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How does the integrated and unified conscious experience arise from the vastly
distributed activities of the nervous system? How is the information from the many
cones of the retina bound with information coming from the cochlea to create the
association of sounds with objects in visual space? In this perspective article, we
assert a novel viewpoint on the “binding problem” in which we explain a metastable
operation of the brain and body that may provide insight into this problem. In our
view which is a component of the Default Space Theory (DST), consciousness arises
from a metastable synchronization of local computations into a global coherence by a
framework of widespread slow and ultraslow oscillations coordinated by the thalamus.
We reinforce a notion shared by some consciousness researchers such as Revonsuo
and the Fingelkurts that a spatiotemporal matrix is the foundation of phenomenological
experience and that this phenomenology is directly tied to bioelectric operations of
the nervous system. Through the oscillatory binding system we describe, cognitive
neuroscientists may be able to more accurately correlate bioelectric activity of the brain
and body with the phenomenology of human experience.

Keywords: default space, binding problem, metastable, oscillations, consciousness, phenomenology, multimodal
integration, neural synchronization

INTRODUCTION

Phenomenology is the reflection on and analysis of the essential structure and form of conscious
experience (Husserl, 1952; Menon et al., 2013). An understanding of the structure and dynamics
of the phenomenology of consciousness offers constraints on the search for its explanatory
mechanisms in the brain and potentially the body (Revonsuo, 2003). In this article, we assert a
viewpoint on not only the phenomenology, but the physiological underpinnings of consciousness
which may bridge the gap in understanding the connection between the material and experiential
components of it. We propound that a subconscious, virtual, space-time matrix is the foundation
of animal experience and continuously exists in the conscious mind as a coordinate system for a
recreation or simulation of the material world. Additionally, this matrix is physically created by a
global, unified, bioelectric oscillatory structure that spans the brain and body.

The Default Space Theory (DST; Jerath et al., 2015; Jerath and Beveridge, 2018) is
a novel, metastable, embodied theory of consciousness which is unique in its holistic
description of the body as an integral component of perception. Metastable models
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such as the Operational Architectonics Theory (Fingelkurts and
Fingelkurts, 2001; Fingelkurts et al., 2010, 2013) and Global
Workspace Theory (Edelman et al., 2011) show promise in
revealing the nature of consciousness. Theories of metastability
propose that consciousness arises from the global integration
and coordination of distinct mesoscopic neural modules that
while perform their own innate functions, couple together to
form a large-scale coherence (Freeman and Holmes, 2005; Kelso
and Tognoli, 2007; Fingelkurts and Fingelkurts, 2017). The DST
extends this metastable architecture to the sensory receptors
themselves (Jerath and Beveridge, 2018), thus extending the
science of embodied cognition into consciousness. Embodied
cognition is a radical field in that diverts from the prevailing view
that cognition is a sole processes of the brain by asserting the
body plays a crucial role in our psychology (Foglia and Wilson,
2013).

There still exists a debate as to whether neural oscillations
play a functional role in cognition and consciousness, if they
arise simply as a epiphenomenal byproduct of spiking activity,
or even if they interfere with normal processing (Koepsell et al.,
2010; Chalk et al., 2016). We share the prevailing perspective
that bioelectric oscillations play a variety of key roles in neural
processes responsible for cognition (Fries, 2005, 2009; Cole and
Voytek, 2017; Wutz et al., 2018) as well as the unified nature
of consciousness (Fingelkurts et al., 2010). Increasing evidence
supporting this perspective reveal that neural oscillations are a
powerful means to transfer and encode information (Cheong
and Levchenko, 2010). Oscillations may provide a necessary
low-energy mechanism for local and distant communication lost
in mere action potential signaling (Buzsáki and Draguhn, 2004)
which in larger brains would have severe spatial and metabolic
constraints (Knyazev, 2012). The fact that the full frequency
spectrum of oscillations is phylogenetically preserved strongly
suggests they serve important functional purposes (Buzsáki and
Draguhn, 2004).

THE BINDING PROBLEM

The binding problem is a considerable mystery in cognitive
science which ponders how a unified experience could arise
from the distributed and disparate activities of the nervous
system (Revonsuo and Newman, 1999). There are many aspects
of binding including property, part, location, and temporal
binding and sub-problems such as how certain stimuli are
bound to discrete objects in perceptual space (Revonsuo and
Newman, 1999). Perceptual representations depend on neural
codes that constitute the parts and properties of physical objects
perceptually recreated (Treisman, 1996). Due to the fact that
only a fraction of all neural processing enters consciousness,
there must be some mechanism for dynamic selection of neural
assemblies that enter awareness (Engel and Singer, 2001). We
support the well-supported notion that achieving such selection
along with cross-modal coherence requires mechanisms for
binding neural information (Singer et al., 1997). An effective
theory on multisensory integration must answer at least two
pivotal problems: how is information integrated across distal
cortical and subcortical regions, and how are unrelated signals

within the same processing modules segregated. We believe an
underlying oscillatory architecture coordinated by the thalamus
binds and segregates such streams of activity based on the spatial
and temporal locations of each stimulus in external and thus
phenomenal space.

The temporal binding model proposes neurons responding
to identical sensory objects or scenes in space synchronize in
the millisecond range while this synchronization does not exist
between neurons representing separate objects in external space
(Singer and Gray, 1995; Engel and Singer, 2001). We further
this concept by suggesting the sensory receptors themselves are
synchronized with associated cortical areas. Consciousness has
been argued to result from thalamocortical circuits which bind
sensory contents encoded by thalamocortical loops (Llinás and
Ribary, 1994) which become globally available (Baars et al., 2013),
and we stress the important of the thalamus in global binding.
Many authors have proposed that electrical thalamocortical
coherence is the functional basis for binding (Llinás et al.,
1998, 2002) and that coupled oscillatory activity may serve to
link simultaneous neural activity across multisensory regions
(Senkowski et al., 2008). We support this perspective and
describe a global, underlying oscillatory structure into which
all activity potentially producing sensory qualia are dynamically
bound.

A PHENOMENOLOGICAL SPACE-TIME
MATRIX

In our perspective shared by a subset of consciousness
researchers, the most fundamental aspect of human experience
is a subconscious (Damasio, 1999), unifying, empty, spatial
coordinate matrix in which all qualia must be embedded in order
to come into conscious awareness. In everyone’s experience,
we perceive the world from the center or mathematical
origin of this externalized space (Revonsuo, 2006). This center
provides a spatial sense of first-person self (Metzinger, 2003;
Trehub, 2007; Blanke and Metzinger, 2009). This concept
of a phenomenological space-time has been supported by
neurophysiological and cognitive research (Weiskrantz, 1997),
such as investigation into contralateral neglect syndrome (Driver
and Vuilleumier, 2001; Figure 1), as well as our own everyday
personal experience, and has been most thoroughly explored
by the Fingelkurts in their Operational Architectonics Theory
(Fingelkurts et al., 2010). Revonsuo has termed this space ‘‘virtual
space,’’ and identified it as responsible for the global unity
of consciousness (Revonsuo, 2006). Tononi et al. (2016) has
described structure as an axiom of all consciousness, not just
human.

We share the view that consciousness is an emergent
phenomenon resulting from a functional representation or
simulation of the external world and that the ontology of
our phenomenological space-time is a direct replication of
the dimensional nature of the physical universe (Siegel, 2006).
This allows us the survival benefit of interacting optimally
with our environment. Although phenomenal contents may be
representations of the external world, they are never experienced
as such, instead giving the impression that they are actual
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objects or scenes in the physical world (Metzinger, 2003).
Support is given by the nature of dreams which reveal that
experiences outside of perception of the external world are
spatially structured (Strauch and Meier, 1996) and experienced
as real the majority of the time (Farthing, 1992).

AN UNDERLYING COGNITIVE
ARCHITECTURE

While there is significant support for a phenomenological
space-time coordinate matrix as a foundation of experience,
not much research has been invested in how this is reflected
neurophysiologically. Our novel interpretation of this bridge
between the material and experiential may provide great insight
into binding and multisensory integration. This interpretation
includes the notion that this subconscious space-time matrix
is isomorphic to an ongoing, global, dynamic architecture of
harmonious oscillatory activity (Jerath and Beveridge, 2018)
upon which activity generating percepts build and bind upon
(Freeman and Vitiello, 2006; Fingelkurts et al., 2010, 2013).
In our view, the bioelectric structure responsible for this
matrix is the most basic and important layer of a greater
cognitive architecture spanning the entire body which produces
consciousness. We assert that this phenomenal space and its
isomorphic bioelectric structure are crucial to solving the binding
problem as the objects and scenes upon which various modes of
stimuli are bound (Singer and Gray, 1995) are in turn bound to
this greater coordinate matrix.

We propose this underlying, global, operational structure
provides a coherence mechanism for all sensory modalities to
unify based upon their spatial coordinates in external space and
may provide an explanation for baseline neural activity. Baseline
activity was traditionally considered noise (Emadi et al., 2014),
but has been realized at minimum to play an important role
in perception and behavior (Supèr et al., 2003). Its incessant
activity utilizes the majority of the brain’s energy (Raichle and
Gusnard, 2002), but its exact function is still mysterious (Balduzzi
et al., 2008). Ultraslow (<0.1 Hz) oscillations are known to be an
intrinsic component of brain activity (Birn et al., 2006; Raichle
and Snyder, 2007). Baseline activity has been found to interact
with activity induced by an external stimulus in creating the
overall response (Fox et al., 2005; Liu et al., 2011). According
to our view, this subconscious, baseline, oscillatory layer of
oscillations in neuronal membrane potential as well as at the
macroscopic level operate at an ultraslow frequency while higher
frequency oscillations responsible for qualia are bound to its
virtual coordinate matrix via synchronization. Other theories
of consciousness have also correlated higher frequency activity
with consciousness and lower frequency with unconsciousness
such as the Dynamic Core Hypothesis (Murphy and Brown,
2007).

Our perspective that the global cognitive architecture consists
of multiple oscillatory layers (Jerath and Crawford, 2015) and
that the most fundamental layer is global and responsible for
producing the phenomenal coordinate matrix is supported by
significant research. Oscillatory patterns have been shown to be
hierarchically organized by frequency with the lower frequency

activity underlying and correlating with high frequency activity
(Monto et al., 2008; Yuan et al., 2012). In addition this
lower frequency activity has been demonstrated to modulate
(Lakatos et al., 2005), group (Steriade et al., 2001; Vanhatalo
et al., 2004), organize, and entrain higher frequencies (Herrero
et al., 2018) as well as be effective in facilitating long-range
communication (Hyafil et al., 2015). We assert the fundamental
low frequency layer is in part maintained and coordinated
by cardiorespiratory activity (Tong et al., 2013; Heck et al.,
2017; Varga and Heck, 2017; Herrero et al., 2018) and
the modules of the Default Mode Network (Buckner et al.,
2008; Fingelkurts et al., 2016). This coordination of the
lowest layer provides a mechanism for global entrainment
and harmony needed to create a unified and integrated
experience.

According to most perspectives in phenomenology,
qualia must have structure, composed of several experiential
distinctions such as visual color, a location, or sound (Husserl,
1952; Brown, 2005; Menon et al., 2013; Oizumi et al., 2014).
The lowest layer of ultra-slow oscillations creating the virtual
coordinate matrix provides the global foundation for qualia to be
built and bound both electrophysiologically and phenomenally.
We believe the substance of frameworks for the diverse
sensory modalities that fill this space in various forms consist
largely of circuits bound by Alpha oscillations which provide
the next level of structure required for qualia emerge. Just
as the virtual matrix, sensory frameworks are continuously
active in the awake state even with a lack of stimuli which
is revealed by the presence of Alpha baseline activity (Iemi
et al., 2017). We propose these frameworks in their empty
form are significantly more conscious than the 3D matrix
upon which they are bound, commonly demonstrated by the
experience of complete darkness. Continentally blind people do
not experience darkness as someone with eyes closed would;
however, they have a complete lack of visual experience all
together (Bryan Magee, 1995; Koster-Hale et al., 2014). Thus, we
hold that while sensory frameworks are created through dynamic
neural circuits and oscillatory networks, the type of sensation
it creates is dependent upon the processing mechanisms of the
system.

Synchrony of Alpha oscillations in addition may mediate
the rise of these frameworks into conscious awareness via
spatial attention (Sasaki et al., 2013; Fingelkurts and Fingelkurts,
2015). Recent findings on the diversity of brain areas that
when damaged lead to the condition of contralateral neglect we
mentioned suggests structural damage to specific brain areas may
not significantly explain the condition. Instead, disruptions of
resting Alpha networks that control spatial attention via inter-
hemispheric connectivity provide a more sound explanation
(Corbetta, 2012; Sasaki et al., 2013). We interpret these findings
as evidence for our view that in addition to playing a
major role in the formulation of sensory frameworks, Alpha
rhythms bring the unconscious virtual space into awareness
through further baseline functional connectivity needed for
large-scale integration of local computations, and that spatial
awareness is a fundamental prerequisite to any other type of
awareness.
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FIGURE 1 | The existence of an essential phenomenal space revealed by contralateral neglect syndrome. Contralateral Neglect is a condition resulting often from
damage the right parietal lobe (Kerkhoff, 2001). Not only do the neglected side of space and all sensation within it disappear from consciousness in this condition,
but these patients are not aware of any “missing” space and experience the right side as the full external world. They may eat from one side of their plate or dress
one side of their body. Two main theories exist at as why this may occur, both supporting the existence of an unconscious virtual coordinate matrix as the basis of
consciousness. In the first theory, as illustrated in the top image, the parietal brain area maps percepts spatially. The right lobe maps both sides of the perceptual field
while the left only one side, thus, lesions of the right side lead to a lack of mapping of the left perceptual field (Iachini et al., 2009). The necessity of spatial mapping of
percepts into a 3D coordinate matrix for experience is revealed by the loss of perception of the entire left side of space for these patients (Jerath and Crawford,
2014), illustrated by the bottom image. Recent findings have stimulated the second theory which focuses on disturbed resting brain oscillation networks of Alpha
frequency is supported by the fact that neglect can occur from damage to numerous right-side cortical and sub-cortical areas (Corbetta and Shulman, 2011), and
that unconscious processing of the neglected stimuli still occur. In this theory, lesions damage these networks which are responsible for spatial attention. This
supports our view that Alpha coherence brings the unconscious virtual space to awareness and that a spatial component to qualia must exist for it to enter
consciousness (figure by Lynsey Ekema, MSMI). Previously Published in Jerath and Beveridge (2018). Permission obtained by Creative Commons.

MULTIMODAL INTEGRATION

Imagine yourself along a busy street while you attempt to cross.
Auditory and visual stimuli from passing cars provide reciprocal
information on passing cars allowing you to safely cross, however
these distinct categories of information must be integrated and

unified for effective perception of crossing safety. Research has
shown that different sensory modalities are indeed spatially
and temporally integrated so that different qualities belonging
to the same object are registered in the same space and time
(Treisman, 1999; Watt and Phillips, 2000). Although it is still
not well understood how this multisensory integration occurs,
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coherence in oscillatory activity is thought to be an essential
mechanism (Fingelkurts et al., 2003; Senkowski et al., 2008). In
the perspective we put forth here, distinct sensory frameworks
substantiated by oscillatory systems of lower frequency such
as alpha are integrated via the base oscillatory layer ultra-slow
oscillations responsible for the spatial coordinate matrix we have
described. The integration is primarily accomplished by binding
and entrainment through similarity in space and time (Molholm
et al., 2002; Talsma and Woldorff, 2005), which is facilitated by
such a basal, oscillatory space-time structure. We also hold the
opinion that qualia are integrated into the sensory frameworks
via synchrony and filled into their respective phenomenological
frameworks which are themselves filled into the 3D coordinate
virtual matrix.

The dynamic nature and functional importance of audiovisual
integration is demonstrated in a pioneering study showing
incongruent auditory-visual speech signals result in a fused
speech percept (Mcgurk and Macdonald, 1976). Responses to
cross-modal stimuli are superior to uni-modal stimuli (Wang
et al., 2013). The multitude of benefits from the combination
of sensory modalities includes improved orientation (Stein
et al., 1989), target detection (Frassinetti et al., 2002; Lovelace
et al., 2003), and response times (Amlôt et al., 2003; Diederich
et al., 2003). A large fraction of cortical activities are
indeed formed from inputs of multiple sensory types, even
the early, primary sensory sites (Ghazanfar and Schroeder,
2006; Kayser and Logothetis, 2007). Support for the modern
hypothesis that dynamic, coherent oscillations play a key role
in multisensory integration and in the selection of sensory
information that matches across different sensory modalities
has gained significant support in recent years (Fingelkurts
et al., 2003; Herrmann et al., 2004; Fries, 2005). Bioelectric
coherence provides a mechanism for specific patterns of
functionally connectivity which would be required for the
sensory frameworks we describe to hold.

Gamma band activity is shown to increase when auditory and
visual signals are presented close in time (∼25 ms; Senkowski
et al., 2007). Greater Gamma band activity was also seen in
audiovisual processing when semantically congruent stimuli
were presented vs. incongruent stimuli (image of dog with a bark
vs. a meow; Yuval-Greenberg and Deouell, 2007). In general,
audiovisual Gamma activity appears to be enhanced when the
auditory stimulus matches some visual pattern (Widmann et al.,
2007). All levels of multisensory interactions are characterized by
oscillatory responses most often in this Gamma band (Senkowski
et al., 2008). This activity may reflect the formation of a unitary
event representation (Widmann et al., 2007). In our perspective,
higher frequency activity such as Gamma represent higher order
qualia which are bound to subconscious frameworks which
create large-scale networks needed for an integrated experience.
The tightly localized activity of high frequency activity coordinate
computations of specific sites while the global integration of these
computations are achieved by the widespread slower oscillations
(Singer, 2011).

In our view, the thalamus and the thalamocortical oscillations
are additional key coordinators of oscillatory activity among
the cortex and among the cortex and sensory receptors [our

novel proposition (Jerath et al., 2016)], serving to coordinate
the binding of multi-modal qualia to the sensory frameworks
and these frameworks to the underlying virtual space. In
this way, expectations may directly modulate the activity
of sensory receptors (Jerath and Beveridge, 2018). There is
increasing evidence that the thalamus may integrate different
sensory stimuli and influence cortical multimodal processing
via corticothalamic connections (Tyll et al., 2011). The sensory
specific nuclei of the thalamus have also been evidenced
to integrate different modalities and feed this multisensory
information to primary sensory specific-cortices (Noesselt et al.,
2007; Kayser et al., 2008). As the thalamus has vast reentrant and
resonant connections with the cortex (Jones, 2007), it is a prime
candidate for an integrator of diverse information across widely
dispersed cortical sites (Cappe et al., 2012) providing a means
of large-scale, simultaneous synchronized events which may
conjoin in time all sensory inputs (Llinás et al., 2002). We assert
the thalamus in tandem with the ultra-slow oscillations provide
the means for metastable operations of binding and global unity
of neural activity to occur by coordinating the integration of the
vast and varied mental operations creating qualia into the virtual
3D matrix.

CONCLUSIONS

In asserting our perspective on phenomenal space-time and
its isomorphic bioelectric structure, we have endeavored to
provide insight into the binding problem regarding multimodal
integration. We have focused on audiovisual integration in this
article to provide an important instance of how this underlying
oscillatory structure may entrain and organize multisensory
streams into a unified whole resulting in the integrated
experience. We have put forth a hierarchical view on oscillatory
cognitive frameworks which include a basal, unconscious virtual
coordinate matrix characterized by slow oscillations and the
subconscious sensory frameworks characterized largely by Alpha
oscillations. The sensory frameworks are bound to the space-time
framework upon which qualia are further bound represented by
even higher frequency oscillations. This hierarchy is supported
by research revealing functional baseline activity and the fact
that slow oscillations underlie and entrain faster ones. By
describing how the slow oscillations produce a virtual space-time
matrix, we describe a means for disparate sensory modalities
to be integrated. In addition to empirically identifying a global
oscillatory framework underlying sensory frameworks, further
research should investigate the role of different frequencies in
multisensory integration.
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