. The inclusion criteria were as follows: (1) clini-
cally diagnosed with intermediate stage (BCLC stage B) HCC; 
(2) complete data of any of the following at initial diagnosis: 

computed tomography (CT) or magnetic resonance imaging 
(MRI) of the abdominal region, radiography or CT of the chest, 
routine bloodwork test, biochemical routine test, serum AFP level, 
and coagulation indices. The exclusion criteria were: (1) with his-
tory of other malignancies; (2) ECOG PS score >1 at initial diag-
nosis. The Hospital Ethics Committee of SYSUCC approved this 
study (B2023-639-01), which waived the need for written 
informed consent based on the retrospective nature of the study. A 
total of 1000, 200, and 879 patients were included in the deriva-
tion cohort, internal validation cohort, and testing cohort, respec-
tively. Public multi-center database of 414 patients with 
intermediate stage HCC from three medical centers in southern 
China, which contains times-series clinical data on imaging and 
blood tests, was utilized as multicenter testing cohort (Figure 1).

The majority of HCC patients received transarterial chem-
oembolization (TACE) based integrated therapies as first-line 
treatment, which is decided based on the decision of the mul-
tidisciplinary teams, including hepatologists, radiologists, and 
interventional radiologists. The subsequent therapies after fail-
ure of first-line treatment included ablation, targeted therapies 
and palliative chemotherapy. Patients were advised to receive 
followed-up monthly during the period of initial treatment, 
subsequently at every 2-3 months for the first 2 years if com-
plete remission was achieved. The frequency gradually 
decreased to every 3-6 months after 2 years’ remission.

The building of Dynamic DeepHit model was based on the 
derivation cohort and internal validation cohort. Survival path 
models were built using the derivation cohort as it does not 
need internal validation when setting up model.

Workflow of survival path mapping

The survival path models were built based on published R 
package, SurvivalPath.19 The interval for time slices was set at 
3 months and survival path model with nine time slices were 
computed. The minimum splitting sample size was 15 and the 
alpha value of significance is set at 0.05. Two survival path 
models were built based on the trainning dataset: the model of 
raw variables and the model of curated variables. The included 
variables in each survival path model were list in Supplemental 
Table S1. The key difference between the two models is that, in 
the model of curated variables, the empirical binary variables 
with known clinical and prognostic significance were added, 
including variables defined by both size and number of intra-
hepatic lesions, variables summarize both vascular invasion and 
extrahepatic metastatsis, and variable that describe the change 
of lesions. All the empirical variables can be computed based 
on variables that included in the model of raw variables.

Workflow of dynamic deephit model for HCC

The Dynamic Deephit model for HCC adopted the same archi-
tecture of the model described in previous work by Changhee 
Lee et al.16 and is developed under the Python 3.7 platform. The 
deep learning model contained a shared subnetwork that process 
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longitudinal measurements and predicts the next measurements 
of time-varying covariates, and a set of causespecific subnetworks 
which estimates the joint distribution of the first hitting time of 
death. Learning curves were utilized to optimize parameters of 
the model, including number of iteration and size of internal vali-
dation during model training. The parameters of the final model 
were described in Supplemental Table S2. All variables utilized in 
building the survival path model were included in the construc-
tion of Dynamic Deephit-HCC model. The predicted results for 
patients of given prediction time, denoted as t, and evaluation 
time, denoted as ∆t, were further utilized to calculated time-
dependent c-index C(t, ∆t) to assess the model’s ability in 
dynamic prognostication.

Evaluation for prognostic significance

A total of five models were included and compared in dynamic 
prognostication for HCC patients, including survival path 
model using raw variables, survival path model with curated 
variables, Dynamic DeepHit-HCC model, CNLC staging 
system20 and BCLC staging system.7 The comparison of prog-
nostic significance between survival path model and other 
models were conducted in training dataset and testing datasets, 
respectively.

The Harrell's c-indexes at different time slices were utilized to 
assess the value of prognostication between two survival path 
models. The time-dependent C-index can capture dynamic per-
formance of the regression model over time and provide more pre-
cise assessment of models' discriminative capability than Harrell’s 
c-index. Given the unique feature of the Dynamic Deephit-HCC 

model that requires specific prediction and evaluation times for 
making predictions, time-dependent c-index C(t, ∆t) of different 
models/staging systems were further compared to assess the their 
ability in dynamic prognostication, where t indicates the predic-
tion time which is the time when the prediction is made to incor-
porate dynamic predictions and ∆t denotes the evaluation time 
which is the time elapsed since the prediction is made.

Statistical analysis

Pearson χ2 test was used to compare categorical variables 
between groups, respectively. To compare the efficacy in 
dynamic prognosis prediction different survival path models, 
the measurement of c-index in each time slice was computed. 
To further compare the efficacy in dynamic prognosis predic-
tion between the survival path models, dynamic deephit model 
and staging systems, the measurements of time-dependent 
c-index of specific prediction time (t) and evaluation time (∆t) 
were computed using pec R package; means and standard devi-
ations were obtained via ten random sampling of two thirds of 
cases. For category prediction models, subgroups less than 
three cases were omitted to reduce inference from extreme 
cases when computing c-index or time-dependent c-index. A 
random seed was set using the base R package. The comparison 
of c-index and time-dependent c-index between different 
models was conducted using Z test method. It is estimated that 
288 times of tests were conducted during the comparison of 
time-dependent c-index between models. To avoid false posi-
tives caused by multiple tests, a meaningful alpha value is set at 
0.0001 (0.05/288). All analyses were done using R 3.6.321

Figure 1.  Flowchart of study design.
Times series data of 2097 patients with intermediate stage HCC were included in this study and were separated into training set, internal validation set and testing 
set, respectively: (A) The time series data were converted into data of time slices (ts) and (B) The training set was utilized to build the survival path prognostic model 
and internal validation set was also included when build the Dynamic DeepHit-HCC model. The time-dependent C-index of each model were compared in training set, 
internal testing set and multicentric testing set.
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Results
The baseline characteristic of the patients

The training set consisted of 1000 HCC patients with a 
median age of 55 years (range, 14-85), the internal validation 
set consists of 200 HCC patients with a median age of 55 years 
(range, 20-82) and the testing set consisted of 897 HCC 
patients with a median age of 56 (range, 18-88) years (Table 1). 
The median follow-up time were 25.5, 22.3, and 24.6 months 
for the training set, internal validation set and internal testing 
set, respectively. Compared to the training set, the internal vali-
dation set and testing set had a lower proportion of patients 
with HBV infection. Besides, the proportion of patients with 
Child Pugh A class and those with multiple intrahepatic 
lesions (⩾4) in testing set were higher compared to the train-
ing set. Compared to the training set, the multicentric testing 

set had a higher proportion of patients with young age and 
female gender.

The survival paths built by training set with two 
strategies of feature selection

Although it’s widely accepted feature engineering is of vital 
importance for prognosis modeling, it’s impact in survival path 
mapping dealing with time-series data remains unknown. Two 
sets of variables, one consists of only raw variables and one con-
sists of both raw and curated variables, were design to compute 
the survival path models. In the survival path model with 
curated variables, binary variables in terms of tumor diameter,22 
number of intrahepatic tumors, liver function,23 AFP level,24,25 
change of lesions after treatment and composite variable were 
designed, and added.26

Table 1.  Baseline characteristics of training set, internal validation set, and testing sets at initial diagnosis.

Characteristics Training set Internal 
validation set

P-value Internal 
testing set

P-value Multicenter 
testing set

P-
value

  No. % No. % No. % No. %  

Age (years) .957 .369 <.001

  <50 362 36.2 72 36.0 307 34.2 199 48.1  

  ⩾50 638 63.8 128 64.0 590 65.8 215 51.9  

Gender .336 .240 <.001

  Male 907 90.7 177 88.5 799 89.1 361 84.1  

  Female 93 9.3 23 11.5 98 10.9 53 15.9  

HBV infection <.001 <.001 .996

  Absent 38 3.8 21 10.5 82 9.1 15 3.6  

  Present 962 96.2 179 89.5 815 90.9 399 96.4  

AFP (IU/ml) .140 .773 .365

  <25 326 32.6 76 38.0 298 33.2 146 35.3  

  ⩾25 674 67.4 124 62.0 599 66.8 268 64.7  

Child Pugh Class .101 <.001 .264

  A 868 86.8 182 91.0 848 94.5 360 87.0  

  B 132 13.2 18 9.0 49 5.5 54 13.0  

Tumor Size (cm) .129 .255 .900

  <5 333 33.3 55 27.5 322 35.9 140 33.8  

  ⩾5 667 66.7 145 72.5 575 64.1 274 66.2  

Number of lesions .597 <.001 .882

  <4 395 39.5 75 37.5 285 31.8 166 40.1  

  ⩾4 605 60.5 125 62.5 612 68.2 248 59.9  

Note. The distributions of baseline characteristics between training set and validation/testing sets are compared based on Chi-square test.
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Compared to the eight variables in the SP model of raw 
variables, a total of twenty variables were put into the training 
of the SP model of curated variables (Table 2). The times-
series data of HCC patients were firstly divided into data of 
time slices, with an interval of 3 months, and the two SP mod-
els were displayed in Figure 2. The included variables and their 
cutoff of each models were listed in Supplemental Table S1. In 
both training set and testing set, the c-index of the two models 
underwent rapidly rise from time slice no. 1 to time slice no. 3 
and the trend become gentle in the following time slices. 
Except for time slice No. 2, SP model of curated variables have 
superior or non-inferior performance compared to the SP 
model of raw variables at all other time slices (Figure 3A). The 

peak c-index for both models were 0.841 and 0.786 in the 
training set, 0.761 and 0.722 in the internal testing set and 
0.784 and 0.718 in the multicentric testing set, respectively.

Comparison of the survival path model with 
Dynamic DeepHit-HCC model and conventional 
staging systems

The value of prognostic prediction between the survival path 
model, Dynamic Deephit-HCC model and conventional stag-
ing system were compared at different prediction times in both 
training and testing datasets (Table 3). It’s interesting to note 
that Dynamic DeepHit-HCC had significantly better 

Table 2.  The variables included in building the survival path models and Dynamic DeepHit-HCC model.

Variables Survival path (raw 
variables)

Survival path (curated variables) Dynamic DeepHit-HCC

Age Continuous variable Continuous variable Continuous variable

Laboratory tests  

Serum AFP level Continuous variable Continuous variable, <200 vs ⩾200; <400 vs 
⩾400

Continuous variable

Child Pugh class Ordinal variable (1,2,3) Ordinal variable, Class B/C vs class A; class C 
vs class A/B

/

ALB level / / Continuous variable

TBIL level / / Continuous variable

PT / / Continuous variable

HBV infection / / Present/Absent

Imaging examination  

Diameter of largest intrahepatic 
lesion (mm)

Continuous variable Continuous variable; ⩽50 vs >50; ⩽70 vs 
>70; ⩽100 vs >100

Continuous variable

Number of hepatic lesions Continuous variable Continuous variable, <4 lesions vs ⩾4 lesions Continuous variable

Vascular invasion With vs without With vs without With vs. without

Distant metastasis With vs without With vs without With vs. without

Lymph Node metastasis With vs without With vs without With vs. without

Lymph Node or distant 
metastasis/ Vascular Invasion 
(NMV)

/ With vs without /

Number and size of hepatic 
lesions

/ ⩽1 lesion/2–3 lesions, D ⩽30 mm vs >3 
lesions/2–3 lesions, D > 30 mm

/

Number and size of hepatic 
lesions, NMV

/ ⩽1 lesion/2–3 lesions, D ⩽30 mm, without 
NMV vs >3 lesions/2–3 lesions, D > 30 mm/
NMV

/

Change of lesions / With viable lesion vs. without viable lesion; 
With new lesion/ without new lesion

With new lesion/ without 
new lesion

Ascites / / Present/Absent; Massive/
not Massive

Note. The source data in building survival path models and Dynamic DeepHit-HCC were the same. All variables in building survival path models can be computed by the 
data of building Dynamic DeepHit-HCC model.
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performance in prognosis prediction compared to survival path 
model for patients initially admitted (prediction time at 
1 month). However, the time-dependent c-index of Dynamic 
DeepHit-HCC model gradually decreased with the extension 
of evaluation time. By contrast, the fluctuation of time-depend-
ent c-index of survival path model was relatively stable. When 
the prediction time is more than 6 months since onset of the 
treatment, the survival path model significantly outperforms 
the dynamic DeepHit model in long-term prognosis predic-
tion (evaluation time > 12 months) (Figure 3B-D). The pre-
dictive ability of survival path models at different time points is 

superior or not inferior to traditional CNLC and BCLC stag-
ing systems (Supplemental Table S3). The feature importance 
of key variables at critical time points in Dynamic Deephit-
HCC model were displayed in Table 4. The influential varia-
bles of Survival Path model at corresponding time slice were 
displayed in Table 5. It is notable that the variable “New lesion” 
appeared two times in survival path model by time slice no. 7 
while in Dynamic Deephit-HCC model the importance of the 
variable rank 9th to 10th among the 15 variables included. 
Besides, the increased risk of “D. of Hep Lesions” become neg-
ative at distant prediction time (t = 18; ∆t = 18).

Figure 2.  The survival path models constructed based on training set.
The time series data were trained on two different set of variables: (A) This plot represent survival path model built on curated variables; the variables include raw 
variables as well as curated variables based on previous literature and (B) This plot represent survival path model built on raw variables. When no bifurcation variable 
identified, the path stay the same in the following time slices.
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Discussion
To our knowledge, this is the first study to compare the perfor-
mance of two state-of-the-art machine learning approaches 
(Survival Path and Dynamic-Deephit) for dynamic prognosis 
prediction in HCC patients. Our study found that the Dynamic 
DeepHit-HCC model has higher predictive ability for patient 
at initial admission. However, when the prediction time is 
6 months or even later since onset of treatment, the survival 
path model significantly outperforms the dynamic DeepHit 

model in long-term prognosis prediction. These results sug-
gested that although deep learning models have significant 
advantages in high-throughput data and accuracy in predic-
tion, the tree based models such as survival path models also 
have unique advantages in dynamic prediction based on time 
series data when key features identified. In addition, by con-
trast to the nature of black box model of deep learning, the 
survival path model has better visualization ability and is there-
fore may easier be accepted by oncologists.

Figure 3.  Comparison of C-index and time dependent c-index between different models: (A) The line chart represent change of c-index of survival path 

models along with time slices. The c-index of the two models underwent rapidly rise from time slice no. 1 to time slice no. 3 and the trend become gentle 

in the following time slices. Except for time slice No. 2, Survival path model built on curated variables have superior or non-inferior performance compared 

to the model built on raw variables at different time slices. The change of time dependent c-index along with different evaluation time for the two machine 

learning models in the training set (B), internal testing set (C) and multicentric testing set (D). ***P-value < .0001.
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In recent years, the application of traditional machine learn-
ing models in predicting prognosis, including support vector 
machines, Bayesian models, and linear regression, is gradually 
decreasing with the development of deep learning technolo-
gies.27 Tree models still have certain advantages over deep 
learning models because of their nature of white box model and 
have no strict restriction on sample size.28 Numerous studies 
have shown that the selection of key features in tree model is 
crucial for its effectiveness.29 Although the original data used 
in the SP model with curated variables and SP with raw 

variables are the same, we have added variables with classical 
cutoff values in SP with curated variables, including the widely 
accepted serum AFP cutoff values and tumor diameter cutoff 
values. In addition, we have also added composite variables 
used in BCLC staging30 and CNLC staging,31 and variables 
for describing tumor changes based on time series.32 In SP 
with curated variables, a total of 12 new variables were added, 
and we found that these variables can significantly enhance the 
model’s ability to dynamically predict prognosis and its gener-
alization ability in the testing sets. Our result suggests that a 

Table 3.  The top 10 most influential covariates of dynamic Deephit-HCC model at specific prediction time.

Rank Prediction (t) & evaluation (∆t) time

  t = 1; ∆t =3 t = 6; ∆t = 6 t = 12; ∆t = 6 t = 18; ∆t = 18

  1 D. of Hep Lesions 
(+0.00065)

D. of Hep Lesions 
(+0.00120)

D. of Hep Lesions (+0.001140) D.of Hep Lesions (−0.03951)

  2 Amount of Hep Lesions 
(+0.00052)

ALB (−0.00097) Amount of Hep Lesions 
(+0.00092)

TBLT (−0.02733)

  3 ALB (-0.00051) Amount of Hep Lesions 
(+0.00096)

ALB (−0.00091) ALB (+0.01988)

  4 TBLT (+0.00031) TBLT (+0.00059) TBLT (+0.00055) Amount of Hep Lesions 
(−0.00738)

  5 HBV infection (+0.00020) HBV infection (+0.00038) HBV infection (+0.00036) PT (−0.00350)

  6 AFP (+0.00014) AFP (+0.00027) AFP (+0.00026) Age (−0.00240)

  7 PT (+0.00012) PT (+0.00022) PT (+0.00020) HBV infection (−0.00204)

  8 Age (+0.00007) Age (+0.00014) Age (+0.00013) Vascular Invasion (+0.00184)

  9 New Lesion (−0.00006) New Lesion (−0.00011) New Lesion (−0.00011) AFP (−0.00178)

10 Vascular Invasion (−0.00005) Vascular Invasion (−0.00009) Vascular Invasion (−0.00009) New Lesion (+0.00168)

Note. The values indicate the amount of increase(+)/decrease(−) in the predicted risks on average and the covariates are ranked by the absolute values.

Table 4.  The influential variables of Survival Path model using curated variables at specific prediction.

Variables Prediction (t, months) & Corresponding time slice

  t = 1 (time slice = 1) t = 6 (time slice = 3) t = 12 (time slice = 5) t = 18 (time slice = 7)

1 D. of Hep Lesions 
(times = 1)

D. of Hep Lesions 
(times = 1)

D. of Hep Lesions (times = 2) D. of Hep Lesions (times = 2)

2 AFP 400 (times = 1) AFP 400 (times = 2) AFP 400 (times = 2)

3 New Lesion (times = 1) New Lesion (times = 1) New Lesion (times = 2)

4 Viable Lesion (times = 2) Viable Lesion (times = 2) Viable Lesion (times = 2)

5 D70 (times = 1) D70 (times = 1) D70 (times = 1)

6 ⩽1 lesion/2–3 lesions, 
D ⩽ 30 mm vs >3 lesions/2–3 
lesions, D > 30 mm (times = 1)

⩽1 lesion/2–3 lesions, 
D ⩽ 30 mm vs >3 lesions/2–3 
lesions, D > 30 mm (times = 1)

7 AFP 200 (times = 1) AFP 200 (times = 2)

8 Child-Pugh class (times = 1) Child-Pugh class (times = 1)

Note. The key bifurcation variables were same across different evaluation time given specific prediction time.
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well trained survival path model suitable for dynamic prognosis 
prediction of cancer requires identification and inclusion of key 
classification features.

To optimize the the Dynamic DeepHit-HCC model, learn-
ing curves were utilized for parameter setting the key model 
parameters. The Dynamic DeepHit-HCC model achieved 
good performance in both the training and testing sets. 
Compared to the Survival Path model, a peerless advantage of 
the Dynamic Deephit-HCC model is its ability to predict the 
survival probability of any evaluation time from any prediction 
time. In addition, at the initial admission of HCC patients, the 
Dynamic DeepHit-HCC model has significantly better pre-
dictive accuracy for prognosis than the Survival Path model 
and conventional staging systems. The reason for this phenom-
enon may be that Dynamic DeepHit, as a deep learning model, 
can directly integrate effective information of all variables for 
prediction since initial admission,33 while survival paths bifur-
cated using only one key variable (in this case, the diameter of 
intrahepatic lesion) at time slice no. 1, with information in 
other variables unexploited. The disadvantage of Dynamic 
Deephit-HCC is that the model's long terms predictive ability 
(evaluation time > 12 months) gradually decreases. The reason 
for this trend may be because the majority of data in training 
the model are of early time slices, and hence the model has 
abundant raw data for short-term prediction, while in terms of 
long-term prediction, the fact of limited data may impede the 
performance of deep learning models.34 In contrast, the bifur-
cation of the Survival Path model depends on the selection of 
key variables at at each time slices, and its long term prognostic 
ability is highly correlated with key factor identified by the data 
of distant time slice. Besides, the variables used in the survival 
path model are key prognostic factors that are fundamentally 
recognized in clinical practice, thereby minimizing the risk of 
overfitting. These two key differences in building models may 
explain the phenomenon that Survival Path model has better 
long term predictive ability for HCC patients. The differences 
in prognostic ability between the SP model and the Dynamic 
Deephit model-HCC suggested they can be applied in differ-
ent scenarios to facilitate personalized prognosis prediction.

Compared to the Dynamic DeepHit model, one major 
drawback of the Survival Path model is that the requirement 
of sample size increase exponentially with the increase of 
time slices. If the sample size in specific node is not large 
enough to bifurcate when there do exist key variable that 
predict prognosis, the associated information will be lost. In 
this study, due to the restriction of sample size, we did not 
conduct further analysis after the ninth time slice. Developing 
node fusion technique to combine similar nodes may over-
come this dilemma as the sample sizes of these node could be 
added up to support further bifurcation. In addition, the pre-
dictive ability of survival pathway model for patients at ini-
tial admission is relatively week, partly due to insufficient 
utilization of initial data and limited information carried by 

single categorical variables. Multi-classification of the nodes 
at early time slices may improve the performance of the sur-
vival path model in predicting prognosis. There still remains 
a lot of exploratory work to be done in improving the Survival 
Path model.

The interpretability of machine learning models is particu-
larly important in the clinical medicine.35 Although the survival 
path model could be visualized using tree diagram, its interpreta-
tion is still complex. In recent years, increasing studies have 
shown that large language models (LLM) can facilitate interpre-
tation of machine learning models.36 Establishing an online 
LLM platform to enable more convenient invocation and inter-
pretation of survival path model might have a positive impact on 
the promotion and application of this methodology.

Our study has several limitations. First, it is a retrospective 
study using dataset of single center. Second, the time-series data 
after patients lost surveillance/follow-up could not be obtained 
and hence were unable to be included in the analysis, which may 
be a source of bias. Therefore, to demonstrate the value of this 
methodology in HCC, a large-scale multi-institutional prospec-
tive study for both modeling and validation is needed.

Conclusions
Dynamic DeepHit-HCC model had advantages over survival 
path model in dynamic prognostication of HCC patients at 
early prediction times. The survival path model outperforms 
the dynamic DeepHit model in long-term prognosis predic-
tion (evaluation time > 12 months) at late prediction times 
(⩾6 months). The SP models, given its features of easy to visu-
alize, use and understand, have the potential to enter the clinic 
in the near future.
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