
Progress of isolation, chemical
synthesis and biological activities
of natural chalcones bearing
2-hydroxy-3-methyl-3-butenyl
group

Jiadai Zhai1,2†, Bingxia Sun1† and Feng Sang1*
1Research Center of Chemical Biology and Pharmaceutical Chemistry, School of Life Sciences and
Medicine, Shandong University of Technology, Zibo, China, 2School of Pharmaceutical Science and
Technology, Tianjin University, Tianjin, China

Chalcones have a three-carbon α,β-unsaturated carbonyl system composed of two

phenolic rings. Many chalcones have shown broad spectrum of biological activities with

clinical potentials against various diseases. They are usually abundant in seeds, fruit skin,

bark and flowers of most edible plants. Among them, chalcones bearing 2-hydroxy-3-

methyl-3-butenyl (HMB)grouphavebeenreportedseveral times in thepast fewdecades

due to their novel scaffolds and numerous interesting biological activities. In this paper,

we reviewed the isolation of twelve natural chalcones and a natural chalcone-type

compound bearing 2-hydroxy-3-methyl-3-butenyl group discovered so far, and

reviewed their synthesis methods and biological activities reported in the literature.

We anticipate that this review will inspire further research of natural chalcones.
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1 Introduction

The existing chalcones mainly include natural products and synthetic compounds

(Rudrapal et al., 2021; Zhang et al., 2021; Yuan et al., 2022), and have been shown to

exhibit a variety of biological activities, such as anticancer (Konieczny et al., 2007), anti-

inflammatory (Nowakowska, 2007), antibacterial (Nielsen et al., 2005), antiviral (Duran et al.,

2021), antimalaria (Smit and N’Da, 2014), and so on. It is an important approach for preclinical

drug development to find new scaffolds from natural products and screen out lead compounds

with high activity and low toxicity through chemical synthesis and structure-activity relationship

study (SAR) (Gomes et al., 2017; Duvauchelle et al., 2021; Jasim et al., 2021; Knockleby et al.,

2021). Chalcones have been extensively studied, andmany reviews have been published in awide

variety of journals (Zhuang et al., 2017; Qin et al., 2020; Salehi et al., 2021). However, to our

knowledge, there is no review of natural chalones bearing HMB group so far. Since the 1990s,

twelve natural chalcones (1–7, 9–13) and a natural chalcone-type compound (8, Angusticornin

A) with HMB group on A-ring or B-ring have been isolated and reported successively (Baba

et al., 1990; Hano et al., 1995; Pistelli et al., 1996; Stevens et al., 2000; ElSohly et al., 2001;Ngameni

et al., 2004; Ngadjui et al., 2005; RenQi and Shi, 2008; Shaffer et al., 2016; Yang and Jiang, 2021)
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(Figure 1). And the HMB group in their structures have also been

proved to be an essential functional group for somebiological activities

(Sugii et al., 2005; Park et al., 2015). This review provides a research

progress of the isolation, chemical synthesis and biological activities of

natural chalcones bearing HMB group, and the plant species and

biological activities of these chalcones are illustrated in Table 1.

2 Natural chalcones and a natural
chalcone-type compound bearing
HMB group

2.1 Xanthoangelol D (1)

2.1.1 Isolation and biological activities
Xanthoangelol D and five other chalcones were extracted

from fresh roots of Angelica keiskei collected in Hachijyo Island

(Japan) by using ethyl acetate (Baba et al., 1990). Subsequently,

the results of Sugii et al. showed that Xanthoangelol D suppresses

basal and tumor necrosis factor-α-induced endothelin-1 (ET-1)

production, by inhibiting the activation of nuclear factor-kappa B

(NF-κB), therefore, may be useful for the treatment of diseases

involved NF-κB activation (Sugii et al., 2005). Kil et al. also

isolated Xanthoangelol D from the aerial parts of Angelica keiskei

Koidzumi together with twelve other chalcones, and

Xanthoangelol D did not exhibit significant activity in the

assay of promoter activity on heat shock protein 25 (hsp25,

murine form of human hsp27) (Kil et al., 2015).

Xanthoangelol D showed strong potein tyrosine phosphatase

1B (PTP1B) inhibitory effect with IC50 value of 3.97 ± 0.37 μg/ml

(Li et al., 2015). Interestingly, the inhibitory effects of

Xanthoangelol D (substitution of A-ring with the HMB

group) on severe acute respiratory syndrome coronavirus

(SARS-CoV) chymotrypsin-like protease activity produced 4-

FIGURE 1
Structures of natural chalcones and a chalcone-type compound bearing HMB group (1-13) and chalcone.
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fold (IC50 = 26.6 ± 5.2 μM) higher potency than analogue that

substitution of A-ring with the 3-methyl-2-butenyl group (Park

et al., 2015). Furthermore, Xanthoangelol D did not exhibit anti-

platelet-activities in vivo according to Ohkura et al. (Ohkura

et al., 2016).

2.1.2 Chemical synthesis
Li et al. reported the first synthesis of Xanthoangelol D with

Schenck ene reaction using tetraphenylporphin (TPP) as the

photosensitizer followed by reduction with triphenylphosphine (Li

et al., 2019), and the key intermediate 20 can be obtained through

TABLE 1 Plant species and biological activities of natural chalcones bearing HMB group.

Chalcones Plant Species Biological Activities References

Xanthoangelol D (1) Angelica keiskei NF-κB inhibitory activity Baba et al. (1990)

Enzyme inhibitory activity Sugii et al. (2005)

Antiviral activity Li et al. (2015)

Park et al. (2015)

Paratocarpin D (2) Paratocarpus venenosa No cytotoxic or anti-inflammatory activity Hano et al. (1995)

Adansonia digitata L. Liu et al. (2018)

Ibraheem et al. (2021)

Paratocarpin E (3) Paratocarpus venenosa Cytotoxic activity Hano et al. (1995)

Hedysarum gmelinii Anti-inflammatory activity Liu et al. (2005)

Euphorbia humifusa Antibacterial activity Gao et al. (2016)

Liu et al. (2018)

Li et al. (2019)

Anthyllin (4) Anthyllis hermanniae Unreported Pistelli et al. (1996)

Humulus lupulus cv. Anti-inflammatory activity Stevens et al. (2000)

Humulus lupulus L. Enzyme inhibitory activity Zhao et al. (2003)

Humulus lupulus L. Enzyme inhibitory activity Liu et al. (2005)

Humulus lupulus L. Antioxidant and cytotoxic activity Choi et al. (2011)

Xanthohumol D (5) Humulus lupulus Enzyme inhibitory activity Tronina et al. (2013)

Anti-inflammatory activity Yu et al. (2014)

Humulus lupulus L. Antibacterial activity Sangiovanni et al. (2019)

Fu et al. (2020)

Psorachalcone A (6) Maclura tinctoria L. Antifungal activity ElSohly et al. (2001)

Psoralea corylifolia Enzyme inhibitory activity Li et al. (2002)

Dorstenia angusticornis and Dorstenia barteri var. subtriangularis No antibacterial activity Yin et al. (2004)

Morus nigra No cytotoxic activity Ngadjui et al. (2005)

Antibacterial activity Zhai et al. (2019)

No enzyme inhibitory activity Li et al. (2019)

Wang et al. (2021)

Bartericin A (7) Dorstenia barteri var. subtriangularis Antibacterial activity Ngameni et al. (2004)

Fu et al. (2020)

Bartericin D (10) Dorstenia barteri var. subtriangularis Unreported Ngameni et al. (2004)

Angusticornin A (8) Dorstenia angusticornis and Dorstenia barteri var. subtriangularis Antibacterial activity Ngadjui et al. (2005)

Fu et al. (2020)

Angusticornin B (9) Dorstenia angusticornis and Dorstenia barteri var. subtriangularis Synergistic antibacterial activity Ngadjui et al. (2005)

Kuete et al. (2011)

chalcone 11 Anaphalis lactea No antibacterial activity RenQi and Shi. (2008)

Fu et al. (2020)

Sanjuanolide (12) Dalea frutescens Cytotoxic activity Shaffer et al. (2016)

Artocarpus integer Cytotoxic activity Zhai et al. (2019)

Anti-inflammatory activity Fang et al. (2019)

Duong et al. (2021)

chalcone 13 Morus alba Antioxidant activity Yang and Jiang. (2021)
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Claisen-Schmidt condensation, [1,3]-sigmatropic rearrangement and

deprotection by using themethod of Sugamoto et al. (Sugamoto et al.,

2008; Sugamoto et al., 2011) (Scheme 1A). One year later, Sugamoto

et al. synthesized Xanthoangelol D in 56% yield by using the

photooxygenation of prenylated chalcone (20) in the presence of

methylene blue in acetonitrile followed by reduction with

trimethylphosphite (Sugamoto et al., 2020) (Scheme 1B). These

two methods described above provide important reference for the

construction of HMB group in chalcone derivatives.

2.2 Paratocarpin D and E (2, 3)

2.2.1 Isolation and biological activities
In 1995, Paratocarpin D and E were isolated from the

Indonesian moraceous plant (Bark of Paratocarpus venenosa

Zoll) by Hano et al. (1995) for the first time. Liu et al. (2005)

also reported the isolation of Paratocarpin E along with two other

new chalcones from the roots of Hedysarum gmelinii (collected

from Inner Mongolia, China), and it was the first time that

Paratocarpin E has been isolated from Hedysarum genus (Liu

et al., 2005). Gao et al. isolated Paratocarpin E from Euphorbia

humifusa Wild., and Paratocarpin E showed significant

cytotoxicity against five cancer cell lines (MCF-7, 786-O, 769-P,

U-937 and HL-60) with IC50 values ranging from 19.6 to 28.6 μM.

According to the report, Paratocarpin E typical apoptosis of MCF-

7 cells by activating p38 and JNK and inhibiting Erk pathway, and

affect apoptosis and autophagy by promotes the activation and

nuclear translocation of NF-κB (Gao et al., 2016; Al-Emam et al.,

2019). Paratocarpin D and E were evaluated for antiproliferative

activity against five human cancer cell lines (HepG2, A549, Du145,

BGC823, and HCT116) and in vitro anti-inflammatory activity by

SCHEME 1
(A) Synthesis of Xanthoangelol D by Li et al.; (B) Synthesis of Xanthoangelol D by Sugamoto et al.

SCHEME 2
Synthesis of Paratocarpin E.
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Liu et al. (2005) but only Paratocarpin E exhibited weak inhibitory

effects (IC50 values in the range of 10.33–18.18 μM) on

lipopolysaccharide-induced nitric oxide production in murine

microglial BV-2 cells (Liu et al., 2018). Furthermore, the

racemate Paratocarpin E obtained by chemical synthesis

exhibited significant antibacterial activity (MIC = 6.25 μg/ml)

against Bacillus subtilis strain (Li et al., 2019). In 2021,

Ibraheem et al. isolated Paratocarpin D from baobab

(Adansonia digitata L.) fruit pulp methanolic extract, however,

no activity data of individual compounds were reported (Ibraheem

et al., 2021).

2.2.2 Chemical synthesis
Li et al. reported the synthesis of Paratocarpin E using key

intermediate 24 as the starting material, employing Schenck

ene reaction, Claisen-Schmidt condensation and

SCHEME 3
(A) Synthesis of Xanthohumol D by Fu et al.; (B) Synthesis of Xanthohumol D by Sugamoto et al.

SCHEME 4
(A) Synthesis of Psorachalcone A by Zhai et al.; (B) Synthesis of Psorachalcone A by Sugamoto et al.
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deprotection, respectively (Li et al., 2019) (Scheme 2). And

the intermediate 24 can be prepared from 2,4-

dihydroxyacetophenone (21) in two steps (Dong et al.,

2007). However, the chemical synthesis of Paratocarpin D

has not been reported yet.

2.3 Anthyllin (4)

In 1996, Anthyllin has been isolated from the aerial parts of

Anthyllis hermanniae, along with six chalcone and isoflavonoid

derivatives (Pistelli et al., 1996). Up to now, there have been no

previous reports on biological activity or chemical synthesis of

Anthyllin.

2.4 Xanthohumol D (5)

2.4.1 Isolation and biological activities
In 2000, Xanthohumol D was isolated fromHumulus lupulus

cv. “Galena” by Stevens et al. for the first time (Stevens et al.,

2000; Bocquet et al., 2018; Zhou et al., 2021). Zhao et al. isolated

Xanthohumol D from the ethyl acetate fraction of Humulus

lupulus L., and Xanthohumol D significantly inhibited NO

SCHEME 5
Synthesis of Bartericin A.

SCHEME 6
(A) Synthesis of Angusticornin A; (B) Synthesis of Angusticornin B.
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production at 5 μg/ml (completely suppressed the expression of

inducible NO synthase induced by lipopolysaccharide/IFN-γ)
(Zhao et al., 2003; Zhao et al., 2005). In 2004, Chadwick et al.

isolated Xanthohumol D from spent Nugget hop pellets

(Humulus lupulus L. cv. Nugget) by supercritical CO2

extraction Chadwick et al. (2004). Subsequently, Xanthohumol

D was tested for induction of quinone reductase in Heap

1c1c7 murine hepatoma cells by Liu et al. (2005) and the CD

value was 7.4 ± 0.7 μM. Chesnokova et al. also isolated

Xanthohumol D from hops (Humulus lupulus) by using

Soxhlet apparatus Chesnokova et al. (2009). Choi et al.

isolated Xanthohumol D from ethanolic extract of hops

(Humulus lupulus L.), and Xanthohumol D was used to

determine the inhibition of quinone reductase-2 (IC50 = 110 ±

27 μM) (Choi et al., 2011; Cieśla and Moaddel, 2016; Wei et al.,

2016; Chen et al., 2018). Tronina et al. (2013) assessed the ability

of Xanthohumol D to scavenge 2,2′-diphenyl-1-picrylhydrazyl
(DPPH) radicals (IC50 = 2.37 ± 0.40 μM). In addition, the

antiproliferative activity of Xanthohumol D against MCF-7

(IC50 = 20.60 ± 0.22 μM), PC-3 (IC50 = 37.88 ± 13.90 μM)

and HT-29 (IC50 = 78.33 ± 8.83 μM) human cancer cell lines

were also determined. Yu et al. (2014) isolated Xanthohumol D

and seven other chalcones from Humulus lupulus, and the

quinone reductase induction activity results showed that

Xanthohumol D has moderate activity (IR = 2.22 ± 0.05,

viability = 0.45%) in using human Heap 1c1c7 cells at the

concentration of 20 μM. Sangiovanni et al. (2019) isolated

Xanthohumol D from hop extracts (Humulus lupulus L.

cultivar Cascade), and reported the anti-inflammatory activity

of the hop extracts (Xanthoangelol D and Xanthoangelol A as the

main active components) in human gastric epithelial cells. Fu

et al. (2020) evaluated the antibacterial activities of synthetic

Xanthohumol D against two Gram positive bacteria

(Staphylococcus aureus CMCC 26003, Bacillus subtilis

CMCC(B) 63,501) and two Gram negative bacteria

(Escherichia coli CMCC 44102, Pseudomonas aeruginosa

CMCC (B) 10,104), and Xanthohumol D showed significant

activity towards Bacillus subtilis (MIC = 12.5 μg/ml) but no

obvious inhibitory activity to the other three strains (MIC >
200 μg/ml).

2.4.2 Chemical synthesis
Fu et al. reported the first synthesis of Xanthohumol D

commenced from the Schenck ene reaction of intermediate

34, which introduced the HMB groups. Then 35 was carried

out in using catalytic amounts of p-TsOH leading to the target

product Xanthohumol D (Fu et al., 2020) (Scheme 3A). The key

intermediate 34 was prepared from 28 by using the method of

Khupse et al. (Khupse and Erhardt, 2007). Sugamoto et al. (2020)

also synthesized Xanthohumol D by using the same procedure

employed for the synthesis of Xanthoangelol D from prenylated

chalcone (36) (Scheme 3B).

2.5 Psorachalcone A (6)

2.5.1 Isolation and biological activities
In 2001, ElSohly et al. isolated 2′,4′,4,2″-tetrahydroxy-3′-[3″-

methylbut-3″-enyl]-chalcone (6) from an ethanol extract of the leaves

of Maclura tinctoria (L.) Gaud, but did not give it a Latin name.

Chalcone 6 showed inhibitory activity against Candida albicans

(IC50 = 15 μg/ml) and Cryptococcus neoformans (IC50 = 7 μg/ml)

(ElSohly et al., 2001;Nowakowska, 2007). Li et al. (2002) evaluated the

fatty acid synthase inhibitory activity of chalcone 6, and chalcone 6

exhibited marginal activity with IC50 of 46 μg/ml. Compound 6 was

also isolated from the seeds ofPsoralea corylifolia, and did not showed

significant antibacterial activities against two pathogenic bacteria

Staphylococcus aureus and S. epidermidis (MIC > 0.147mM) (Yin

et al., 2004). Ngadjui et al. (2005) isolated chalcone 6 from the twigs of

Dorstenia angusticornis and Dorstenia barteri var. subtriangularis.

SCHEME 7
Synthesis of chalcone 11.
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Until 2005, Yu et al. isolated chalcone 6 and named it as

Psorachalcone A (Yu et al., 2005; Xu et al., 2012). Zhai et al.

evaluated the antiproliferative effects of synthetic Psorachalcone A

against five cancer cells (PC-3, A375, PANC-1, A549 andMDA-MB-

231), but no obvious inhibitory activity was observed (IC50 > 25 μM)

(Zhai et al., 2019). Li et al. (2019) evaluated the antibacterial activities

SCHEME 8
(A) Synthesis of (±)-Sanjuanolide by Zhai et al.; (B) Synthesis of (±)-Sanjuanolide by Fang et al.; (C) Synthesis of (S)-Sanjuanolide and (R)-
Sanjuanolide by Fang et al.
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of synthetic Psorachalcone A against two Gram positive bacteria and

two Gram negative bacteria, and Psorachalcone A showed slight

activity towards Gram-positive bacteria (Staphylococcus aureus,

MIC = 50 μg/ml; Bacillus subtilis, MIC = 25 μg/ml) but no

obvious activity to Gram-negative bacteria (Escherichia coli and

Pseudomonas aeruginosa, MIC > 200 μg/ml). In 2021,

Psorachalcone A was isolated from the fruits of Morus nigra

Linn., and did not exhibit obvious effect of inhibiting 3-

phosphoglycerate dehydrogenase (Wang et al., 2021).

2.5.2 Chemical synthesis
The first synthesis of PsorachalconeA and its new analogueswere

achieved from 2,4-dihydroxyacetophenone (21) through six steps by

Zhai et al. (2019). Methoxymethyl (MOM) was used to protect the

C4′-hydroxy group of 21 selectively. And MOM-protected 37 was

prenylated with bromide 22 to afford 38, which was further reacted

with 39 to afford 40 by Claisen-Schmidt condensation. Then 40 was

subjected to [1,3]-sigmatropic rearrangement, Schenck ene reaction

and deprotection to obtain Psorachalcone A (Scheme 4A). Sugamoto

et al. (2020) synthesized Psorachalcone A by using the same

procedure employed for the synthesis of Xanthoangelol D from

prenylated chalcone (43) (Scheme 4B).

2.6 Bartericin A and D (7, 10)

2.6.1 Isolation and biological activities
Bartericin A and Bartericin D were isolated from the twigs of

Dorstenia barteri var. subtriangularis successively, along with

several other diprenylated chalcones (Ngameni et al., 2004;

Ngadjui et al., 2005). (±)-Bartericin A obtained by the

synthetic method was used to evaluate its antibacterial

activity, and it showed moderate inhibitory activity against

two Gram positive bacteria (Staphylococcus aureus and

Bacillus subtilis, MIC = 25 μg/ml) (Fu et al., 2020).

2.6.2 Chemical synthesis
Fu et al. completed the first chemical synthesis of Bartericin A

from the key intermediate 45 (Fu et al., 2020), and the

preparation of 45 referred to the report of Dong et al. (Tan

et al., 1999; Dong et al., 2007), which is similar to the synthetic

steps of Paratocarpin E (Scheme 5). In addition, the chemical

synthesis of Bartericin D has not been reported until now.

2.7 Angusticornin A and B (8, 9)

2.7.1 Isolation and biological activities
Angusticornin A and B were first isolated from the twigs of

Dorstenia angusticornis and Dorstenia barteri var. subtriangularis

(Ngadjui et al., 2005; Simo et al., 2005). According to the report by

Kuete et al., Angusticornin B didn′t exhibit obvious antimicrobial

activity against a serials of Gram-negative multidrug-resistant

bacteria, but increased significantly against Escherichia coli

AG100A (MIC values, 64 vs. 16 mg/L) in the presence of the

efflux pump inhibitor phenylalanine arginine β-naphthylamide

(20 mg/L) (Kuete et al., 2011). Angusticornin A and B obtained

by the synthetic method were used to evaluate their antibacterial

activities, and only Angusticornin A showed moderate inhibitory

activity against Bacillus subtilis (MIC = 25 μg/ml) (Li et al., 2019; Fu

et al., 2020).

2.7.2 Chemical synthesis
Angusticornin A was synthesized frommethyl ketone 38 and

aldehyde 48 (Damodar et al., 2017) through Claisen-Schmidt

condensation, [1,3]-sigmatropic rearrangement, Schenck ene

reaction and deprotection (Li et al., 2019) (Scheme 6A).

Angusticornin B was prepared from natural product Stipulin

(52) by Schenck ene reaction (Scheme 6B) Fu et al. (2020).

2.8 2′,6′-dihydroxy-3′-(2-hydroxy-3-
methyl-3-butenyl)-4′-
methoxychalcone (11)

2.8.1 Isolation and biological activities
Ren et al. isolated chalcone 11 from thewhole plant ofAnaphalis

lactea (RenQi and Shi, 2008). The synthetic chalcone 11 was

evaluated the antibacterial activities against two Gram positive

bacteria (Staphylococcus aureus CMCC 26003, Bacillus subtilis

CMCC(B) 63,501) and two Gram negative bacteria (Escherichia

coli CMCC 44102, Pseudomonas aeruginosa CMCC(B) 10,104), but

no obvious activity was observed in the four test strains (MIC >
200 μg/ml) (Fu et al., 2020).

2.8.2 Chemical synthesis
According to Fu et al., methoxymethylation of compound 53

(Grayfer et al., 2016), and then subjected to Claisen-Schmidt

condensation, Schenck ene reaction, and demethoxymethylation

of 56 to obtain chalcone 11 (Fu et al., 2020) (Scheme 7).

2.9 Sanjuanolide (12)

2.9.1 Isolation and biological activities
In 2016, Sanjuanolide was isolated from Dalea frutescens by

Shaffer et al., and it exhibited slightly greater cytotoxic activities

against PC-3 (IC50 = 11 ± 4 μM) and DU 145 (IC50 = 7 ± 3 μM)

prostate cancer cell lines (Shaffer et al., 2016). Sanjuanolide was also

isolated from the leaves and stem bark of Artocarpus integer in 2021

(Duong et al., 2021). Zhai et al. (2019) reported the anti-cancer

activities of the synthetic Sanjuanolide against PC-3, A375, PANC-1,

A549 and MDA-MB-231 cell lines, and Sanjuanolide showed

moderate inhibitory activity against PC-3 (IC50 = 17.5 μM) and

A375 (IC50 = 13.1 μM) cells. According to the report of Fang

et al., (R)-Sanjuanolide efficiently inhibited the lipopolysaccharides-
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induced expression of tumor necrosis factor alpha and interleukin-6

(IC50 = 1.1 μM), but (S)-Sanjuanolide didn′t showed significant anti-
inflammatory effect. Furthermore, (R)-Sanjuanolide effectively

inhibited the mRNA expression of several inflammatory cytokines

after the lipopolysaccharides challenge in vitro (Fang et al., 2019).

2.9.2 Chemical synthesis
Zhai et al. (2019) completed the total synthesis of

(±)-Sanjuanolide from commercially available materials in seven

steps (12% overall yield) (Scheme 8A), along with its seven new

analogues. At the same time, Fang et al. completed the total synthesis

of (±)-Sanjuanolide (Scheme 8B) in 15 steps with overall yield of 3.8%.

In addition, (S)-Sanjuanolide and (R)-Sanjuanolide were also

prepared in 17 steps with overall yields of 7.3% and 4.2%,

respectively (Fang et al., 2019) (Scheme 8C).

2.10 2,2′,4,4′-tetrahydroxy-3-(2″-
hydroxy-3″-methylbutyl-3″-alkenyl)
chalcone (13)

Chalcone 13 was isolated from a Morus alba leaf by Yang et al.,

and it has a high free radical scavenging capacitywhile exhibits an IC50

of 21.6 μMagainstDPPH radicals (Yang and Jiang, 2021). In addition,

no chemical synthesis of chalcone 13 has been reported so far.

3 Conclusion and outlook

Chalcone scaffolds, which is considered as the key bioactive

precursors of plant flavonoids, have attracted more and more

attention in medicinal chemistry and pharmacology. Herein, the

isolation, chemical synthesis and biological activities of twelve

natural chalcones and a chalcone-type compound bearing HMB

group are reviewed. Although only a few dozen isolated or

synthesized chalcones with HMB group have been reported,

their various biological activities have aroused extensive

interest of academic researchers, and it is believed that more

and more natural or synthetic chalcones with HMB group will be

presented in the further study. Furthermore, natural flavonoids

with HMB group, which showed exciting biological activities,

have also been reported by researchers in the past several

decades, such as Ephedroidin and Dinklagin C (Lee et al.,

1998; Pistelli et al., 1998; Xu et al., 2015; Owor et al., 2020).

Moreover, further research on chalcones with HMB group might

have much potential for drug discovery, especially as an adjuvant

for a combination strategy between antibiotics and chalcones.

And further studies on SAR, pharmacokinetics and toxicology

are still needed, since the chemistry and biological importance of

these biologically active compounds have not been systematically

explored. Therefore, rational chemical derivatization of the

natural chalcones and flavonoids bearing HMB group is

necessary for further investigation of SAR, which play a key

role in the screening of novel lead compounds.
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