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Abstract
Recent research has shed light on the plethora of mechanisms by which the
gastrointestinal commensal microbiome can influence the local immune
response in the gut (in particular, the impact of the immune system on epithelial
barrier homeostasis and ensuring microbial diversity). However, an area that is
much less well explored but of tremendous therapeutic interest is the impact
the gut microbiome has on systemic cell-mediated immune responses. In this
commentary, we highlight some key studies that are beginning to broadly
examine the different mechanisms by which the gastrointestinal microbiome
can impact the systemic immune compartment. Specifically, we discuss the
effects of the gut microbiome on lymphocyte polarisation and trafficking,
tailoring of resident immune cells in the liver, and output of circulating immune
cells from the bone marrow. Finally, we explore contexts in which this new
understanding of long-range effects of the gut microbiome can have
implications, including cancer therapies and vaccination.
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Introduction
The human intestine houses a tremendous quantity and remark-
able diversity of microbes, including bacteria, fungi, viruses, and  
protozoa. Such organisms, collectively termed the gut microbi-
ome, form complex ecosystems capable of performing a diverse  
array of functions that have a wide spectrum of effects on their 
host’s physiology and hence health1–3. Functions include those 
associated with digestion and nutrient status, but sensing of  
the gut microbiome is also understood to have profound effects  
on the immune system.

Much of this understanding is centred on the effects of the  
microbiome on the development of local immune responses in 
the gut, particularly those related to the crucial tasks of main-
taining a healthy complex microbial composition and preventing  
microbes from breaching the simple (one-cell-thick/unilayered) 
epithelium1,4,5 (Figure 1). For example, the production of immu-
noglobulin A (IgA) by gut plasma cells is important to ensure 
microbial diversity6–8, while interleukin-22 (IL-22) produc-
tion by various lymphocyte subpopulations, including T helper  
type 17 (Th17) cells, γδ T cells, and type 3 innate lymphoid  
cells (ILC3s), stimulates antimicrobial protein release by  
epithelial cells9.

It is increasingly recognised that the gut microbiome can influ-
ence not only these local effects on the mucosal immune sys-
tem but also cell-mediated systemic immune responses1,5,10  
(Figure 1). Evidence suggests that such systemic effects of the 
microbiome are intrinsically linked to both early life devel-
opment of appropriate local gut mucosal immune responses  
towards the microbiome and their subsequent maintenance across 
the life course. In this regard, early life exposure to antibiotics 
has been linked to the development of asthma11, while a decline 
of epithelial barrier function with age in mice leads to innate  
immune dysfunction in the bone marrow and peritoneum12.  
Moreover, ongoing gastrointestinal inflammation, as occurs in 
inflammatory bowel disease (IBD), is associated with immune-
mediated inflammation in distal organs, including the joints,  
skin, and eyes13,14. However, even in the healthy gut, microbial 
products constantly transit into the circulation15–17, and it has  
been suggested that in health the gastrointestinal microbiome 
acquires a rheostat-like function, tuning the systemic immune  
system1.

In the 1980s and 1990s, studies using antibiotic treatment and 
germ-free (GF) mice highlighted effects of the microbiome 
on systemic immunity18,19, but owing to the recent dramatic  
advances in the microbiome field these systemic effects are 
now becoming an area of great research interest. In this com-
mentary, we will focus on three actions that are emerging as  
key mechanisms by which the gut microbiome impacts sys-
temic cell-mediated immunity and their implications for thera-
pies. We will specifically discuss (1) lymphocyte polarisation,  
trafficking, and cross-reactivity; (2) direct effects of bacterial  

ligands on distal organ immune cell development and function;  
and (3) modulation of immune cell output during haematopoiesis.

Lymphocyte polarisation, trafficking, and cross-
reactivity
At this time, perhaps the best-characterised mechanism by which 
the gut microbiome is known to influence systemic immune  
responses is via its influences on the adaptive immune system, 
particularly the T-cell compartment20,21. Indeed, in a number of  
animal models (described below), it has been established that 
modifying gut T cells can impact systemic disease either in a  
non-antigen-specific manner through bystander effects or in an 
antigen-specific fashion as a result of molecular mimicry by  
commensal factors.

In a mouse model of spontaneous autoimmune arthritis  
(K/BxN), GF or antibiotic-treated animals have lower serum 
autoantibody titres (that are associated with disease develop-
ment) and ameliorated disease22. This is linked to decreased ger-
minal centre formation systemically in the animals with depleted 
microbiota, hence explaining the lower serum autoantibodies. 
When the gut of GF animals was recolonised with Th17-inducing  
segmented filamentous bacteria (SFB), autoimmune arthritis 
incidence was restored. In this setting, activated Th17 cells from 
the gut trafficked to the spleen, where they supported germinal  
centre formation and ultimately increased production of disease- 
mediating autoantibodies22. Of note, this germinal centre forma-
tion is also dependent upon T follicular helper (Tfh) cells as in  
K/BxN mice it has also been shown that Tfh cells generated in 
the Peyer’s patches in response to SFB can transit to the spleen  
and support autoantibody production23.

Similarly, in experimental autoimmune encephalomyelitis 
(EAE), a murine model for multiple sclerosis, altering the gut  
microbiome has been shown to modulate central nervous system 
(CNS) autoimmunity in a T-cell-dependent manner. In a model 
of spontaneous EAE, SJL/J mice raised in GF conditions were  
protected against developing the disease while the introduction 
of commensal microbiota into the gut restored susceptibility24.  
Once again, when mice were mono-colonised with SFB, 
this induced Th17 cells in the gut and resulted in enhanced  
neurodegeneration in the CNS25.

The impact of the gut microbiome on peripheral T-cell sub-
sets can also have positive effects on inflammatory diseases.  
Through its capacity to induce regulatory populations, the micro-
biome can also support the suppression of inflammatory responses. 
One particularly important mechanism is via the production of 
short-chain fatty acids (SCFAs), including butyrate, propionate, 
and acetate. SCFAs are generated by the microbiota as a result  
of its capacity to break down fibre and are now recognised as a 
keystone metabolite sensed by the immune system and capa-
ble of immunomodulation1,26. SCFAs promote the differentia-
tion of peripherally induced regulatory T cells (Tregs) and in this  
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Figure 1. Effects of gut microbiota on systemic cell-mediated immune responses in health and disease. Much of the mucosal immune 
response towards the gut microbiota is focused on maintaining microbial diversity and supporting epithelial barrier function. Mechanisms 
include local production of immunoglobulin A (IgA) and production of the cytokine interleukin-22 (IL-22) to re-enforce epithelial barrier 
integrity. Even in the intact barrier, however, microbiota-derived ligands and metabolites enter into the circulatory system and impact  
immune populations at distal sites. These effects include tailoring of immune cell function in the liver and modulating bone marrow 
haematopoiesis. In disease states, the gastrointestinal barrier can become more leaky, leading to aberrant exposure to factors from the 
microbiome, as occurs in alcoholic liver disease. Additionally, in mouse models of T helper type 17 (Th17)-associated pathology (K/BxN 
arthritis and experimental autoimmune encephalomyelitis [EAE]), Th17 cells generated in response to commensal bacteria are thought 
to traffic from the gut and impact antibody generation and inflammation systemically. CNS, central nervous system; DC, dendritic cell;  
ILC, innate lymphoid cell; iNKT cell, invariant natural killer T cell; LSEC, liver sinusoidal endothelial cell; SCFA, short-chain fatty acid;  
TLR, Toll-like receptor.
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manner are capable of shifting the balance of effector T cells to  
Treg cells to limit the development of systemic inflammation27. 
Although butyrate and propionate are dominantly restricted to 
the gut and hepatic portal circulation26,28, acetate can be found  
in the circulation, implying that SCFAs could be directly sensed  
by circulating T cells to alter their function.

Antigen-specific T-cell responses, as opposed to the bystander 
effects already described, have also been shown to play both  
positive and negative roles in immune-mediated diseases. Of  
particular note, myelin basic protein (MBP)-specific T cells 
can respond to structurally related microbial peptides that can 
result in neurodegeneration29. Additionally, in autoimmune  
uveitis, T cells specific for self-antigens are first activated 
in the gut before trafficking to the eye30. Conversely, myelin  
oligodendrocyte (MOG)-specific intraepithelial lymphocytes 
(IELs) were shown to transit from the gut to the CNS, where  
they were able to suppress neuroinflammation locally via a  
LAG3-dependent mechanism31, again demonstrating, as is the 
case for the bystander effect of the microbiome on T cells, that 
gut commensals can be important in balancing systemic immune  
responses.

Distal organ immune cell development and function
Independently of activation and T-cell trafficking from the gut-
associated lymphoid tissue (GALT) to peripheral sites, resi-
dent immune cell function in organs distal to the gut can also be  
directly impacted by their sensing of circulating commensal- 
derived factors. This is particularly well exemplified by the immune 
populations of the liver, an organ that receives about 80% of its 
blood via a major tributary associated with the gut, the portal 
vein32–34. The composition of the immune compartment in the 
liver, as at other sites, is highly tailored to the specialised physi-
ologic and immunologic requirements of the organ. Of note, the  
immune system of the liver, compared with that of other 
organs, is particularly enriched in unconventional lymphocyte  
populations, including invariant natural killer T (iNKT) cells and 
γδ T cells. These cells, which can respond to microbial lipids,  
are important in the protection against infections that manage 
to enter the circulation, but their aberrant activity can also lead  
to liver pathology33,35. A number of studies have implicated the 
gut microbiota in determining the establishment and function of  
these dominant cell populations.

iNKT cell numbers have been described to be positively or  
negatively regulated by the commensal microbiome depend-
ing on the strain of animal and type of microbiota present36.  
Additionally, iNKT cells can exhibit functional alterations in 
the absence of a commensal microbiome, as they have a less-
mature phenotype and are hyporesponsive to stimulation with the  
lipid α-galactosylceramide (α-GalCer)37. A study by Li et al. 
showed that, alongside effects on iNKT cells, IL-17A-producing 
liver γδ T cells are also supported by the commensal microbiota35. 
Notably, GF or antibiotic-treated animals had reduced numbers 
of hepatic IL-17A-producing γδ T cells; complete restoration  
of this population was possible through recolonisation with a 
complex microbiota, whilst partial restoration occurred upon the  
addition of Escherichia coli alone in a dose-dependent manner35.

The liver is home to not only iNKT cells and γδ T cells but 
also various antigen-presenting cell populations, including  
dendritic cells (DCs) and the major liver-resident macrophage, 
the Kupffer cell (KC)33,38. These cells are responsive to micro-
bial signals via their expression of various Toll-like receptors 
(TLRs)39. In the early 1990s, it was suggested that KCs can rec-
ognise and respond to intestine-derived bacterial endotoxins40; 
more recently, it has been demonstrated that KC proliferation 
and major histocompatibility complex II (MHC II) expression are  
controlled by a live gut microbiome41. Indeed, aberrant changes 
to the gut microbiome are associated with increased hepatic  
inflammation, mediated partly by KC recognition of intes-
tinal microbiota-associated molecular patterns via TLR-4/9  
signalling and their subsequent upregulation of tumour necrosis 
factor-alpha (TNF-α)42.

Though not a haematopoietic immune population, liver sinu-
soidal endothelial cells (LSECs) can also present antigens  
recognised in the sinusoidal space because of their expression 
of MHC I and MHC II43,44, various scavenger receptors45,46, and 
lymphocyte adhesion molecules such as DC-SIGN47. Along with  
KCs, LSECs prime liver-localised CD8+ and CD4+ T cells in 
response to the recognition of microbe-associated ligands pass-
ing through the sinusoids that can originate from the intestine44. 
Thus, overall, the cellular composition and gross structure of 
the liver seem to co-operatively enable resident immunological  
subsets to respond to microbe-derived ligands derived from  
the intestinal microbiota.

As discussed, even in the absence of intestinal inflammation, 
the liver is chronically exposed to intestinally derived microbial  
products such as lipopolysaccharide (LPS). Owing to this  
baseline LPS exposure, endotoxin tolerance is observed in 
the liver and is associated with the priming and entrapment of 
tolerogenic CD4+ and CD8+ T cells by LSECs48,49 and IL-10  
secretion by KCs and conventional DCs50,51. However, these 
immunologic subsets remain capable of responding to high LPS 
concentrations, and it is possible that increased LPS stimulation  
(greater than the baseline levels), or LPS exposure in conjunction 
with additional pathogen-associated molecular patterns (PAMPs)/
metabolites, acts as a means to signal alterations to the com-
mensal microbiome or intestinal barrier breach or both. This was  
previously proposed by Belkaid and Naik, who suggested that the 
liver may sense a commensal microbiome ‘molecular fingerprint’ 
and that changes to this ‘fingerprint’ could act as an alarm to the 
periphery10. Perturbations to this dialogue between the gut and  
liver are exemplified by the pathological progression of alco-
holic liver disease (ALD). ALD is associated with increased gut  
permeability (movement of commensal microbes outside of the 
gut) and in turn endotoxemia52, mediated by increased ethanol  
consumption and commensal outgrowth53, where the recognition  
of increased LPS titres by TLR-4 and CD14 leads to hepatic  
inflammation and steatosis54.

It is clear that immune populations in highly vascularised organs 
in addition to the liver can be impacted by the gut microbiome.  
In particular, non-mucosal mononuclear phagocytes have 
been shown to have altered methylation patterns at key genes  

Page 5 of 10

F1000Research 2018, 7(F1000 Faculty Rev):1910 Last updated: 07 DEC 2018



associated with type I interferon (IFN) production in GF ani-
mals, leading to impaired priming of natural killer cells in the 
spleen55. Whether this is mediated by direct effects of microbial 
ligands on mature immune populations or is due to alterations in  
haematopoietic development (as discussed in the next section) 
is unclear. As in the liver, these effects are just beginning to  
be explored and hold much potential for understanding sys-
temic complications associated with shifts in the commensal  
microbiome.

Modulation of immune cell output during 
haematopoiesis
The ability of microbiome-derived ligands and their metabo-
lites to enter the circulation allows resident bacteria in the 
gut to modulate the immune system from the earliest times of  
immune cell development during haematopoiesis56,57. Studies in 
the 1980s of GF animals, alongside specific pathogen-free ani-
mals treated with the antibiotic polymyxin, implicated Gram- 
negative commensal bacteria in promoting the development of 
bone marrow granulocyte-monocyte progenitor cells18. In line with  
this dependency of granulocyte-monocyte progenitors on the gut 
microbiota, more recent investigations established deficiencies  
in differentiated myeloid cell populations in both the spleen and  
the bone marrow of GF mice56.

Human and mouse haematopoietic stem cells express TLRs,  
providing a mechanism by which circulating microbiome-derived 
ligands could instruct haematopoiesis58–60. In humans, signalling 
via TLR-2 and TLR-7 directs haematopoietic differentiation  
towards a myeloid cell fate61,62. After myeloid differentiation, 
microbiome-derived ligands can also augment the release of 
myeloid populations from the bone marrow. Sensing of low-level  
changes of the TLR-4 ligand LPS, which reflects fluctuations in 
circulating microbial molecules after their absorption from the  
gut, supports the release of mature monocytes from the murine 
bone marrow in a CCL-2-dependent fashion63.

Another mechanism by which the gut microbiome can influence 
haematopoiesis is via exposure to commensal-dependent 
metabolites. Systemic increases of the SCFA propionate, by  
administration in drinking water, led to alterations in bone  
marrow haematopoiesis characterised by enhanced DC precursor  
production64. Gastrointestinal helminth infections can lead 
to alterations in the gut microbiota such that systemic SCFA  
levels are increased65. In line with these increases in SCFA dur-
ing helminth infection, DC precursors are also modulated in the 
bone marrow65. Ultimately, this altered bone marrow output can 
have implications for inflammation at other mucosal sites. For 
example, following the administration of propionate in drinking  
water, the development of allergic responses in the lung is reduced. 
This alteration is associated with the presence of DCs that  
have impaired T-cell-activating capacity in the lung64. This find-
ing highlights the possibility that manipulating the factors, such 
as metabolites, that gut microbiota produce limits inflammation  
at distal sites.

Therapeutic opportunities and future directions
As highlighted, better characterisation of the gut microbiota 
and understanding of its mechanisms of action on systemic  

immune responses hold tremendous opportunities for the devel-
opment of therapeutics and also patient stratification. Two  
current areas of particular research interest are cancer therapy 
and vaccination responses66,67.

GF and antibiotic-treated mice show reduced tumour regression  
and impaired survival following treatment with chemothera-
peutic agents compared with controls68,69, while recoloni-
sation with specific bacterial species can lead to a restored 
anti-tumour efficacy70. Recently, immunotherapy has revolu-
tionised cancer treatment, particularly with regard to checkpoint  
blockade. In this context, T-cell pathways that are associated with 
regulatory checkpoints, such as PD-1 and CTLA-4, are inhib-
ited to augment anti-tumour responses71. Remarkably, the capac-
ity of CTLA-4 blockade to have anti-tumour effects was reli-
ant on Bacteroides species72. Both a mouse model and studies in 
patients revealed that specific T-cell responses to Bacteroides  
thetaiotaomicron and Bacteroides fragilis correlate with the effi-
cacy of CTLA-4 blockade72. In a similar vein, Bifidobacterium  
was shown to improve melanoma control alongside PD-L1- 
specific antibody therapy. Indeed, in tandem, the presence of  
Bifidobacterium with PD-L1 resulted in tumour clearance73.

It is becoming clear that the precise gut microbiome of an indi-
vidual also has implications for the development of vaccine- 
mediated protection. This has perhaps been best demonstrated in 
GF animals or animals treated with antibiotics, where an absence 
or reduced gut microbiome is associated with impaired IgG  
and IgM responses to the seasonal influenza vaccine74. This 
effect is dependent upon the capacity of the microbiome to act 
as an adjuvant via TLR-5-mediated sensing of bacterial flagellin.  
Oral reconstitution of GF mice with flagellated strains of E. coli 
(but not aflagellated forms) restored vaccine responses. Inter-
estingly, this effect may be specific to certain types of vaccine, 
as the seasonal influenza vaccine is a non-adjuvanted vaccine74.  
Studies of human cohorts, alongside murine models, have dem-
onstrated effects of the microbiome on vaccine responses. For  
example, the relative abundance of specific bacterial species in 
stool microbiota of a small cohort of Bangladeshi infants was  
correlated with vaccine-specific IgG and T-cell proliferation  
towards vaccinations, including Bacillus Calmette–Guérin and 
hepatitis B vaccine75.

Researchers are just beginning to understand the variety of mech-
anisms by which the gut microbiome can influence systemic  
immunity and the implications of this for human health. This 
review has highlighted three distinct types of mechanism that are 
already being explored (Figure 1). Another emerging field, not 
discussed here, that is likely to be critical to the modulation of 
systemic immunity by the gut microbiota consists of interactions  
with the nervous system. It is well established that the microbi-
ome is involved in instructing the nervous system, but precisely  
how this can lead to alterations in the peripheral immune sys-
tem is less well understood76. It is clear that, irrespective of the 
exact mechanisms, improved understanding of the key pathways 
and bacterial species involved in systemic instruction of the  
immune system holds promise to inform the development of 
novel therapeutic strategies to modify immune function. One such  
evolving strategy is faecal microbiota transplantation (FMT), in 
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which the faecal material from a healthy donor is transferred to 
a patient with suspected microbial dysbiosis to restore diversity  
of the commensal microbiota77. FMT has been used success-
fully to treat recurrent Clostridium difficile infection in patients  
without IBD77,78, and studies suggest that FMT may be beneficial  
to some patients with IBD79. Whether FMT can also promote 
the resolution of systemic disease symptoms associated with  
gut inflammation and microbial alterations is just beginning  
to be explored, and studies are underway in diseases, including  
psoriatic arthritis80.

Another widely promoted approach for modulating the gut  
microbiome is the use of probiotic therapies81,82. In rodent mod-
els, probiotics can improve systemic inflammatory disease, such 
as joint inflammation83. However, a recent publication has sug-
gested that, following antibiotic treatment, the use of probiotics 
may compromise gut mucosal recovery, demonstrating that such  
therapies need to be employed with caution84. These early stud-
ies of microbiome-modifying therapies reveal that much future 
work is required to translate our rapidly advancing knowledge  

of how the gut microbiome impacts systemic immunity into  
altered patient outcomes. Even so, there is no doubt that such 
research does hold much promise for improving treatments in 
diverse disease states from cancer to autoimmunity.
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