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BoLA‑DRB3 gene haplotypes show 
divergence in native Sudanese 
cattle from taurine and indicine 
breeds
Bashir Salim1*, Shin‑nosuke Takeshima2, Ryo Nakao3, Mohamed A. M. Moustafa3, 
Mohamed‑Khair A. Ahmed4, Sumaya Kambal5, Joram M. Mwacharo6, Abeer M. Alkhaibari7 & 
Guillermo Giovambattista8

Autochthonous Sudanese cattle breeds, namely Baggara for beef and Butana and Kenana for 
dairy, are characterized by their adaptive characteristics and high performance in hot and dry agro‑
ecosystems. They are thus used largely by nomadic and semi‑nomadic pastoralists. We analyzed 
the diversity and genetic structure of the BoLA‑DRB3 gene, a genetic locus linked to the immune 
response, for the indigenous cattle of Sudan and in the context of the global cattle repository. Blood 
samples (n = 225) were taken from three indigenous breeds (Baggara; n = 113, Butana; n = 60 and 
Kenana; n = 52) distributed across six regions of Sudan. Nucleotide sequences were genotyped using 
the sequence‑based typing method. We describe 53 alleles, including seven novel alleles. Principal 
component analysis (PCA) of the protein pockets implicated in the antigen‑binding function of 
the MHC complex revealed that pockets 4 and 9 (respectively) differentiate Kenana‑Baggara and 
Kenana‑Butana breeds from other breeds. Venn analysis of Sudanese, Southeast Asian, European and 
American cattle breeds with 115 alleles showed 14 were unique to Sudanese breeds. Gene frequency 
distributions of Baggara cattle showed an even distribution suggesting balancing selection, while the 
selection index (ω) revealed the presence of diversifying selection in several amino acid sites along 
the BoLA-DRB3 exon 2 of these native breeds. The results of several PCA were in agreement with 
clustering patterns observed on the neighbor joining (NJ) trees. These results provide insight into 
their high survival rate for different tropical diseases and their reproductive capacity in Sudan’s harsh 
environment.

There is a consensus among population geneticists that the Sudanese cattle populations belong to the humped 
Zebu cattle breed and are classified into two principal varieties: northern Sudan and  Nilotic1,2. The Kenana 
and Butana breeds are the best-known milk-producing northern Sudan Zebu  breeds3–5 with milk yield of over 
1500 kg per  lactation6–8.

The Kenana breed, predominantly found in the Blue Nile state, is distinguished by a light blue-gray coat 
color with darker hooves and head. The Butana breed of the Batahin and Shukria tribes inhabits the desert area 
between the Blue Nile and the River Atbara, and has a red-coat1. A third breed, the Baggara, is raised by Baggara 
Bedouin pastoralists. It is the major fattening Zebu cattle breed of northern Sudan, found mostly in west Sudan 
(Darfur and Kordofan regions), Niger, Chad, Cameroon and Nigeria. They have short horns and a large hump, 
with a red or dark red coat in Daeinawi Aka Messairi/Rezaigi population or white markings or black markings 
in the Nyalawi  population9.
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The immune system in vertebrates evolved to defend against invasive  pathogens10 and thus it is not surprising 
that genetic factors are implicated in disease susceptibility in cattle. The major histocompatibility complex (MHC) 
is a major component of the adaptive immune system, with MHC genes encoding the cell-surface glycoproteins 
that bind small peptide fragments derived from host- and pathogen-expressed proteins via  proteolysis11. Animal 
breeders are becoming more interested in the MHC due to its association with genetic resistance and susceptibil-
ity to a wide variety of  diseases12. Genetic characterization of MHC polymorphism can help reduce the occur-
rence and severity of infectious diseases in domestic animal and cattle breeding  programs13. The association of 
MHC with diseases in ruminants is well  documented14–19. The MHC genes are assigned to Bos taurus autosome 
chromosome 23 (BTA 23)14,15, and is known as the Bovine Leukocyte Antigen (BoLA). Recently Kim et al.16, 
investigated five African breeds for the identification of common and unique African genome-specific selection 
signatures and compared them with commercial breeds. They identified six BoLA haplotype blocks, and that 
the major African cattle haplotypes correspond to minor haplotypes in commercial cattle. The BoLA molecules’ 
extensive structural polymorphism is responsible for the large differences in cattle’s immune response to infec-
tious agents. For example, BoLA-DRB3 polymorphisms had been associated with tick infestation  resistance16. 
MHC research may also assist in the formation and design of synthetic peptide-based vaccines containing one 
or more pathogen T-cell epitope.

Polymerase chain reaction-sequence based typing (PCR-SBT) to assess the genetic diversity of the BoLA-DRB3 
gene has been done with only a few breeds and cross-breeds from Europe, Asia and the  Americas17–30. Target next 
generation sequencing (Target-NGS)31, the most powerful tools used to identify diversity of BoLA-DRB3 alleles 
in cattle breeds, has also not been extensively applied. This is despite the central role of the BoLA-DRB3 alleles 
in the immune response of cattle. Until now, private African BoLA-DRB3 alleles have been reported by authors 
using indirect techniques, such as polymerase chain reaction follow by restriction fragment length polymorphism 
(PCR–RFLP), followed by cloning and  sequencing32–34. These studies focused mainly on screening and analysis 
of only a few animals from a small selection of African breeds (e.g. Sanga, Kenana, Butana).

Previous work showed the presence of a high number of private alleles in native breeds. Consequently, there 
are still a number of breeds that remain uncharacterized, and this number only increases when local native 
bovine breeds are  considered19,21–23.

Here we examine patterns of genetic variation of BoLA-DRB3 alleles in Baggara, Butana and Kenana native 
cattle breeds of Sudan and compare these with commercial breeds to both identify any unique alleles in Sudanese 
native cattle breeds and to provide information on these alleles to enable further studies of disease susceptibility 
and resistance, particularly for designing improved breeding schemes.

Results
Distribution of BoLA-DRB3 alleles in selected native Sudanese cattle breeds. PCR-SBT geno-
typing allowed us to identify 53 BoLA-DRB3 alleles (46 previously reported variants and seven new alleles; 
Table 1) from the native breeds selected in this study. The number of alleles  (na) was 46 in Baggara cattle (40 pre-
viously reported and six new), 33 in Kenana cattle (28 previously reported and five new), and 33 in Butana cattle 
(28 previously reported and five new) (Tables 1 and 2). The new BoLA-DRB3 variants were confirmed by the 
presence of at least three carrier animals and in two breeds, and were submitted to the DNA Data Bank of Japan 
(http:// www. ddbj. nig. ac. jp) under accession numbers LC569724-LC569739. Nucleotide and predicted amino 
acid sequences of the seven new allele variants are shown in Fig. 1 and compared with the most similar BoLA-
DRB3 reported so far. All seven new BoLA-DRB3 allele variants shared about 89.7–92.6% and 80.52–85.71% 
nucleotide and amino acid similarity with the BoLA-DRB3 cDNA clone NR1, respectively (Aida, 1995).

A Venn diagram was constructed using data obtained in this study and from previous  reports18,19,21,27,29. Data 
were grouped in terms of the breed’s geographical origin as follows: native Sudanese; Southeast Asian; Zebu; 
European; and American Creole cattle breeds (Fig. 2). This analysis revealed that out of the 115 alleles identified 
in the five cattle groups, fourteen were unique to native Sudanese breeds (Fig. 2), four of which exhibited gene 
frequencies that were higher than 0.5%, representing about 26% of the 53 alleles detected in the native Sudanese 
cattle. In addition, two other variants were only present in native Sudanese and American Creole breeds, while six 
other alleles were only found in Sudanese cattle populations and American Creole or Southeast Asian native or 
Zebu breeds, or a combination of these groups. In addition, the BoLA-DRB3 NJ tree, including all the previously 
reported alleles and the seven new variants, showed that the variants detected in Sudanese cattle populations 
were interspersed among the various clusters (Fig. 3). A similar result was observed when the BoLA-DRB3 tree 
was inferred using amino-acid residues located in the antigen-binding site (ABS) (Fig. S1).

As shown in Fig. S2, the native Sudanese cattle breeds have an even gene frequency distribution, with a high 
number of alleles with low frequency. Low allele frequency was particularly noticeable in the Baggara breed. 
Only two, five and seven alleles appeared with frequencies of > 5% in the Baggarar, Kenana and Butana breeds, 
respectively. These common alleles accounted for a low proportion of the cumulative gene frequencies (12.83, 
44.23 and 50.83% in the Baggara, Kenana and Butana breeds, respectively); four of which (BoLA-DRB3*003:02:01, 
*021:01 *022:01 and *024:01) were common in at least two out of the three Sudanese breeds (Table 1).

Nucleotide and amino acid diversity in the BoLA-DRB3 alleles found in native Sudanese cat‑
tle breeds. Genetic diversity at the DNA and amino acid levels was evaluated using four methods that 
compare the average amino acid and nucleotide substitutions for every pair of alleles within the breeds. The 
nucleotide diversity (π) exceeded 0.074 and the mean number of pairwise differences values exceeded 17.99 
within Sudanese native breeds (Table 3). Comparison with results previously reported for other cattle breeds 
showed that these nucleotide diversity values all fall within the range previously reported (πrange = 0.068–0.090; 
 NPDrange = 16.31–20.96) when using PCR-SBT genotyping  methods18,19,21,29,30. Regarding amino acid diversity, 
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Table 1.  BoLA-DRB3 allele frequencies (in percentage) in native Sudanese cattle breeds. N. number of 
animals analyzed; Frequent alleles in each breed are indicated in bold (> 5%); Novel alleles identified in this 
study are indicated in bold and underlined.

DRB3

Baggara Kenana Butana

(N = 113) (N = 52) (N = 60)

BoLA-DRB3*003:01 0.00 0.96 0.00

BoLA-DRB3*003:02:01 4.87 7.69 5.83

BoLA-DRB3*004:01 2.65 0.00 0.00

BoLA-DRB3*005:02 4.87 2.88 2.50

BoLA-DRB3*007:01 2.65 0.96 0.00

BoLA-DRB3*008:01 1.33 0.00 0.83

BoLA-DRB3*009:01 0.88 0.00 0.00

BoLA-DRB3*009:02 2.65 0.96 4.17

BoLA-DRB3*010:01 0.44 0.96 4.17

BoLA-DRB3*010:02 1.33 1.92 1.67

BoLA-DRB3*011:01 4.42 0.00 0.00

BoLA-DRB3*011:02 0.44 0.00 0.00

BoLA-DRB3*012:01 2.65 3.85 0.00

BoLA-DRB3*013:01 3.54 0.00 1.67

BoLA-DRB3*014:01:01 4.42 2.88 9.17

BoLA-DRB3*015:01 4.42 1.92 0.83

BoLA-DRB3*016:01 5.75 0.00 0.83

BoLA-DRB3*018:01 2.21 4.81 4.17

BoLA-DRB3*019:01 0.00 0.00 0.83

BoLA-DRB3*020:01:01 1.32 4.81 0.83

BoLA-DRB3*020:02 0.88 0.00 0.00

BoLA-DRB3*020:03 0.44 0.00 0.83

BoLA-DRB3*021:01 3.10 7.69 10.83

BoLA-DRB3*022:01 7.08 6.73 9.17

BoLA-DRB3*022:10 0.00 0.00 0.83

BoLA-DRB3*022:12 0.44 0.00 0.00

BoLA-DRB3*023:01 1.77 2.88 2.50

BoLA-DRB3*024:01 4.87 14.42 5.00

BoLA-DRB3*024:06 0.00 1.92 0.83

BoLA-DRB3*025:01:01 0.44 0.96 0.00

BoLA-DRB3*026:01 2.65 0.96 3.33

BoLA-DRB3*027:03 0.44 0.96 0.00

BoLA-DRB3*027:04 1.33 1.92 1.67

BoLA-DRB3*027:05 0.00 0.96 0.83

BoLA-DRB3*028:01 3.98 7.69 3.33

BoLA-DRB3*028:02 3.10 0.96 4.17

BoLA-DRB3*029:02 0.44 0.00 0.00

BoLA-DRB3*030:01 0.44 0.00 0.00

BoLA-DRB3*032:03 0.00 0.96 0.00

BoLA-DRB3*033:01 0.44 1.92 0.83

BoLA-DRB3*036:01 1.33 0.00 0.00

BoLA-DRB3*039:01 0.44 0.96 1.67

BoLA-DRB3*044:01 1.77 0.00 1.67

BoLA-DRB3*048:02 4.42 1.92 0.00

BoLA-DRB3*100:01 0.44 0.00 0.00

BoLA-DRB3*107:01 0.44 0.00 0.00

BoLA-DRB3*004:02sp2 0.44 0.00 5.00

BoLA-DRB3*011:02Sp 3.10 2.88 5.83

BoLA-DRB3*018:01Sp 0.44 1.92 0.00

BoLA-DRB3021:01sp 0.88 0.00 1.67

BoLA-DRB3*024:18Sp 0.00 3.85 0.83

BoLA-DRB3*027:05Sp 2.21 1.92 1.66

BoLA-DRB3*032:01Sp 1.33 0.96 0.00
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the average  dN and  dS substitutions in Sudanese cattle breeds were calculated across the entire BoLA-DRB3 exon 
2 and ABS. As expected, the  dN/dS ratio was higher when only the ABS was analyzed (Table 3). These values 
obtained in Sudanese cattle were similar to those estimated for other cattle breeds  (dN/dS total = 3.50–3.85;  dN/
dS ABS = 4.80 – 4.93).

Gene diversity, Hardy–Weinberg Equilibrium (HWE), and neutrality testing of BoLA-DRB3 
variants found in Sudanese cattle breeds. Genetic diversity within the three Sudanese breeds was 
estimated using the  na and gene diversity  (ho and  he). We also performed HWE and Slatkin´s neutrality tests on 
BoLA-DRB3 to evaluate the possible effect of selection, inbreeding, and population structure on allelic diversity 
at this locus. The high  na values and even gene frequencies observed in the Butana, Kenana and Baggara breeds 
resulted in  he and  ho values higher than 0.93 (Table 2). As expected, these indices highlighted extremely high 
diversity values for Sudanese cattle populations, which is similar to the results reported for other bovine breeds 
which have been evaluated by PCR-SBT, and characteristic of MHC class II DR  genes18,19,21,27,29,35. Regarding 
the HWE test, the three Sudanese native populations were in equilibrium (Table 2), similar to observations in 
half of the bovine breeds studied so far. It is widely accepted that the genetic diversity of MHC class II genes can 
be maintained by balancing selection. Thus, we performed a Slatkin’s exact neutrality test (Table 2) to evaluate 
this phenomenon in the Sudanese cattle populations. The BoLA-DRB3 gene frequency profile in Baggara cattle 
showed an even distribution (p = 0.016), consistent with the theoretical proportion expected under balancing 
selection pressures. A similarly even BoLA-DRB3 gene frequency was observed in other cattle breeds, including 
Japanese Black, Yacumeño Creole, Bolivian Gir, Pyer Sein and Shwe Ni. Conversely, we did not detect balancing 
selection in the Butana and Kenana cattle (p = 0.225 and p = 0.138) despite these breeds having a large number of 
alleles with similar frequency. Comparable results were obtained for the majority of the cattle breeds analyzed to 
date (Table 2). In addition, we estimated the selection index (ω) in each amino acid site to evaluate the presence 
of diversifying selection (ω > 1) along BoLA-DRB3 exon 2. These analyses showed high ω values in more than 30 
sites in each breed, mainly located in the ABS (Fig. 4).

BoLA‑DRB3 genetic structure and levels of population differentiation in Sudanese cattle. The 
level of genetic differentiation among the three Sudanese breeds was studied through the FST index. The average 
FST was statistically significant although this value accounts for less than one percent of the total genetic vari-
ance (FST = 0.0076 (ranging between 0.007 and 0.009); p < 0.001) (Table S2). This low but significant value can be 
explained by high within-population diversity and differences in rare alleles profiles among  them36. The average 
FST value observed in Sudanese cattle is higher than those estimated in Myanmar native breeds (FST = 0.003), and 
slightly lower than those reported for Holstein populations from different countries (FST = 0.009)18,37 (Fig. 5 and 
Table S2). When breeds were grouped in terms of the breed’s geographical origin, as was done in the Venn dia-
gram, the genetic variance among breed groups and among populations within groups accounted for 1.18% and 
3.71% of the total genetic variance. Table S2 summarizes the genetic distance, measured by FST, between native 
Sudanese breeds and other taurine and zebu breeds for BoLA-DRB3, showing that native Sudanese cattle diverge 
from other breeds with FST values between 0.014 and 0.082.

When the five sampling sites of native Sudanese breeds were compared (two sampling locations of Kenana 
cattle were very close and assumed as one), the average FST value was 0.0074 (p = 0.164), while the pairwise FST 
ranged from 0.0002 (p = 0.450) between both Baggara populations and 0.0118 (p < 0.0001) between Baggara 
Daiwani and Butana Qadarif. Significant differences were observed in nine out of the ten native population 
comparisons (p < 0.05; Table S3). Similar genetic distance values were observed among Holstein populations 
from different countries and between native breeds of  Myanmar18,37.

Genetic differentiation of BoLA-DRB3 alleles in native Sudanese cattle breeds: comparison 
with Zebu and Taurine breeds. First, BoLA-DRB3 allele frequencies from Sudanese cattle populations 
and for each breed included in the dataset were used to generate Nei’s  DA and  DS genetic distance matrices. 
Then, dendrograms were constructed from these distance matrices using NJ algorithm. All trees revealed con-
gruent topologies, which were consistent with the historical and geographical origin of the breeds analyzed. As 
expected, these trees revealed two main clusters, which included the Taurine and Zebuine breeds (Fig. 6a). It is 
noteworthy that Sudanese breeds were located in a sub-cluster within the indicine cluster, with the two dairy 
breeds located in the east of the country, Butana and Kenana being more related to each other than the Baggara 

Table 2.  Number of alleles  (na) and new alleles, observed  (ho) and expected  (he) heterozygosity, Hardy 
Weinberg equilibrium (HWE) measured through  FIS and Slatkin’s exact test in the cattle breeds studied. 
N = sample size.

Breed N na New alleles ho he

HWE

Slatkin’s p valueFIS—p value

Baggara 113 46 6 0.938 0.969 0.032–0.277 0.016

Butana 52 33 5 0.961 0.951 0.005–0.100 0.255

Kenana 60 33 5 0.950 0.954 −0.011–0.628 0.138
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A                                      1       10 11      20 21      30 31      40 41      40 51      60 61      70 71       80 
BoLA-DRB3*016:01   TCTCTCTGCA GCACATTTCC TGGAGTATAC CAAGAAAGAG TGTCATTTCT TCAACGGGAC CGAGCGGGTG CGGTTCCTGG 
BoLA-DRB3*004:02Sp ---------- ---------- -.......T. T.C..GC... .......... .......... .......... .......... 
BoLA-DRB3*004:02   ---------- ---------- ........T. T.C..GC... .......... .......... .......... .......... 
BoLA-DRB3*011:02Sp ---------- ---------- -.......TA T...GGC... .......... .......... .......... .....G.... 
BoLA-DRB3*011:02   ---------- --........ ........TA T...GGC... .......... .......... .......... .....G.... 
BoLA-DRB3*018:01Sp ---------- ---------- -.......G. T.C..GC... .......... .......... .......... .........C 
BoLA-DRB3*018:01   ---------- ---------- -.......G. T.C..GC... .......... .......... .......... .........C 
BoLA-DRB3*021:01sp ---------- ---------- -.......T. T.C.GGC... .......... .......... .......... .......... 
BoLA-DRB3*021:01   .......... .......... ........T. T.C.GGC... .......... .......... .......... .......... 
BoLA-DRB3*024:18Sp ---------- ---------- -.......TG T....G.... .......... .......... .......... .......... 
BoLA-DRB3*024:18   ---------- --........ ........TG T....G.... .......... .......... .......... .......... 
BoLA-DRB3*027:05Sp ---------- ---------- -.......TA T....G.... .......... .......... .......... .......... 
BoLA-DRB3*027:05   ---------- ---------- -.......TA T....G.... .......... .......... .......... .......... 
BoLA-DRB3*032:01Sp ---------- ---------- -.......TG T....G.... .......... .......... .......... .......... 
BoLA-DRB3*032:01   ---------- ---....... ........TG T....G.... .......... .......... .......... .......... 

                  81       90 91     100 101    110 111    120 121    120 131   140 141     150 151     160 
BoLA-DRB3*016:01   ACAGATACTT CCATAATGGA GAAGAGTTCG TGCGCTTCGA TAGCGACTGG GGCGAGTACC GGGCGGTGAC CGAGCTAGGG 
BoLA-DRB3*004:02Sp .......... .T........ .......A.. .......... C......... .......T.. .......... ......G... 
BoLA-DRB3*004:02   .......... .T........ .......A.. .......... C......... .......T.. A......... ......G... 
BoLA-DRB3*011:02Sp .....C.... .T........ .......A.. .......... C......... .......T.. .......... ......G... 
BoLA-DRB3*011:02   .....C.... .T........ .......A.. .......... C......... .......T.. .......... ......G... 
BoLA-DRB3*018:01Sp .......... .......... .......... .......... C......... .......T.. .......... ......G... 
BoLA-DRB3*018:01   .......... .......... .......... .......... C......... .......T.. .......... ......G... 
BoLA-DRB3*021:01sp .......... .T........ .......A.. .......... C......... .......... .......... ......G... 
BoLA-DRB3*021:01   .......... .T........ .......A.. .......... C......... .......... .......... ......G... 
BoLA-DRB3*024:18Sp .......... .T........ .......A.. .......... C......... .......T.. .......... ......G... 
BoLA-DRB3*024:18   .......... .T........ .......A.. .......... C......... .......T.. .......... ......G... 
BoLA-DRB3*027:05Sp ......G..A .AC....... ......AC.. .......... C......... .......T.. .......... .......... 
BoLA-DRB3*027:05   ......G..A .AC....... ......AC.. .......... C......... .......T.. .......... .......... 
BoLA-DRB3*032:01Sp .......... .T........ .......A.. .......... C......... .......T.. .......... ......G... 
BoLA-DRB3*032:01   .......... .T........ .......A.. .......... C......... .......T.. .......... ......G... 

                  161     170 171    180 181    190 191    200 201    210 211    220 221    230 231     240 
BoLA-DRB3*016:01   CGGCCGGACG CCAAGTACTG GAACAGCCAG AAGGACTTCC TGGAGGAGAA GCGGGCCGCG GTGGACACGT ACTGCAGACA 
BoLA-DRB3*004:02Sp .......... .......... .......... ......G... .....CG.G. .......TAT .......... .......... 
BoLA-DRB3*004:02   .......... .......... .......... ......A... .....CG.G. .......TAT .......... .......... 
BoLA-DRB3*011:02Sp .......... ..G....... .......... .......... .....CG... ........A. .........G TG........ 
BoLA-DRB3*011:02   ......TC.. ..G....... .......... .......... .....CG... ........A. .........G TG........ 
BoLA-DRB3*018:01Sp .......C.. ..G..C.G.. .......... ...C..AC.. .....CG.G. .......TAT .......... .......... 
BoLA-DRB3*018:01   .......C.. ..G..C.G.. .......... ......AC.. .....CG.G. .......TAT .......... .......... 
BoLA-DRB3*021:01sp ....A..... ..G..C.G.. .......... .......... .........G ........A. .......... .......... 
BoLA-DRB3*021:01   ....A..... ..G..C.G.. .......... .......... .........G ........A. .......... .......... 
BoLA-DRB3*024:18Sp ......TC.. ..G....... .......... .....GA... .........G ........A. .......G.G TG........ 
BoLA-DRB3*024:18   .......C.. ..G....... .......... .....GA... .........G ........A. .......G.G TG........ 
BoLA-DRB3*027:05Sp .......... ..G....... .......... .......... .........G ........A. .......G.G TG........ 
BoLA-DRB3*027:05   .......... ..G....... .......... .......... .........G .......... .......G.G TG........ 
BoLA-DRB3*032:01Sp .......... .......... .......... .....GA... .....CG.G. .......TAT .......... .......... 
BoLA-DRB3*032:01   .......... .......... .......... .....GA... .....CG.G. .......TAT .......... .......... 

                  241     250 251    260 261    270 2      280 281                                           
BoLA-DRB3*016:01   CAACTACGGG GTCGGTGAGA GTTTCACTGT GCAGCGGCGA G                                           
BoLA-DRB3*004:02Sp .......... .G..TG.... ....------ ---------- -                                           
BoLA-DRB3*004:02   .......... .G..------ ---------- ---------- -                                           
BoLA-DRB3*011:02Sp .......... ....TG.... ....------ ---------- -                                           
BoLA-DRB3*011:02   .......... ....TG.... .......... .......... .                                           
BoLA-DRB3*018:01Sp .......... .G..TG.... ....------ ---------- -                                           
BoLA-DRB3*018:01   .......... .G..TG.... .......... .......... .                                           
BoLA-DRB3*021:01sp .......... ....TG.... ....------ ---------- -                                           
BoLA-DRB3*021:01   .......... .......... .......... .......... .                                           
BoLA-DRB3*024:18Sp .......... .......... ....------ ---------- -                                           
BoLA-DRB3*024:18   .......... .......... .......... .......... -                                           
BoLA-DRB3*027:05Sp .......... ....TG.... ....------ ---------- -                                           
BoLA-DRB3*027:05   .......... ....TG.... .......... .--------- -                                           
BoLA-DRB3*032:01Sp .......... ....TG.... ....------ ---------- -                                           

Figure 1.  Alignment of the nucleotide (A) and the predicted amino acid (B) sequences of the β1 domain 
encoded by seven new BoLA-DRB3 alleles (accession numbers , LC569725 for BoLA-DRB3*004:02Sp, LC569726 
for BoLA-DRB3*011:02Sp, LC569729 for BoLA-DRB3*018:01Sp, LC569731 for BoLA-DRB3*021:01sp, LC569733 
for BoLA-DRB3*024:18Sp, LC569735 for BoLA-DRB3*027:05sp, and LC569739 for BoLA-DRB3*032:01sp) 
derived from 225 Sudan native cattle (113 animals of the Baggara native, 60 Butana, and 52 Kenana Sudan native 
cattle breeds). New alleles are indicated in bold. Numbering refers to amino acid positions in the mature protein. 
Nucleotide and amino acid residues identical to those encoded by the BoLA-DRB3 cDNA clone NR-1 are 
indicated by dots (Aida et al., 1995). Missing data are indicated by dashes. Closer BoLA-DRB3 alleles with new 
variants are also included in the figure. Id. = Nucleotide or amino acid identity in %.
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breed in the west. These results reveal that Sudanese cattle breeds have a particular diversity in the BoLA-DRB3 
gene, as a consequence of its gene frequency profile and the presence of a high number of private alleles.

The results of the PCA showed that the first three components accounted for 47.30% of the data variability. The 
first principal component (PC) accounted for 24.31% of the total variance and, as shown in a previous  study64, 
clearly exhibited a differentiation pattern between the Zebu (negative values) and Taurine (positive values) breeds, 
while native breeds from Southeast Asia and Sudan were located in an intermediate position near the axis origin 
of the plot (Fig. 6b). This PC was primarily determined by differences in the frequency of the same alleles, such 
as BoLA-DRB3*022:01, *028:01, *036:01, *031:01, *030:01, and *057:02 with the higher negative axis 1 values, 
whereas the alleles BoLA-DRB3*001:01, *002:01, *007:01, *008:01, *010:01, *011:01, *012:01, *015:01 *016:01, 
*018:01 had the higher positive values for this axis. The second PC explained 11.98% of the total variation and 
showed a gradient among Taurine breeds, with Chilean Hereford (positive values) and Japanese Jersey (nega-
tive values) located at opposite ends. Furthermore, this component discriminated between native Sudanese and 
native Southeast Asian cattle breeds. Finally, the third PC accounted for 11.01% of the variance and allowed for 
the differentiation of Chilean Hereford, and Japanese Jersey and Japanese Holstein cattle from other Taurine 
breeds. In summary, the native Sudanese cattle breeds were located within a narrow cloud in an intermediate 
position between the Zebu and Taurine breeds and close to other Southeast Asian breeds, in agreement with 
the composite origin of these native breeds. This is also supported by the presence of African and Zebu unique 
BoLA-DRB3 alleles within these populations. These PCA results agree with the overall clustering observed after 
NJ tree construction.

The BoLA class II molecule binds peptides derived from antigens via five antigen binding pockets named 
pocket 1, pocket 4, pocket 6, pocket 7 and pocket  924. To assess whether observed differences in allelic frequency 
are reflected within amino acid motifs in each pocket, we analyzed frequency of the protein pockets implicated 
in the antigen-binding function of the MHC complex by PCA. As shown in Fig. S3a-e, the three native breeds 
of Sudan are located in a closed cloud in the five PCAs made based on the frequency of the pockets, although 
varying their relative position with other breeds and breed groups, and in some cases the spatial distribution did 
not exhibit a clear relationship with the geographical or historical origin of the breeds. However, pockets 4 and 
9 are the ones that best differentiate these native breeds from the rest. Regarding pocket 4, Baggara and Kenana 
breeds of Sudan are located in a narrow cloud located at the end of axis 2, and their position is mainly explained 
by the GFDEREY, RFDERFV and GLDRKEV motifs. The position of the Butana and Kenana Sudanese breeds 
in pocket 9 was the result of positive PC1 and PC2 values for the presence of amino acid motifs EYD and EFA.

Finally, PCA was performed at the Sudanese population level to evaluate the degree of genetic structure 
among the sampling sites (Baggara Daiwani, Baggara Nyakawi, Kenana, Butana Bu Atbara and Butana Bu Qada-
rif). This analysis showed that the first three components accounted for 90.95% of the data variability. The first 
PC accounted for 30.65% of the total variance and clearly exhibited a differentiation pattern between the Baggara 
population (negative values) and the Butana Bu Qadarif (positive values) population, while Kenana, Butana Bu 
Atbara were located in intermediate positions (Fig. 7). These results agree with the geographical distribution of 
the studied population. The second and third PCs explained 30.66% and 25.24% of the total variation and allowed 
for the differentiation of the Butana Qadarif and Kenana populations, respectively.

Discussion
Since the first pioneering studies based on serotype analysis, a number of striking differences between the BoLA 
profiles of African and European cattle have been reported due to difference in the antigen’s frequency of occur-
rence and the presence of unique antigens in African  cattle38. Over the next decades, several private alleles were 
identified in taurine, zebu and taurindicus native African breeds, like N´Dama, Boran, and  Sanga32,34; https:// 
www. ebi. ac. uk/ ipd/ mhc/ group/ BoLA/). However, in the present study, we carried out the first genetic charac-
terization of the BoLA-DRB3 gene at population level in native Sudanese breeds using PCR-SBT. This analysis 
allowed us to detect 53 alleles, including seven new variants. The high number of private alleles agrees with data 
obtained  by16, who analyzed the BoLA region in depth using a genome-wide sequencing approach, identifying 
six major African BoLA haplotype blocks.

Wild cattle or ‘aurochs’ (Bos primigenius), the ancestor of domestic cattle, inhabited a large geographical area 
throughout Eurasia and North Africa. According to the trans-species theory of MHC  alleles39, it is expected that 

B 6
BoLA-DRB3*016:01 HFLEYTKKECHFFNGTERVRFLDRYFHNGEEFVRFDSDWGEYRAVTELGRPDAKYWNSQKDFLEEKRAAVDTYCRHNYGVGESFTVQRR   
BoLA-DRB3*004:02Sp ---..STS..................Y....Y.........F...................V..RE..Y..........GV..------  84.42 
BoLA-DRB3*004:02 ---..STS..................Y....Y.........FQ..................I..RE..Y..........G--------- 
BoLA-DRB3*011:02Sp ---..Y.G............L...H.Y....Y.........F...........E..........R...E...V.......V..------  84.42 
BoLA-DRB3*011:02 .....Y.G............L...H.Y....Y.........F.........S.E..........R...E...V.......V.....QRR 
BoLA-DRB3*018:01Sp ---..ATS..............H..................F.........A.EQ.....HT..RE..Y..........GV..------  80.52 
BoLA-DRB3*018:01 ---..ATS..............H..................F.........A.EQ......T..RE..Y..........GV.....QRR 
BoLA-DRB3*021:01sp ---..STG..................Y....Y..................Q..EQ..........R..E...........V..------  85.71 
BoLA-DRB3*021:01 .....STG..................Y....Y..................Q..EQ..........R..E.................QRR 
BoLA-DRB3*024:18Sp ---..C.R..................Y....Y.........F.........S.E......EI...R..E..RV..........------  83.12 
BoLA-DRB3*024:18 .....C.R..................Y....Y.........F.........A.E......EI...R..E..RV.............QRR 
BoLA-DRB3*027:05Sp ---..Y.R................CYT....T.........F...........E...........R..E..RV.......V..------  83.12 
BoLA-DRB3*027:05 ---..Y.R................CYT....T.........F...........E...........R.....RV.......V.....--- 
BoLA-DRB3*032:01Sp ---..C.R..................Y....Y.........F..................EI..RE..Y...........V..------  85.71 
BoLA-DRB3*032:01 .....C.R..................Y....Y.........F..................EI..RE..Y.................QRR 

Figure 1.  (continued)

https://www.ebi.ac.uk/ipd/mhc/group/BoLA/
https://www.ebi.ac.uk/ipd/mhc/group/BoLA/
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the extremely high genetic variability present in the BoLA-DRB3 gene (365 alleles have been reported in the IPD-
MHC (https:// www. ebi. ac. uk/ ipd/ mhc/ group/ BoLA;33 database, access date 16/04/21) was present in the wide 
geographical distribution of the aurochs. On the basis of archeological and genetic studies, it has been proposed 
that modern bovines were domesticated in two geographical sites, one located in the West Asia (Near east), 
and the other in Indian subcontinent (India and Pakistan)40–46. Each of these domestication centers would have 
retained only a fraction of the total diversity as a result of bottleneck and genetic drift  effects47. This is clearly seen 
in the distribution of mitochondrial haplogroups among cattle  breeds5,40–44. In Africa, taurine cattle originated 
from the Near east domestication center, and introgressed through the North part of the continent and from 
there they would have dispersed east, west and south. Then, indicine cattle were introduced to Africa and Bos 
indicus genes were introgressed into native populations through absorbent  crosses48. Currently, an east–west 
gradient of Zebu influence in African native genes is observed.

Subsequent dispersal and crossbreed processes described above (founder group, migration and gene intro-
gression) and natural and artificial selection would have shaped the BoLA-DRB3 diversity in the current bovine 
populations. Accordingly, the BoLA-DRB3 alleles detected in the Sudanese cattle were interspersed distributions 
along the allele NJ tree instead of grouped in specific clusters of the dendrogram, which is consistent with the 
ancient origin of the BoLA-DRB3 alleles. Similar results have been reported in other native cattle breeds from 
different geographical  regions21,22.

Our Venn diagram illustrates the distribution of allelic diversity among different bovine groups, demon-
strating that 14 BoLA-DRB3 alleles were only detected in the Sudanese cattle breeds. Seven of these alleles cor-
responded to new variants described in this study (Table 1). Furthermore, a review of the IPD–MHC database 
showed that this group of Sudanese private alleles included seven other variants previously detected only in 
African breeds (Table S4).

Two BoLA-DRB3 alleles, that were only previously reported in Creole cattle  breeds21,37, were identified in 
native Sudanese breeds. Studies based on mitochondrial DNA and Y chromosome haplotypes have revealed an 
African component in the germplasm of the American creole bovine breeds. Two origins have been proposed 
for this African component: through the native Iberian cattle that are the ancestors of Creole cattle and/or a 
direct introgression from mainland Africa following the slave trade  routes49. The Iberian theory is unlikely as 
the BoLA-DRB3*011:02 and BoLA-DRB3*029:02 alleles have not been detected in the Spanish Morucha breed, 
which were only autochthonous Iberian breed in which the genetic diversity of the BoLA-DRB3 gene has been 
studied so  far20. In summary, 16 possible African putative alleles were identified in the native bovine populations 
of Sudan, totaling 20.22% of the gene frequency. The presence of private BoLA-DRB3 alleles (not detected in zebu 
breeds so far) in native African breeds with humped phenotype suggest that current global diversity of this gene 
could have been retained in the founder group that originate African taurine native  breeds45.

On the other hand, a group of alleles is shared between the Sudanese breeds and the Zebu, Southeast Asian 
and/or Creole American breed groups (Table S5), but is absent in the European breeds. It is worth noting that 
these alleles were first identified in cattle breeds such as Boran, Ethiopian Arsi, N´Dama and Brahman (32,34,50; 
https:// www. ebi. ac. uk/ ipd/ mhc/ group/ BoLA/) (Table S5). The introgression of these variants could have been 
a consequence of the successive waves of introduction of Zebu cattle into the African  continent48. These alleles 
account for an additional 15.33% of the gene frequencies. The remaining alleles have a worldwide geographical 
distribution; thus, 20 variants have been detected in all the breed groups included in the Venn diagram. Further 
studies on the genetic diversity of the BoLA-DRB3 gene in other African bovine populations will surely reveal 
a greater allelic repertoire.

The current repertoire of alleles of the BoLA-DRB3 gene in the native cattle of Sudan would not only have 
been molded by stochastic forces, such as the formation of the founder group, gene drift and recent or histori-
cal gene introgression as described above, but also by processes of natural and artificial selection. In Sudan, as 
in other African regions, cattle are subjected to strong environmental pressures, such as tropical diseases, heat 
stress, drought and poor nutritional and forage deficits. Furthermore, animals are affected by diverse infectious 
diseases, including parasites (e.g., ticks, theileriosis, babesiosis, anaplasmosis, trypanosomosis;51–57, bacteria (e.g., 
Hemorrhagic septicemia, Anthrax, tuberculosis, brucellosis, Thrombotic meningoencephalitis;58–62) and viruses 
(e.g., foot and mouth disease, lumpy skin disease, Pox virus, bovine viral diarrheal diseases complex;53,63,65). 
For this reason, it is to be expected that native Sudanese cattle will be under strong selection pressure, which 
would contribute to maintaining and shaping the genetic diversity of the BoLA-DRB3 gene. In this sense, a wide 
repertoire of alleles allows the population to identify and respond to a greater range of antigens. Furthermore, 
heterozygous animals trigger an immune response to a greater variety of antigens. For these reasons, it has been 
proposed that this allelic diversity is maintained by balancing or over-dominant  selection30,65,66. Different indices 
at the population, nucleotide and amino acid levels showed high levels of genetic diversity in the bovine breeds 
of Sudan for the BoLA-DRB3 gene. This is clearly reflected in the presence of a homogeneous distribution of gene 
frequencies (a high number of alleles with low frequencies). This is particularly extreme in the Baggara breed 
in which Slatkin’s neutrality test showed evidence that the BoLA-DRB3 gene frequency profile showed an even 
distribution consistent with the theoretical proportion expected under balancing selection pressures. Similar 
results have been reported for other cattle breeds, including Japanese Black, Yacumeño Creole, Bolivian Gir, 
Pyer Sein and Shwe  Ni21,22,30. Furthermore, the selection index (ω) revealed the presence of diversifying selection 
in several amino acid sites (mainly in the ABS) in BoLA-DRB3 exon 2 of the Sudan native breeds. In contrast, 
the HWE test did not detect the effect of over-dominant  selection67. As discussed  previously21, this effect has 
been observed only in some of the breeds studied so far and the most common explanation for the absence of 
heterozygote excess in the studied bovine breeds is the magnitude of the overdominance selection coefficient 
at MHC loci (probably lower than 0.02;68). Such selection would only be enough to increase the number of 
heterozygotes in large populations and in the absence of high rates of stochastic forces (population bottlenecks, 

https://www.ebi.ac.uk/ipd/mhc/group/BoLA
https://www.ebi.ac.uk/ipd/mhc/group/BoLA/
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genetic drift, and inbreeding). For this reason, and because the HWE method may suffer from low resolving 
power, such effects were not observed.

The repertoire of alleles of the BoLA-DRB3 gene present in the native cattle of Sudan allows these breeds to be 
clearly differentiated from the rest, forming a cluster in the NJ trees and a narrow cloud in the PCA. This pattern 
is confirmed when PCAs are performed based on the pocket 4 and pocket 9 gene frequencies. It has previously 
been proposed that pocket 4 plays an important role in the binding of peptides due to this pocket being located 
in the center of the PBC  6469,70. In addition, it has been reported in cattle that immune responses against vac-
cine and disease resistance is significantly related to differences in the pocket 4  motif49,50. A particular amino 
acid (e.g., amino acid R in position 70) or amino acid motifs (e.g., ER at 70 and 71 sites; EIAY motif at positions 
66–67–74–78, and the deletion of the amino acid 65), in sites that affect the conformation of pocket 4, have been 
associated with immune response or resistance to infectious diseases, such as mastitis, persistent lymphocytosis, 
dermatophilosis, and tick-borne  diseases25,50,69,71–73. Many of these diseases, as well as others mentioned above, 
are present in Sudan and could have contributed to shaping the current repertoire of BoLA-DRB3 alleles present 
in native Sudanese cattle. However, these results were obtained in breeds that have different genetic backgrounds 
and that are raised in different environments and production systems, so further association studies are neces-
sary to determine the effect (resistance or susceptibility) of the alleles present in the native cattle breeds of Sudan 
against different infectious diseases.

Conclusions and future prospects
To the best of our knowledge, this is the first study to document in detail the genetic diversity (taurine vs indicine) 
of BoLA-DRB3 alleles in cattle not only in Sudan but in the entire African continent. In addition to the clear 
genetic clustering of cattle based on ancestral origin and phylogeography, we identify seven novel alleles in the 
three native Sudanese cattle breeds. Two evolutionary forces appear to contribute to the preservation and shaping 
of the genetic diversity of the BoLA-DRB3 gene in native Sudanese cattle; diversifying selection mainly affects 
the ABS of the native breeds and balancing selection. The results demonstrate that the background variation 
between two cattle groups, taurine and indicine, is primarily due to events of origin, selection, and adaptation, 
which explains the variations found in the diversity of the BoLA-DRB3 genes, not only between the two major 
groups but also with the indicine cattle group. This variation may explain how cattle from Sudan are resistant to 
various diseases. We presume that this genetic information provides a basis for better design of suitable breeding 
schemes. This variation may contribute to resistance in Sudanese cattle to various diseases.

Materials and methods
Sampled populations and genomic DNA extraction. The ODK (Open Data Kit) system was used 
to record the sampling information: breed name, sex, estimated age, sampling location GPS coordinates, photo 
of the animal and owner’s information. All methods were carried out in accordance with relevant guidelines 
and regulations of the Faculty of Veterinary Medicine, University of Khartoum (Vet. Med. U of K), and all 
experimental protocols were approved by the Vet. Med. U of K research board committee. Before animals were 
sampled, written informed consents were obtained from all animal owners. Three cattle breeds were examined: 
(1) Butana breed: collected from the Atbara Butana Station and surrounding villages and from El-Gadarif city 
and Butana plain; (2) Kenana breed: samples were collected from Rabak city and surrounding villages and from 
UmBanein Kenana Station; (3) Baggara breed populations (i) Nyalawi population, which is a western Baggara 
breed sampled from calves from Nyala city, South Darfur; (ii) Daeinawi population, from Ed daein city. Whereas 
Nyalawi are large white cattle, some with black splashes, the Daeinawi are smaller and red with black along the 
neck and lateral sides of the head, hind quarters and shoulder sides (Fig. S4).

A total of 225 native breed cattle were sampled: Baggara N = 113, Butana N = 60 and Kenana N = 52 (Table S1 
and Fig. S4). Seven milliliters of venous blood were collected in EDTA-containing vacutainer tubes. Genomic 

Figure 2.  Venn plot of BoLA-DRB3 alleles shared by Sudan native (Baggara, Kenana, and Butana); Southeast 
Asia (Myanmar and Philippine native breeds); indicine (Nellore, Gir, Brahman, and crossbreeds); European 
(Hereford, Black and Red Angus, Jersey, Shorthorn, Holstein, overo negro, overo colorado, and crossbreeds); 
and American Creole (Yacumeño and Hartón del Valle) cattle breeds.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17202  | https://doi.org/10.1038/s41598-021-96330-7

www.nature.com/scientificreports/

Bo
LA

-D
R
B3

*0
32

:0
1

BoLA-DRB3*071:01

68

90

Figure 3.  Neighbor-joining (NJ) tree constructed from the 270 bp nucleotide sequence that includes the β1 
domain encoded by all reported BoLA-DRB3 alleles and the seven new ones (BoLA-DRB3*004:02Sp2, BoLA-
DRB3*011:02Sp, BoLA-DRB3*018:01Sp, BoLA-DRB3*021:01sp, BoLA-DRB3*024:18Sp, BoLA-DRB3*027:05sp, 
and BoLA-DRB3*032:01sp). Numbers are bootstrap percentages that support each node. Bootstrapping was 
carried up with 1000 replicates to access the reliability of individual branches. Bag = Baggara, But = Butana, 
Ken = Kenana. Arrows indicate novel alleles.

Table 3.  Nucleotide diversity (π), mean number of pairwise differences (NPD) and mean number of non-
synonymous  (dn) and synonymous  (ds) nucleotide substitutions per site.

Breed π NPD

Total ABS

ds dn dn / ds ds dn dn / ds

Baggara 0.080 19.36 0.030 0.105 3.50 0.090 0.435 4.83

Butana 0.074 17.99 0.028 0.105 3.75 0.093 0.447 4.80

Kenana 0.075 18.28 0.027 0.104 3.85 0.090 0.444 4.93
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Figure 5.  Graphic representation of calculated  FST between population pairs using an R package 
pairFstMatrix.r. But = Butana, Ken = Kename, Bag = Baggara, BW = Pyer Sein. GR = Shwe Ni, NaPh = Philippine 
native, GirBo = Bolivian Gir, BrPh = Philippine Brahman, BrxNePe = Peruvian Brahman × Nellore crossbreed, 
NeBo = Bolivian Nellore, CrHV = Creole Hatón del Valle, CrYa = Creole Yacumeño, HeCh = Chilean Hereford, 
OCCh = Chilean Overo Colorado, ONCh = Chilean Overo Negro, HoJa = Japanese Holstein, WaJa = Japanese 
Black, BACh = Chilean Black Angus, RACh = Chilean Red Angus, ShJa = Japanese Shorthorn and JeJa = Japanese 
Jersey.

Figure 4.  Estimated values of the selection index ω in each amino acid site along BoLA-DRB3 exon 2 in 
Baggara (grey), Kenana (blue) and Butana (brown) Sudan cattle breeds. Arrows indicate the antigen-binding site 
(ABS).



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17202  | https://doi.org/10.1038/s41598-021-96330-7

www.nature.com/scientificreports/

DNA was extracted using DNeasy® Blood and Tissue Kit, (Qiagen, Germany), following the manufacturer’s 
instructions.

PCR amplification and sequencing. Exon 2 of the BoLA-DRB3 was amplified by PCR as described  by26. 
Using DRB3FRW 5-CGC TCC TGTGA(C/T)CAG ATC TATCC-3 and DRB3REV 5-CAC CCC CGC GCT CACC-
3, PCR reactions were performed in a 25 μl-reaction mixture containing 12.5 μl of 2× Gflex PCR Buffer  (Mg+2, 
dNTP plus) (TaKaRa Bio Inc., Shiga, Japan), and 0.5 μl of Tks Gflex DNA polymerase (1.25 units/μl) (TaKaRa 

Figure 6.  (a) Neighbor-joining dendrogram constructed from a matrix of  DA genetic distances. (b) Principal 
Component Analysis of allele frequencies from the BoLA-DRB3 gene in 22 breeds. But = Butana, Ken = Kename, 
Bag = Baggara, BW = Pyer Sein. GR = Shwe Ni, NaPh = Philippine native, GirBo = Bolivian Gir, BrPh = Philippine 
Brahman, BrxNePe = Peruvian Brahman × Nellore crossbreed, NeBo = Bolivian Nellore, CrHV = Creole Hatón 
del Valle, CrYa = Creole Yacumeño, Creole Highland, HeCh = Chilean Hereford, OCCh = Chilean Overo 
Colorado, ONCh = Chilean Overo Negro, HoJa = Japanese Holstein, WaJa = Japanese Black, BACh = Chilean 
Black Angus, RACh = Chilean Red Angus, ShJa = Japanese Shorthorn and JeJa = Japanese Jersey.
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Bio Inc.), 200 nM of each primer, and 1.0 μl of template. The reaction conditions consisted of an initial dena-
turation step at 95 °C for 3 min, followed by 35 cycles of 95 °C for 1 min, 58 °C for 30 s and 68 °C for 90 s and a 
final extension step at 68 °C for 5 min. PCR products were purified using a NucleoSpin Gel and PCR Clean Up 
Kit (Takara Bio Inc.). Cycle sequencing reactions were performed directly using the two PCR primers using the 
BigDye Terminator version 3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and analyzed 
on an ABI Prism 3130 × genetic analyzer (Applied Biosystems) according to the manufacturer’s instructions.

Sequence data analysis. Prior to analysis, all the chromatograms were visualized and sequence fragments 
were edited manually using ATGC software version 9.1 (GENETYX Corporation, Tokyo, Japan) correcting base 
calling errors. Multiple sequence alignments were performed using the MUSCLE algorithm implemented in 
MEGA  X74, and were subsequently joined to reconstruct a fragment of 280 bp spanning the entire exon 2.

BoLA‑DRB3 allele genotyping. For typing BoLA-DRB3 genotypes, we used the method implemented 
 by26: First, we downloaded a MHC_nuc.txt file from the IPD-MHC in order to update the allele database. This 
file contains all reported BoLA-DRB3 alleles. Then DNA sequences from the cattle for both strands (forward 
and reverse ab1 files) were imported together into the Assign 400ATF ver. 1.0.2.45 software (Conexio Genom-
ics, Fremantle, Australia), which automatically aligned the sampled cattle sequences with those of previously 
reported BoLA-DRB3 sequences, building a consensus. The most likely genotype is shown in the same window 
as the chromatograms so that they can be crosschecked. When we found a clear mismatch from several samples, 
we assigned these samples containing new alleles and revised the BoLA-DRB3 database containing new allele 
sequences. The accuracy of the in silico genotyping method was demonstrated in Takeshima et al. (2001, 2011) 
where the new detected alleles were confirmed by cloning and sequencing, and the used method was developed 
and validated for only the BoLA-DRB3 gene. If the sample could not genotype using these criteria, we discarded 
the sample result from this analysis.

Statistical analyses. Genetic diversity at allele level. Allele frequencies and the number of alleles  (na) were 
obtained by direct counting. The distribution of alleles across breeds was analyzed by a Venn plot created using 
the R package ‘VennDiagram’ (http:// cran.r- proje ct. org/). The observed  (ho) and unbiased expected  (he) hete-
rozygosity of the BoLA-DRB3 locus were estimated according  to73 using the Arlequin 3.5 software for population 
genetic  analyses76 (Schneider, 2000). FIS  statistics77 for each breed were calculated using the Exact Test included 
in Genepop 4.7  software78 to evaluate deviation from Hardy–Weinberg equilibrium (HWE). The Ewens–Wat-
terson–Slatkin Exact Test of neutrality was carried out using the method described  by79 and implemented in the 
Arlequin 3.5 program.

Figure 7.  Principal components analysis of allele frequencies from the BoLA-DRB3 gene in five Sudan native 
samples sites (BagDai = Baggara Daiwani, BagNyai = Baggara Nyakawi, Ken = Kenana, ButAt = Butana Bu Atbara, 
and ButQad = Butana Bu Qadarif).

http://cran.r-project.org/
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Breed genetic structure. Genetic structure and genetic differentiation within Sudanese cattle breeds and among 
bovine breeds were assessed using Wright’s FST  statistics77. This parameter was estimated using Arlequin 3.5 and 
Genepop 4.7 software. The FST values were represented graphically using the pairFstMatrix.r function imple-
mented in the R statistical environment.

Genetic relationship between breeds. To condense the genetic variation at the BoLA-DRB3 locus, allele frequen-
cies were used to perform a PCA according to  the80 method, implemented in Past  software81. Nei’s standard 
genetic distances  Ds82,83 were calculated from allele frequencies and were used to perform cluster analysis using 
the Neighbor-Joining (NJ)  algorithm84. Confidence intervals for the groupings were estimated by bootstrap resa-
mpling of the data using 1000 replicates. Genetic distances and trees were computed using the Populations 1.2.28 
software 84. The trees were then visualized using  TreeView85.

Genetic diversity at sequence level. Nucleotide diversity (π) and pairwise differences in nucleotide substitutions 
between alleles within each breed were calculated using Arlequin 3.5. The mean number of nonsynonymous 
 (dN), and synonymous  (dS) nucleotide substitutions per site from averaging over all sequence pairs were esti-
mated within each group using the modified Nei-Gojobori  model83 and Jukes–Cantor’s formula implemented 
in the software MEGA  X72. The possibility that certain codon sites are under diversifying selection within each 
native Sudan breed was investigated using the Bayesian method implemented using  OmegaMap86. This method 
incorporates intragenic recombination and does not assume a known fixed genealogy, so that recombination 
does not inflate the false detection rate of positive  sites87. The BoLA-DRB3 allele tree was constructed from a 
distance matrix that was based on the NJ method using the MEGA X software. Furthermore, a tree based only 
on ABS amino acid motifs was inferred using Maximum Parsimony method implemented in MEGA X. To test 
the significance of the branches of both trees, 1000 bootstrap replicate calculations were performed.

Data availability
Supplementary Material contains Table S1-S5 and Figures S1-S3 including detailed descriptions of all supple-
mental files.
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