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Abstract: While color fundus photos are used in routine clinical practice to diagnose ophthalmic
conditions, evidence suggests that ocular imaging contains valuable information regarding the
systemic health features of patients. These features can be identified through computer vision
techniques including deep learning (DL) artificial intelligence (AI) models. We aim to construct
a DL model that can predict systemic features from fundus images and to determine the optimal
method of model construction for this task. Data were collected from a cohort of patients undergoing
diabetic retinopathy screening between March 2020 and March 2021. Two models were created for
each of 12 systemic health features based on the DenseNet201 architecture: one utilizing transfer
learning with images from ImageNet and another from 35,126 fundus images. Here, 1277 fundus
images were used to train the AI models. Area under the receiver operating characteristics curve
(AUROC) scores were used to compare the model performance. Models utilizing the ImageNet
transfer learning data were superior to those using retinal images for transfer learning (mean AUROC
0.78 vs. 0.65, p-value < 0.001). Models using ImageNet pretraining were able to predict systemic
features including ethnicity (AUROC 0.93), age > 70 (AUROC 0.90), gender (AUROC 0.85), ACE
inhibitor (AUROC 0.82), and ARB medication use (AUROC 0.78). We conclude that fundus images
contain valuable information about the systemic characteristics of a patient. To optimize DL model
performance, we recommend that even domain specific models consider using transfer learning from
more generalized image sets to improve accuracy.

Keywords: diabetic retinopathy; artificial intelligence; transfer learning; retinal imaging

1. Introduction

Centuries before the era of modern medicine and biotechnology, the eyes were philo-
sophically and spiritually distinguished from among all other organs as being “windows
to the soul”. Today, the eyes are biologically understood to be the only human structure
with an internal anatomy, vasculature, and neural tissue structure that can be directly
and non-invasively observed from the outside [1]. Ocular imaging modalities that take
advantage of this, such as fundoscopy and optical coherence tomography (OCT), have
become standard tools for ophthalmologic clinical practice, disease diagnosis, and manage-
ment [2–4]. The utility of ocular imaging, in particular retinal imaging, is now expanding
further as artificial intelligence (AI) drives the discovery of new ocular manifestations of
systemic health and disease.

Using standalone, high resolution digital fundus and OCT photographs, artificial
intelligence models have demonstrated the ability to diagnose a variety of retinal and
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ophthalmic diseases [5], including diabetic retinopathy [6–11], retinopathy of prematu-
rity [12,13], age-related macular degeneration features [14–18], glaucoma [19], and macular
telangiectasia [20]. Features of retinal disease such as retinal detachment and retinal vein
occlusion are identifiable as well [21,22]. Clinical use of AI-based tools for diabetic retinopa-
thy detection has recently commenced after FDA clearance of IDxDR (Digital Diagnostics;
Coralville, IA, USA) in 2018 [23–25].

The retina is increasingly being recognized as a medical “window” that extends
beyond ocular disease. To this end, the potential of AI models to capture and uncover
biomarkers of systemic health and disease, rather than simply ophthalmologic health and
disease, from retinal imaging is being explored [26]. Alterations in key retinal features have
already been associated with numerous prevalent disease processes [27]. Retinal microvas-
cular changes have been linked to coronary heart disease, hypertension, kidney disease,
and stroke [28–34]. In addition, as the retina itself is an extension of the central nervous
system, retinal nerve fiber layer thickness and retinal vessel morphology changes have been
found to be predictive of dementia and neurodegenerative illnesses like Parkinson’s and
Alzheimer’s disease [35–40]. Fundus images can even be predictive of asymptomatic white
matter hyperintensities [41]. Newly developed deep learning (DL) models are capable of
predicting cardiovascular health parameters such as systolic blood pressure, diastolic blood
pressure, BMI, hemoglobin A1c (HbAlc), and current smoking status from fundus imaging
alone [42]. Anemia has also been reportedly detected by DL models [43]. A diagnosis
of Alzheimer’s disease was predicted by a convolutional neural network (CNN) and a
machine learning model based on retinal imaging data alone, and both models performed
comparably to a model unblinded to patient electronic medical record (EMR) data [44,45].
Even gender, a general health feature never associated with retinal features before, can now
be accurately predicted from retinal fundus photographs using a DL model [46].

DL models using convolutional neural networks are the best performing architectures
for image classification tasks, particularly since the advent of ImageNet, a general image
database with over 14 million annotated images that fall under 20,000 object categories (i.e.,
cars, fruits, cats, etc.) [47,48]. Typically, DL models developed for the prediction of systemic
health features from retinal images are pre-trained on a dataset of pre-labelled retinal fundus
images: training and testing datasets are extracted from the same knowledge distribution.
In contrast, transfer learning techniques allow for training and testing datasets to be drawn
from different knowledge or content distributions [49]. The uppermost classifier layers of
a CNN originally trained on another dataset can be dropped and fine-tuned to classify a
new set of target images during the transfer learning process [50]. Recent investigations
suggest transfer learning may be particularly advantageous for medical image classification
tasks [51,52].

Here, we are seeking to predict novel systemic health features from retinal fundus
images. We will also compare the accuracy of two different models of CNN construction:
(1) an AI model pre-trained using transfer learning: on general images from the ImageNet
database only and (2) an AI model pre-trained on retinal images alone. We hypothesize that
a DL model constructed by pre-training with general images will perform best at systemic
feature extraction as its early layers are likely to have learned more generalizable features.

2. Materials and Methods
2.1. Dataset and Design

A total of 1277 de-identified retinal fundus images were obtained from 760 patients
previously diagnosed with diabetes mellitus (650 right eyes and 627 left eyes; see Table 1
for further demographic information). Across 790 encounters at the Stanford Healthcare
and/or the Stanford University Health Alliance network primary care clinics in the San
Francisco Bay Area between March 2020 and March 2021, retinal fundus images were taken
as part of patients’ routine diabetic retinopathy screening. Only images from adult patients
(>18 years old) were included in this study. This study was approved by the Stanford
University Institutional Review Board (no. 57104).
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Table 1. Participant demographics. Information pertaining to patient age, sex, race, ethnicity, and
comorbidity status are outlined below.

Demographic Feature N Proportion of Dataset (%)

Unique participants 760 –

Total fundus images 1277 –

Right eyes 650 50.9

Left eyes 627 49.1

Sex

Male 432 54.7

Female 358 45.3

Age (years)

20–29 23 2.9

30–39 59 7.5

40–49 130 16.5

50–59 196 24.8

60–69 203 25.7

70–79 126 15.9

80–89 46 5.8

90–99 7 0.9

Race

Asian 202 25.6

African American/Black 253 32

White 68 8.6

Native American/Pacific
Islander 18 2.3

Other/Unknown 249 31.5

Ethnicity

Hispanic/Latino 173 21.9

Non-Hispanic/Latino 547 69.2

Other/Unknown 70 8.9

Comorbidities

Cardiac Disease 669 88

Stroke 584 76.8

Hypertension 696 91.6

Diabetic Retinopathy 90 11.8

2.2. Materials

Retinal images were obtained with the CenterVue DRS fundus camera (Hillrom Inc.,
Chicago, IL, USA) and the TopCon NW400 fundus camera (Welch Allyn Inc., Skaneateles
Falls, NY, USA) at primary care clinics.

2.3. Procedures
Ground Truth Labeling

The DL models were trained to predict 12 systemic health features from the retinal
image dataset: gender (male or female), ethnicity (Caucasian or non-Caucasian), age (above
or below 70 years of age), LDL (above or below 130), HDL (above or below 40), smoking
status, cardiac disease (present or absent), HbA1c (above or below 6.5%), hypertension
(present or absent), angiotensin receptor blocker (ARB) use, angiotensin-converting enzyme
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inhibitor (ACEi) use, and aspirin use. All lab values were measured within 1 year of the
date of the fundus image and were excluded if not available within the specified time
frame. The ground truth of patient lab values, comorbid diagnoses, medication history, and
general health information were extracted from the EMR and were used to assign labels to
the image set. See Figure 1 for a representative patient fundus image with age > 70 ground
truth labeling.
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Figure 1. Representative fundus imaging with age > 70 ground-truth labeling and ImageNet-
pretrained model classification. Above each fundus image, the first row of data contain the ground
truth extracted from patient EMR and the second row contains the AI model pre-trained on Ima-
geNet’s classification. Green and red indicate agreement and disagreement between the AI model and
ground truth, respectively. For example, the fundus image in the top row on the far right was correctly
predicted to be from a patient under 70 years of age (see the concordance between the ground truth
and AI classification), whereas the fundus image in the second row far right was incorrectly predicted
by the AI model.

2.4. Dataset Subdivision

To develop the DL models, the dataset of 1277 fundus images was randomly split
into a training and testing set. Here, 80% of the original dataset (totaling 1021 randomly
selected images) were utilized as a training set. The remaining 20% of images in the dataset
(256 images) were used as a testing set in the final analysis. This was done in a stratified
manner for each of the systemic features explored to ensure missing data would not affect
the analysis.
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2.5. Dataset Preprocessing

De-identified imaging and clinical history data were first linked using an anonymized
research ID as per the IRB protocol. Images were then resized to 224-pixel squares as
required for the chosen model architecture input. Data augmentation techniques such as
cropping, warping, and brightness/contrast adjustments were used during batch prepara-
tion for each epoch of model training to encode variance in the images.

2.6. Model Training and Testing

The FastAI package was used in a Python environment to develop the AI models.
These are based on PyTorch as the underlying framework, with standardized ImageNet pre-
training weights used as necessary. See the flowchart in Figure 2 for a visual representation
of the model construction.
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Figure 2. Visual representation of the methodology used to construct both the ImageNet and retinal
image pretrained DL models.

Model 1—This model was created using DenseNet 201 architecture. It was initialized
using pre-trained weights publicly available utilizing the ImageNet database. The head
layers were then removed to prepare the model as a pre-trained model ready for use in the
task at hand.

Model 2—This model was created using DenseNet 201 architecture. A total of 35,126 im-
ages were acquired from an online dataset of publicly available diabetic retinopathy with
associated grades provided by EyePACS [53]. The model was then trained to predict the
outcome of diabetic retinopathy images until convergence. The head layers were then
removed to prepare the model as a pretrained model ready for use in the task at hand.

Each model was then trained using optimized cyclical learning rates, with the head
layer initially optimized, then the deeper layers were also allowed to have their weights
adjusted in a weighted fashion, with more superficial layer weights being modified most.
A cyclical learning rate was used to maximize learning until convergence and then each
model was evaluated on the hold out test dataset.
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2.7. Statistical Analysis

Statistical measures were computed using Python. Model performance metrics such
as the area under the receiver operating characteristic (ROC) curve (AUROC), sensitivity,
specificity, and optimized F1 score (see Figure 3 for a representative ROC curve based on
age > 70 classification) were calculated. A Student’s t-test was used to calculate p-values
where relevant.
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Figure 3. Representative receiver operating characteristic (ROC) curve for ImageNet-pretrained AI
model classification of patient Age > 70 (yellow line). Note the ROC curve area, which indicates
the achieved area under the ROC (AUROC). The performance of a hypothetical random classifier
(AUROC = 0.5) is represented by the blue dashed line.

3. Results
3.1. Dataset Characteristics

Of the 760 total participants, 54.7% were male and 45.3% were female, with a combined
median age of 60 and a mean of 59.5 years. Prior to imaging, 88%, 76.8%, 91.6%, and 11.8%
of participants had previously been diagnosed with cardiac disease, stroke, hypertension, or
diabetic retinopathy, respectively. The largest age group in this dataset was the 60–69 years
of age group, which consisted of 25.7% of the total patients. More patients (31.5%) identified
as African American than with any other racial group in this dataset and 69.2% described
themselves as non-Hispanic (see Table 1).

3.2. AI Models Can Predict Systemic Health Features from Fundus Imaging Alone

Out of the two AI models, the best performing model across all four measured perfor-
mance metrics was the model pretrained on the ImageNet database. Of the 12 systemic
health features of interest, the five features for which the ImageNet-pretrained AI model
achieved the highest classification accuracy are plotted in Figure 4. Ethnicity was the sys-
temic health feature corresponding to the model’s highest AUROC (0.926), followed by age
(0.902), gender (0.852), ACEi medication use (0.815), and ARB medication use (0.783). The
model achieved an AUROC in the range of 0.766 to 0.687 for the remaining seven systemic
features (see Table 2). Eight out of the 12 features were predicted with an AUROC above
0.700. The model’s optimized F1 score was the highest for age (0.873) and ethnicity (0.871),
but lowest for HbA1c (0.669). Sensitivity and specificity across systemic health features
ranged from 0.862 to 0.625 and 0.886 to 0.598, respectively. Sensitivity was highest for the
classification of age and lowest for cardiac disease. Specificity was highest for ethnicity and
lowest for cardiac disease.
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Figure 4. Five systemic features for which the ImageNet pretrained AI model achieved the highest
classification accuracy based on AUROC. Dark blue represents the ImageNet pretrained model; light
blue represents the retinal image pretrained model.

Table 2. ImageNet-pretrained AI model performance. Achieved area under the receiver operating
characteristic curve (AUROC), optimized F1 score, sensitivity, and specificity are listed. Systemic
features are ordered by descending AUROC.

Systemic Feature AUROC Optimized F1 Score Sensitivity Specificity

Ethnicity 0.926 0.871 0.86 0.886

Age > 70 0.902 0.873 0.862 0.869

Gender 0.852 0.758 0.742 0.774

Medication—ACEi 0.815 0.804 0.811 0.791

Medication—ARB 0.783 0.707 0.7 0.708

LDL 0.766 0.718 0.694 0.714

HDL 0.756 0.711 0.692 0.722

Smoking status 0.732 0.697 0.632 0.713

HbA1c 0.708 0.669 0.638 0.634

Cardiac disease 0.7 0.669 0.625 0.598

Medication—Aspirin 0.696 0.681 0.673 0.685

Hypertension 0.687 0.695 0.643 0.623

3.3. Pretraining with General Images Optimizes Model Performance

The AI model pre-trained on ImageNet images performed significantly better than
the model pre-trained on retinal images across all 12 systemic feature classifications
(p-value < 0.001; see Table 3). The mean AUROC obtained across all 12 features for the
ImageNet pretrained model and the retinal image pretrained model were 0.78 and 0.65,
respectively. Figure 4 plots the ImageNet pretrained model’s AUROC values for the five
systemic features that were predicted most accurately, alongside AUROC values achieved
by the retinal image pretrained model. The absolute differences in achieved AUROC
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between the two models differed across systemic features (Figure 5), with the greatest
absolute difference in performance observed for gender classification. The magnitude of
the absolute AUROC difference between models was least for the ethnicity classification.
In addition, the pretrained ImageNet model produced consistently higher sensitivity and
specificity values across all systemic feature categories compared with the untrained model.

Table 3. Comparing ImageNet pretrained and retinal image pretrained model performances. The
achieved area under the receiver operating characteristic curve (AUROC) for each of the 12 systemic
features are listed. The mean AUROC achieved across all features was found to be statistically
significant between the two models (p < 0.001).

Systemic Feature AUROC of ImageNet
Pre-Trained Model

AUROC of Retinal Image
Pre-Trained Model

Gender 0.852 0.576

Medication—ARB 0.783 0.542

Smoking Status 0.732 0.528

Medication—ACEi 0.815 0.612

LDL 0.766 0.624

Hypertension 0.687 0.585

HDL 0.756 0.667

Cardiac Disease 0.7 0.623

HbA1c 0.708 0.64

Age > 70 0.902 0.84

Medication—Aspirin 0.696 0.638

Ethnicity 0.926 0.907

Mean AUROC 0.777 0.648
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3.4. AI Models Attend to Fundus Images in a Physiologically Valid Manner

Gradient activation maps corresponding to the middle layer and the final, deepest
layer of the ImageNet-pretrained AI model are shown in Figure 6. The middle layer of the
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AI model pays particular attention to the retinal vessel structure, tortuosity, and caliber. By
the final layer, the AI model evolves to primarily attend to features present in the general
macular and inferior arcade area of the fundus, while paying less attention to the optic
disc region.
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Figure 6. Gradient activation map. This map demonstrates which region of the image the AI model
is attending to at various CNN layer depths. The original fundus image for analysis is on the far left.
The second image demonstrates which areas of the image the model is paying the greatest attention
to in the middle layers of the model. The third image demonstrates the regions of the fundus image
that the final layer of the model is paying most attention towards. The scale on the far right indicates
the per-pixel degree of model attention from most attention to least attention.

3.5. Feature Categories with Missing Data

For seven feature categories, all 1277 fundus images had associated patient health
data available in the EMR. Smoking status, HbA1c, ethnicity, LDL, and HDL data were not
comprehensively available for all fundus images: 97.6%, 92.6%, 92.5%, 88.4%, and 22.7% of
images had corresponding EMR data, respectively (see Table 4).

Table 4. Fundus images with corresponding electronic medical record (EMR) feature data. For each
of the 12 systemic features of interest, the number of fundus images from among the complete set of
1277 with available corresponding information about the EMR is listed.

Systemic Feature Images with Corresponding
Patient Data

Images without
Corresponding Patient Data

Ethnicity 1182 95

Gender 1277 0

LDL 1129 148

HDL 291 986

Smoking status 1247 30

Age > 70 1277 0

Cardiac disease 1277 0

HbA1c 1183 60

Hypertension 1277 0

Medication—ARB 1277 0

Medication—ACEi 1277 0

Medication—Aspirin 1277 0

4. Discussion

This study demonstrates that DL models can reasonably predict a diverse set of
clinically relevant features related to patient demographics, medication use, and general
systemic health state from retinal fundus images alone. Patient ethnicity, age, gender, ACE
inhibitor use, and ARB medication use were classified with particularly high accuracy
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based on AUROC from the receiver operating characteristic curve. To our knowledge,
ethnicity, ACE inhibitor, and ARB medication use have not previously been predicted
with an AI model solely from retinal fundus images. Our results also indicate that pre-
training DL models on a general image dataset, such as ImageNet, leads to a significantly
improved performance compared with DL models pretrained on retinal images across
all 12 investigated systemic health features. Furthermore, the AI models demonstrate a
physiologically valid method of “viewing” retinal images across layers: paying attention
to image features we would expect to be significant such as vessel structure and macular
integrity, while notably not attending to incidental camera, lens, or image artifacts.

4.1. Clinical Significance

The clinical utility of AI-based prediction of patient demographic features and med-
ication use is naturally limited, but our findings strongly suggest there is more to the
retina than initially meets the eye. Taken together with the findings from Poplin et al. and
Korot et al., the accurate prediction of features such as ethnicity, gender, and age, which
have never previously been connected to specific retinal neurovascular changes, is a promis-
ing indication that there is meaningful, predictive information contained in the retina that
has yet to be discovered and understood [39,43]. Furthermore, given that features with
direct effects on systemic disease processes, such as LDL and HbA1c, were capable of
being extracted suggests that novel disease biomarkers have the potential to eventually be
identified with the help of DL models. Using AI as a tool for biomarker discovery within
the retina will both improve our understanding of the pathogenesis of highly prevalent
diseases and will allow for less invasive, low-cost, and more accessible patient screening
during ophthalmologic examination, with the eventual goal of earlier and more accessible
disease detection across various patient populations. This will ultimately improve holistic
patient care beyond ophthalmology by allowing patients to be diagnosed with various
conditions in a non-invasive manner, which can be done by a trained technician and auto-
mated AI analysis. Future studies should apply similar DL models to the prediction and
classification of systemic features relevant to other pathologies that have both a high public
health burden and a potential ophthalmic manifestation beyond cardiovascular disease
and diabetes, such as Alzheimer’s disease [26].

4.2. Advantages of Transfer-Learning Techniques

Notably, the DL model solely trained on retinal fundus images performed significantly
more poorly than the transfer-learning model that was trained on the general ImageNet
database beforehand. Typically, in AI models, the earlier layers of the models are focused
on identifying simple features such as edges, straight lines, and curves. As the layers
progress, they then start to identify objects with increasing complexity: from simple shapes
such as circles, through to more abstract objects such as faces [54]. The activations from
the final layers are then used to make the final decision on what the original image is most
likely to be based on the model architecture. A simple way of explaining this is to imagine
the model like a small child that is learning to recognize patterns. First, by teaching the
child to understand the concept of a variety of different simple shapes and objects, the child
learns to recognize basic patterns. Subsequently, the child will be better at recognizing
more subtle differences within the same topic (e.g., differentiating specific animals) as they
have understood the basics of how to identify various shapes and objects as a first step.

We hypothesize that a model pre-trained on ImageNet data has been exposed to a
far greater degree of heterogeneity in the training images it has seen—and, as such, the
earlier layers of the model are likely to have a wider discriminatory ability to identify a
larger degree of features in an image. The model pre-trained on retinal images has seen
more retinal images; however, it has only learned to identify features relevant to diabetic
retinopathy in fundus images. When this model is then forced to re-learn new outputs, it
is less likely to have the early discriminatory layers, which will allow it to identify new
features it has not had previous exposure to. As such, the model, which has pre-trained
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on a wider variety of images, has an improved performance in the new task. We believe
this may help future researchers in choosing the architecture of their model for domain
specific tasks where it is tempting to use domain specific images to develop their model
with pre-training. In reality, it may be better to pre-train their models on a more diverse,
heterogeneous dataset such as the ImageNet dataset.

4.3. Addressing Bias in Artificial Intelligence Models

Another strength of this paper and dataset we present is that our patient group
contains a diverse group of ethnic and racial origins. In our cohort, 32.0% were African
American, 25.6% were Asian, and over 21% identified as Hispanic. The inclusive nature
of this dataset is due to the catchment area of the clinics from which the retinal images
were sourced. The issue of racial bias in AI has been identified in multiple papers in the
literature [55,56] and has the potential to lead to the development of AI models that perform
well in the patient populations on which they are trained (usually Caucasian populations)
and to underperform in other patient groups, leading to inequitable access to and utility of
these technologies in minority populations. We believe the inclusive nature of our dataset
may result in an AI model that generalizes better to different ethnic/racial groups.

4.4. Limitations and Future Directions

The study results were limited by several factors. First and foremost, data availability.
Currently, our models are designed for binary prediction tasks due to the fact that a
prediction task with a numerical output on a spectrum of possible values requires a larger
and more diverse training and testing dataset. That our DL models could accurately classify
typically numerical systemic health features such as age, LDL, and HbA1c suggests that
similar DL models will successfully predict similar features utilizing a larger dataset with
continuous variables. A future study should be undertaken on such a larger image dataset
to test this hypothesis. Additionally, the present study was based on a set of patients who all
have diabetes mellitus, as retinal imaging is a routine part of diabetic disease management.
However, to expand the potential systemic health features and disease processes of interest,
future studies should obtain routine fundus images from a more generalizable and varied
set of patients, including patients who do not have diabetes. Given that fundus imaging
is non-invasive and low risk for patients, this should be relatively feasible. Furthermore,
the sample size overall of patients with corresponding health data available in the EMR
was lower than anticipated—various amounts of missing data were observed across each
of the 12 systemic feature categories. A more robust dataset would have likely yielded
better model performance across those features with particularly high levels of missing
data. Finally, in our study, we chose to use each fundus photo from a patient as a separate
data point. Firstly, there are heterogeneity in this data, with each eye possibly showing
different features. Secondly, due to limitations in sample size, we did not want to further
reduce the dataset, which would limit the amount of data available for training/validation.
Future studies with larger numbers would be able to test different combinations of using
one eye, either eye, or both eyes for analysis.

Future research directions include using general pre-trained DL models to predict
changes in patient systemic health features longitudinally rather than exclusively at a single
point in time. Such prognostic information would assist clinicians with predictions of a
patient’s disease course: patients found to be at a greater risk of a more severe clinical
course might be targeted for earlier implementation of medical and lifestyle interventions.
Investigating this would require the inclusion of time series data for each systemic feature
in the dataset and constructing a longitudinal cohort of patients. In addition, based on our
finding, a significant improvement in DL model performance with general image transfer
learning, future researchers should consider utilizing general pretrained models even in
specialized use-case scenarios.
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5. Conclusions

By constructing a series of AI models, we were able to demonstrate that fundus
images contain valuable information about the systemic condition of a patient, and that
these systemic features can be predicted with a reasonable degree of accuracy using a
well-constructed model. We were also able to demonstrate that the use of more generalized
datasets such as ImageNet for pre-training, as opposed to using retinal images alone for
pre-training, results in a model with improved accuracy to predict these systemic features
from fundus images.
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