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Plasma-based biomarkers present a promising approach in the research and clinical practice of Alzheimer’s disease as they are inexpensive,
accessible andminimally invasive. In particular, prognostic biomarkers of cognitive declinemay aid in planning andmanagement of clinical
care. Although recent studies have demonstrated the prognostic utility of plasma biomarkers of Alzheimer pathology or neurodegeneration,
such as pTau-181 and NF-L, whether other plasma biomarkers can further improve prediction of cognitive decline is undetermined. We
conducted an observational cohort study to determine the prognostic utility of plasma biomarkers in predicting progression to dementia for
individuals presenting with mild cognitive impairment due to probable Alzheimer’s disease. We used the Olink™ Proximity Extension
Assay technology to measure the level of 460 circulating proteins in banked plasma samples of all participants. We used a discovery
data set comprised 60 individuals with mild cognitive impairment (30 progressors and 30 stable) and a validation data set consisting of
21 stable and 21 progressors. We developed a machine learning model to distinguish progressors from stable and used 44 proteins with
significantlydifferent plasma levels inprogressorsversus stable alongwithage, sex, educationandbaseline cognitionas candidate features.
A model with age, education, APOE genotype, baseline cognition, plasma pTau-181 and 12 plasma Olink protein biomarker levels was
able to distinguish progressors from stablewith 86.7%accuracy (mean area under the curve=0.88). In the validation data set, themodel
accuracywas78.6%.TheOlinkproteins selectedby themodel included those associatedwithvascular injury andneuroinflammation (e.g.
IL-8, IL-17A, TIMP-4, MMP7). In addition, to compare these prognostic biomarkers to those that are altered in Alzheimer’s disease or
other types of dementia relative to controls, we analyzed samples from 20 individuals with Alzheimer, 30 with non-Alzheimer dementias
and 34with normal cognition. The proteinsNF-L and PTP-1Bwere significantly higher in both Alzheimer and non-Alzheimer dementias
comparedwith cognitively normal individuals. Interestingly, the prognosticmarkers of decline at themild cognitive impairment stage did
not overlap with those that differed between dementia and control cases. In summary, our findings suggest that plasma biomarkers of in-
flammation and vascular injury are associated with cognitive decline. Developing a plasma biomarker profile could aid in prognostic de-
liberations and identify individuals at higher risk of dementia in clinical practice.
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Abbreviations: Aβ= β-amyloid; ATN= β-amyloid/tau/neuronal damage; AUC= area under the curve; CDR=Clinical Dementia
Rating; CDR-SOB=CDR Sum of Boxes; CI= confidence interval; CN= cognitively normal; CV= coefficient of variation;
Dem-Alzheimer’s disease=Dementia-Alzheimer’s disease; Dem-Other=Dementia-other; FAQ= Functional Assessment
Questionnaire; HC=healthy control; LASSO= least absolute shrinkage and selection operator method; LLOD= lower limit of
detection; MADRC=Massachusetts Alzheimer’s Disease Research Center; MCI=mild cognitive impairment; MMSE=
Mini-Mental State Examination; MSD=Meso Scale Diagnostics; NIA-AA=National Institute on Aging-Alzheimer’s Association;
NPX=Normalized Protein Expression; PEA=Proximity Extension Assay; pTau= phospho-tau; QC=quality control; ROC=
receiver operating characteristic; SD= standard deviation

Graphical Abstract

Introduction
Mild cognitive impairment (MCI) is a transitional stage be-
tween the common cognitive decline of normal aging and
the more serious decline into dementia. Individuals with
MCI have evidence of cognitive impairment, but their inde-
pendence in functional abilities is mostly preserved.1 MCI
is a useful clinical diagnostic construct with prognostic im-
plications because the likelihood of progression to dementia
(i.e. a cognitive impairment that affects daily independent
functioning) among people with MCI is greater than among
cognitively normal individuals.2 However, because MCI is a
heterogeneous condition, it is difficult to predict with accur-
acy if and when an individual with MCI will progress to de-
mentia. Models for prediction of clinical MCI progression

often include complex multiple domain neuropsychological
testing, CSF biomarker analysis and/or neuroimaging.3

There is an urgent need for low cost, easily accessible and
non-invasive alternatives such as blood-based biomarkers.
Blood-based biomarkers of classic Alzheimer’s disease path-
ology—β-amyloid (Aβ) and phospho-tau (pTau)—and neu-
rodegeneration have improved in the last few years, with
promise for establishing an ‘ATN’ diagnosis of Alzheimer’s
disease4 without need for cerebrospinal fluid testing or posi-
tron emission tomography (PET) neuroimaging.With regard
to neurodegeneration, plasma neurofilament light polypep-
tide (NF-L, gene name NEFL) has been extensively studied
and is associated with risk of developing Alzheimer’s disease
and non-Alzheimer’s disease dementia,5 with Alzheimer’s
disease diagnosis, as well as positive Alzheimer’s disease
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imaging biomarkers.6 However, the utility of blood-based
ATN biomarkers in predicting MCI progression remains in-
definite. Recent studies indicate that plasma or CSF levels of
NF-L and various tau epitopes are elevated in individuals
with MCI who progress to dementia,7–10 but this has not
been consistently observed in other studies.6,11,12 Cullen
et al. successfully used a combination of plasma levels of
Aβ42/40, pTau-181 and NF-L along with age, sex and edu-
cation for an individualized prognosis ofMCI patients10 and
achieved an AUC of 0.88 in their study.

While great progress has been recently made in plasma bio-
markers of Aβ and pTau, it is also clear that the pathophysi-
ology of Alzheimer’s disease is not limited to the Aβ cascade
and tauopathy and that processes such as inflammation, vascu-
lar injury, oxidative injury and disruption of metabolic path-
ways may also contribute to the progression of the disease
but are not reflected by changes in the classic Alzheimer’s dis-
ease biomarkers or the ATN classification scheme. It is there-
fore likely that combinations of blood-based protein
biomarkers reflecting different pathways will increase the sen-
sitivity and specificity of a single biomarker test to predict
MCI-to-dementia conversion,13 and efforts have been made
to establishmultivariate biomarkerpanels that canpredict clin-
ical progression of MCI. Some of these studies have reported
high accuracy in predicting MCI conversion to dementia,14–
16 but these biomarkers were not combined with the ATNbio-
markers. In addition, other studies using the same panels failed
to reproduce such high accuracy in the context of classifying
MCI and/or dementia,17–20 and it is notwell-establishedwhich
biomarkers are most informative.

Here, we used a novel, highly sensitive and specific
multiplex immunoassay21 to measure plasma levels of
460 protein biomarkers selected to reflect a range of patho-
physiological processes implicated in Alzheimer’s disease
with a focus on inflammation, metabolism, vascular injury
and neurodegeneration, in two data sets of 60 (discovery)
and 42 (validation) individuals to determine the prognostic
utility of plasma biomarkers. We hypothesized that a com-
bination of plasma biomarkers, as well as APOE genotype,
plasma Aβ42/40 and pTau-181 would predict MCI pro-
gression to Alzheimer’s disease dementia within 5 years
with improved accuracy compared with demographic and
clinical variables alone. The secondary objective of the
study was to compare these prognostic biomarkers to those
that are altered in Alzheimer’s disease or other types of de-
mentia relative to controls.

Materials and methods
Study participants
Plasma samples were obtained from participants in the
Massachusetts Alzheimer’s Disease Research Center
(MADRC) longitudinal cohort of cognitive aging between
2008 and 2015. The MADRC is one of the National
Institute on Aging (NIA)-funded Alzheimer’s Disease

Research Centers. Annual assessments include biofluid col-
lection, a general and neurological examination, a semi-
structured interview with the participant and/or informant
to record cognitive symptoms and score the Clinical
Dementia Rating scale (CDR® Dementia Staging
Instrument), and a comprehensive battery of neuropsycho-
logical tests.22 Plasma samples drawn at visit from the parti-
cipants were banked by the Harvard Biomarkers Study.23

The study was approved by the Mass General Brigham
Institutional Review Board (2006P002104), and all partici-
pants provided written informed consent. Cognitive status
was determined at each approximately annual visit by a con-
sensus team after a detailed examination and review of all
available information according to 2011 National Institute
on Aging-Alzheimer’s Association (NIA-AA) diagnostic cri-
teria for mild cognitive impairment (MCI)1 and for
Alzheimer’s disease.24 Diagnosis of frontotemporal demen-
tia, Lewy body disease, or progressive supranuclear palsy
were also similarly made according to defined stan-
dards.25–27 CSF and imaging biomarkers were available
only for a subset of the participants.

Specifically, samples from several groups were selected
(sample sizes were guided by previous studies):
1. Discovery samples: The discovery samples were drawn at

baseline from 60 participants with a clinical diagnosis of
MCI due to probable Alzheimer’s disease, global CDR
score of 0.5 and at least five annual follow-up visits.
The participants were classified into two groups based
on their global CDR trajectory over a 5-year follow-up
period: ‘MCI-progressors’, if global CDR score increased
from 0.5 to 1 (i.e. participants who converted from MCI
to dementia in≤5 years) and ‘MCI-stable’, if no change in
global CDR score (see Table 1A).

2. Validation samples: The validation samples were drawn
from 42 additional MCI participants with baseline clinic-
al diagnosis of MCI due to probable Alzheimer’s disease,
baseline global CDR score of 0.5 and at least five annual
follow-up visits with unchanged CDR scores
(MCI-stable) or declined in ≤5 years (MCI-progressors).
Records were thoroughly reviewed to exclude partici-
pants with ambiguous clinical presentation at first and/
or follow-up visits (see Table 1B).

3. Dementia and heathy control (HC) samples: To compare
prognostic biomarkerswith diagnostic biomarkers, we se-
lected three other groups: (i) Dementia-Alzheimer’s dis-
ease (Dem-Alzheimer’s disease): 20 participants with a
global CDR score ≥1 and a clinical aetiologic diagnosis
of dementia due to probable Alzheimer’s disease

4. (ii) Dementia-other (Dem-Other): 30 participants with a
global CDR score ≥1 and a clinical aetiologic diagnosis
of non-Alzheimer’s disease dementia such as frontotem-
poral dementia, Lewy body disease, or progressive supra-
nuclear palsy

5. and (iii) Cognitively normal (CN): 34 age- and
sex-matched healthy participants with normal neuro-
psychological testing scores and no subjective cognitive
symptoms over 5 + years (see Table 1C).
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Plasma biomarker measurements
Sampleswere collected inK2EDTA tubes, centrifuged at 2000 g
for 5 min, frozen in low retention polypropylene cryovials with-
in 4 h of collection and stored at−80°C until use. Samples were
processed and frozen within 4 h from blood draw and stored at
−80°C until use. Plasma samples were then sent to Olink
Analysis Services (OlinkProteomics,Watertown,MA) andplas-
ma levels of 460 protein biomarkers were measured by
Proximity ExtensionAssay (PEA) technology21 using five panels
(Immuno-Oncology, Neuro-Exploratory, Cardiovascular III,
Inflammation and Cardiometabolic). This is a novel technology
that combines antibody-epitope recognition and binding with
quantitative polymerase chain reaction (qPCR). Briefly, circulat-
ing plasma proteins are specifically bound by DNA-tagged anti-
bodies upon epitope recognition. Pairs of complementary
hybridized DNA tags are then amplified via qPCR. Data were
pre-processed using the Olink NPXManager software and pre-
sented as Normalized Protein Expression (NPX) values.
Samples from the discovery and non-MCI groups were evenly

distributed across six plates as part of a larger sample cohort,
whereas all the validation samples were run on one plate.
Three quality control (QC) samples were included on all plates
to evaluate intra- and inter- plate variability. In total, 60 proteins
did not pass QC thresholds, either because more than five sam-
ples were below the lower limit of detection (LLOD, n=57) or
because they had an inter-plate coefficient of variation (CV)>
50% (n=3) and were removed from further analyses. Some
proteins were represented on multiple panels, allowing further
inter-assay consistency checks, and these were all excellent (cor-
relation≥0.8). If a protein was represented on multiple panels,
we included only one randomly chosen instance. In total, 362
proteins were entered into statistical analyses. Technical valid-
ation of CX3CL1, IL-8, and CSF-1 plasma levels were per-
formed using multiplexed U-plex immunoassays from Meso
Scale Diagnostics (Rockville, MD) and acquired on a MESO
QuickPlex SQ129 reader (Meso Scale Diagnostics, MSD) fol-
lowing manufacturer’s instructions. Plasma levels of Aβ40 and
Aβ42 were measured using Euroimmun Beta-Amyloid (1-40)
and (1-42) ELISA assays (Lübeck, Germany) performed on a

Table 1 Study participant summary statistics

Characteristics MCI-stable MCI-progressors

Discovery data set
Number of participants (N ) 30 30
Age [Mean (SD)] 75.9 (9.1) 78.1 (6.7)
Female [N (%)] 15 (50) 15 (50)
Follow-up time [median (min, max)] 6.6 (1.7, 10.5) 4.3 (1.1, 9.4)
College educated [N (%)] 20 (66.7) 17 (56.7)
APOE ε4 carriers [N (%)] 11 (36.7) 16 (53.3)
CDR sum of boxes [Mean (SD)] 1.8 (1) 2.4 (0.8)*
MMSE [Mean (SD)] 28.3 (1.4) 26.2 (4.3)*
Aβ42/40 [Mean (SD)] 0.1 (0) 0.1 (0)
pTau-181 [Mean (SD)] 2.1 (1) 3.6 (1.6)*
N-FL [Mean (SD)] 5 (0.6) 5.3 (0.7)

Validation data set
Number of participants [N] 21 21
Age [Mean (SD)] 75.5 (7.7) 78.3 (8.2)
Female [N (%)] 8 (38.1) 13 (61.9)
Follow-up time [Median (Min, Max)] 9.0 (2.1, 11.6) 3.7 (5.3, 12.7)
College educated [N (%)] 17 (81.0) 15 (71.4)*
APOE ε4 carriers [N (%)] 4 (19.0) 12 (57.1)
CDR sum of boxes [Mean (SD)] 1.5 (0.9) 2.1 (1.1)*
MMSE [Mean (SD)] 28.5 (1.0) 27 (1.6)*
Aβ42/40 [Mean (SD)] 0.1 (0.0) 0.1 (0.1)
pTau-181 [Mean (SD)] 1.7 (0.9) 3.9 (1.9)*
N-FL [Mean (SD)] 4.8 (0.5) 5.1 (0.6)

Characteristics CN Dem-Alzheimer’s disease Dem-Other

Dementia and HC
Number of participants [N] 34 20 30
Age [Mean (SD)] 76.2 (9.4) 78.3 (7.5) 69.9 (9.3)
Female [N (%)] 18 (52.9%) 10 (50.0%) 15 (50.0%)
Follow-up time [Median (Min, Max)] 8.7 (2.7, 11.5) 5.5 (2.1, 10.6) 3.9 (0.9, 9.6)
College educated [N (%)] 27 (79.4) 15 (75) 21 (70)
APOE ε4 Carriers [N (%)] 10 (29.4) 13 (65)* 6 (20)
CDR sum of boxes [Mean (SD)] 0 (0.1) 6.3 (2.6)a 3.7 (3.5)

Discovery data set consisted of 60 MCI (29 MCI-progressors, 31 MCI-stable). Validation data set consisted of 42 MCI (21 MCI-progressors and 21 MCI-stable), and dementia and
healthy control (HC) data set included 34 cognitively normal (CN), 20 Alzheimer’s disease Dementia (Dem-Alzheimer’s disease), and 30 other dementia (Dem-Other) participants.
Statistical comparisons were performed with Student’s t-test for continuous variables and χ2 for dichotomous variables.
*P< 0.05 for MCI-progressors versus MCI-stable groups.
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semiautomated TECAN Freedom EVO liquid handler
(Männedorf, Switzerland) following manufacturer’s instruc-
tions and the Aβ42/40 ratio calculated. pTau-181 plasma levels
were measured using the Quanterix Simoa pTau-181 V2
Advantage Kit on a fully automated Quanterix HD-X analyzer
(Billerica, MA).

Statistical analysis
All statistical analyses were conducted using R version
4.0.2. Continuous variables were centred and scaled for
all analyses. Missing data for plasma biomarkers was im-
puted as the mean of available data points. Differential ex-
pression analysis of MCI-progressor versus MCI-stable,
Dem-Alzheimer’s disease versus CN, and Dem-Other versus
CN was conducted using the limma package in R,28 which
uses empirical Bayes to borrow information across all pro-
teins and increase power, with Olink’s protein NPX values
as the outcome, and diagnostic group, age and sex as predic-
tors. Multiple comparisons were adjusted using the
Benjamini-Hochberg method and a threshold of FDR ad-
justed P-value (or q value) of 0.05 was used. Correlation be-
tween MSD and Olink PEA assays were computed using the
R cor function. All plots were generated using the R ggplot2
package.

We used the least absolute shrinkage and selection operator
method (LASSO),29 a supervisedmachine learningmodel, to clas-
sify MCI participants into MCI-progressors versus MCI-stable
(classes specified by the CDR trajectory as described previously).
We developed three models: Model 1 was trained with baseline
cognitive scores—Mini-Mental State Examination (MMSE),30

Functional Assessment Questionnaire (FAQ),31 and CDR Sum
of Boxes (CDR-SOB)—age, sex, education andAPOE genotype.
APOE genotype was coded as 1 for ε4 carriers (ε4/ε4, ε3/ε4 and
ε2/ε4) and 0 for ε4 non-carriers. Model 2 also included plasma
Aβ42/40 and pTau-181 levels. Model 3 was trained with all the
variables of Model 2 and the nominally significant plasma pro-
teins resulting from the differential expression analyses. Model
training and 5-fold cross-validation were performed on the dis-
covery samples using the glmnet package in R and the value of
the LASSO regularization parameter lambda was selected by
maximizing the mean receiver operating characteristic (ROC)
area under the curve (AUC) across the five folds. The optimal
lambda was used to enforce a constraint on the sum of the mag-
nitudes of the estimated coefficients. This constraint was used to
prevent overfitting and perform variable selection. Results from
the LASSO models are presented as the mean and 95% confi-
dence interval (CI) of the cross-validated AUC. The specificity,
sensitivity and othermeasures at the selected lambda value are re-
ported.Theperformanceof the trainedmodel (Model3)was then
evaluated on the validation samples.

Data availability
All protein concentration (NPX) data from the Olink™

panels are available in Supplementary Table 1.

Results
Characteristics of study participants
In the discovery data set, the MCI-progressors and
MCI-stable participants were 75.9± 9.1 and 78.1± 6.7
years old (mean± SD), respectively, and 50.0% of partici-
pants in each group were female (Table 1A). The
MCI-progressors had an average bassline MMSE of 26.2±
4.3 and 56.7% had a college education or more, while
MCI-stable had an average baseline MMSE of 28.3± 1.4
and 66.7% had a college education or more. The baseline
CDR-SOB, baseline MMSE and baseline ptau-181 were sig-
nificantly different (P< 0.05) between the MCI-stable and
the MCI-progressors. The global CDR was 0.5 at baseline
for both groups. Fig. 1A illustrates the CDR-SOB trajectory
for the 30 MCI-progressors and 30 MCI-stable participants
from the discovery data set, with an increase in the global
CDR score from 0.5 to 1 between years 2 and 5 in the
MCI-progressors and the stability of the global CDR score
in the MCI-stable group (as defined by our study design).

Table 1B and C display the characteristics of the valid-
ation and the dementia and HC data sets, respectively. In
the validation data set, like the discovery data set, the base-
line CDR-SOB, baseline MMSE, and baseline ptau-181
were significantly different (P<0.05) between the
MCI-stable and the MCI-progressors. In addition, the num-
ber of participants with a college education or more was sig-
nificantly higher in the MCI-stable group in this data set. In
the dementia and HC data set, the proportion of APOE ε4
carriers (APOE genotype was missing for oneparticipant)
and CDR Sum of Boxes was significantly higher (P< 0.05)
in the Dem-Alzheimer’s disease group compared with those
with normal cognition. For the Dem-Other group, the base-
line age and CDR Sum of Boxes was significantly different
(P<0.05) compared with those with normal cognition.

Differentially expressed plasma
biomarkers between
MCI-progressors and MCI-stable
Plasma biomarkers were analyzed using Olink PEA in the
discovery samples drawn at baseline. This methodology
based on DNA-tagged antibodies, and quantitative PCR
amplification of pairs of hybridized DNA tags enables the
simultaneous measurement of a customized panel of hun-
dreds of plasma proteins with high sensitivity and specifi-
city.21 The levels of the 362 plasma biomarkers passing
our stringent QC criteria (i.e. Olink NPX values) for all sam-
ples analyzed with the diagnostic group, age and sex are
available in Supplementary Table 1.

In an exploratory analysis to identify putative biomarkers
associatedwith clinical progression fromMCI toAlzheimer’s
disease dementia, we determined differentially expressed
proteins between the twoMCI groups. A total of 44 proteins
were significantly altered in MCI-progressors versus
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MCI-stable (P< 0.05), controlling for age, sex and baseline
CDR-SOB (Fig. 1B, Supplementary Table 2). None of these
were significant after multiple comparison corrections.
These 44 differentially expressed proteins were all increased
in MCI-progressors versus MCI-stable, except for
PRTFDC1, ST1A1, CETN2 and NOS3, which were de-
creased.Theproteinswere primarily representativeof inflam-
matory/chemotaxis (CCL23, CSF-1, CX3CL1, CXCL9,
IL-8, LTBR, MCP-1, ST2, TNFRSF12A), extracellular

matrix (MMP-3, PTN and TIMP-4), neurodegeneration
(NF-L) and vascular processes (PGF, MB and VEGFA). The
metabolic biomarker PHOSPHO1—an enzyme that depho-
sphorylates phospholipids—was also significantly increased
in MCI-progressors versus MCI-stable participants.
Regarding the magnitude of the differences, five proteins
had an effect size of >50%: NF-L (50.8% increase in
MCI-progressors versusMCI-stable), IL-8 (53.0% increase),
CXCL9 (52.3% increase), PTN (54.0% increase) and

A

B

Figure 1MCI-progressors versus stable. (A) Trajectory of CDR Sum of Boxes scores over longitudinal visits in MCI-stable and progressors.
(B) Differential expression of proteins in MCI-progressors versus stable. Proteins with a P< 0.05 and fold-change >10% are displayed (total 44
proteins)
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FGF-21 (68.0% increase). When performing the same ana-
lysis in the validation samples, six of the original 44 proteins
were elevated in MCI-progressors versus MCI-stable (un-
adjusted P< 0.05): MCP-1, PTN, CSF-1, TGF-alpha,
FGF-21 and CX3CL1.

Next, to validate the results of theOlink PEA against other
commonly used platforms, we performed a technical valid-
ation for the differentially expressed proteins CX3CL1,
IL-8 and CSF-1 using electrochemiluminescence immunoas-
says (MSD) with additional vials of the same samples used
for the Olink PEA assays. Differences between the
MCI-stable and MCI-progressor groups remained statistic-
ally significant for all three proteins (P< 0.05 for all compar-
isons Fig. 2A–C). Biomarker levels measured with MSD and
PEA assays were also significantly correlated, with R2 values
between 0.5 and 0.7 (Fig. 2D–F). In addition, we observed
excellent correlation between plasma levels of NF-L mea-
sured by the Olink PEA technology and Quanterix Simoa
(R2=0.91, P< 0.05 Supplementary Fig. 1).

A machine learning model including
plasma protein biomarkers classifies
MCI-progressors versus MCI-stable
with high accuracy
We next investigated whether a machine learning model
could discriminate MCI-progressors from MCI-stable indi-
viduals using the Olink biomarkers associated with decline
in the exploratory analysis. We reasoned that our large
multidimensional data with demographic, cognitive and
APOE genotype data, as well as plasma protein levels pro-
vided an opportunity to develop a machine learning algo-
rithm to classify MCI individuals into MCI-stable versus
MCI-progressors and, thus, predict progression from MCI
to dementia. To explore the relative contribution of the
Olink biomarkers, we trained three regularized multivariate
logistic regression models with increasing number of inputs
and compared them to each other. The first model (Model
1) had the following candidate variables: baseline cognitive
measures (MMSE, FAQ and CDR-SOB), demographic vari-
ables (age, sex and education) and APOE genotype. This
model classified participants into the two groups with 70%
accuracy (AUC=0.68, 95% CI: 0.55–0.81; Specificity=
80% and Sensitivity= 57% at the threshold of maximum ac-
curacy; Fig. 3A). The second model (Model 2) added plasma
measures of Aβ42/40 and pTau-181 to the candidate vari-
ables of Model 1 and further improved the performance
(mean AUC across five cross-validation folds= 0.79, 95%
CI: 0.75–0.83 specificity=73% and sensitivity= 76% at
the threshold of maximum accuracy; Fig. 3A). The third
model (Model 3) that added the scaled and centred levels
of 44 proteins as candidate variables to those ofModel 2 sub-
stantially improved model performance [mean AUC= 0.88
95% CI: 0.83–0.93; specificity= 90% and sensitivity=
83.3% at the threshold of maximum accuracy (86.7%)

Fig. 3A and was chosen as the final model. Model 3 se-
lected 12 of the 44 differentially expressed proteins in add-
ition to age at baseline, education, baseline CDR-SOB,
baselineMMSE,APOE genotype and pTau-181 as contribu-
tors to this classification task (ranked in Fig. 3B). The stron-
gest predictor was plasma pTau-181 levels (odds of
progression increases 4.26-fold with 1σ (1.5 pg/ml) change
in pTau-181 levels), which is concordant with other studies
showing similar results.9,10 Of note, plasma Aβ42/40 and
NF-L were not selected by the model as predictors.

To test the performance of our final machine learning al-
gorithm (Model 3), we applied it to a validation data set
with samples from 21 MCI-progressors and 21 MCI-stable
participants selected from the MADRC longitudinal cohort
(Table 1B). The final regularized logistic regression Model 3,
which selected baseline age, education,APOE genotype, base-
line cognitive scores (MMSE, and CDR-SOB), and the plasma
levels of pTau-181, as well as 12 other proteins as predictors
(see Fig. 3B), was able to classify MCI-progressors versus
MCI-stable participants with an overall accuracy of 78.6%
(AUC=0.83; sensitivity=0.81 and specificity=0.76 at the
threshold of maximum accuracy). The AUC was lower than
that of the discovery data set, suggesting modest generalizabil-
ity beyond the training data set.

Biomarkers of MCI progression to
Alzheimer’s disease dementia are
distinct from biomarkers of
Alzheimer’s disease dementia
Next, we asked whether these prognostic biomarkers of
progression from MCI to dementia overlap with diagnostic
biomarkers of Alzheimer’s disease and other types of demen-
tia. To this end, we analyzed the 362 Olink PEA protein bio-
markers that passed QC criteria in plasma samples from
dementia and healthy control groups: Alzheimer’s disease
dementia (Dem-Alzheimer’s disease, n= 20), dementia of
non-Alzheimer’s disease aetiology (Dem-Other, n= 30),
and CN participants (CN, n= 34) (see Methods section
and Table 1).

Eleven proteins had altered (n= 6 increased and n= 5 de-
creased) plasma levels in Dem-Alzheimer’s disease compared
with CN (P< 0.05) (Fig. 4A, Supplementary Table 3A).
Twelve proteins were altered (n=10 increased and n=2 de-
creased) inDem-Other comparedwithCN (P<0.05), ofwhich
NF-Lwas statistically significantly increased even aftermultiple
comparisons (Fig. 4B, Supplementary Table 3B). There was lit-
tle overlap between Dem-Alzheimer’s disease and Dem-Other
biomarkers; only NF-L and PTP-1B were common to both
groups. Consistent with its known association with multiple
neurodegenerative diseases,6,8,32 NF-L was highly increased
in Dem-Other (fold-change=2.03, P=4.43×10−10) and
moderately in Dem-Alzheimer’s disease (fold-change=1.29,
P=0.029) versus CNparticipants. PTP-1B, a regulator of insu-
lin and leptin signalling that has been shown to be involved in
multiple Alzheimer’s disease processes,33 was moderately
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increased in both Dem-Alzheimer’s disease (fold-change=
1.39, P=0.037) and Dem-Other (fold-change=1.39, P=
0.023) compared with CN individuals. Interestingly, only one
of the proteins that was increased in MCI-progressors versus
MCI-stable groups, NF-L, was also differentially expressed in
Dem-Alzheimer’s disease versus CN participants, indicating
that prognostic biomarkers of progression from MCI to de-
mentia due to probable Alzheimer’s disease are not necessarily
diagnostic biomarkers for dementia due to probable
Alzheimer’s disease. We also compared the Dem-Alzheimer’s
disease samples to the Dem-Other samples (Fig. 4C and
Supplementary Table 3C). NF-L was significantly higher in
the Dem-Other group compared to Dem-Alzheimer’s disease
(fold-change=1.57, P=0.0004). In addition, IGFBP-1, which
was significantly lower in Dem-Alzheimer’s disease compared
with CN individuals, was also significantly lower in
Dem-Alzheimer’s disease compared with Dem-Other (fold-
change=0.63, P=0.03), suggesting the change maybe unique
to Alzheimer’s disease pathology. Since the Dem-Alzheimer’s

disease group is significantly older than the Dem-Other group,
the difference may also be age related.

Discussion
Our large plasma biomarker panel revealed that biomarkers
of inflammation/chemotaxis (CCL23, CX3CL1, CSF-1,
CXCL9, IL-8 and TNFRSF12A), extracellular matrix re-
modelling (MMP-3 and TIMP-4), endothelial injury
(NOS3 and VEGF-A), insulin-like growth factor signalling
regulation (IGFBP2), and lipid metabolism (PHOSPHO1),
in addition to neurodegeneration (NF-L), were associated
with conversion of MCI to dementia within the probable
Alzheimer’s disease spectrum. Including a selection of these
plasma proteins in our machine learning algorithm im-
proved the prognostic accuracy not only of the simpler mod-
el including APOE genotype, cognitive measures, and

A B C

D E F

Figure 2 Technical validation of Olink PEA results. (A–C) Comparison of protein concentrations between MCI-progressors and stable
groups using immunoassays from MSD in additional vials of the same samples used for Olink PEA. Differences between the MCI-stable and
MCI-progressor groups for (A) CX3CL1 (t= 2.76, P= 0.008), (B) IL-8 (t= 2.77, P= 0.008) and (C) CSF-1 (t= 2.77, P= 0.008) were all significant.
(D–F) Pearson correlation between Olink PEA and MSD assays (r: CX3CL1= 0.5 IL-8= 0.7 and CSF-1= 0.6). Note that the concentration of IL-8
is in logarithmic scale
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demographic variables but also that of the model that add-
itionally included plasma Aβ42/40 and pTau-181 measures.

There are several implications of these findings. First, they
indicate that plasma biomarkers may be able to detect corre-
lates of heterogeneity in the pathophysiological processes
underlying cognitive impairment in the elderly. Moreover,
these heterogeneous processes appear to be present only earl-
ier in the disease process and not after a full dementia clinical
phenotype is present. Akin to the interpretation that altered
levels of plasma Aβ or pTau reflect their respective deposi-
tions in the brain, and that NF-L levels are a proxy for neu-
roaxonal degeneration, one possibility is that increased
plasma level of the colony stimulating factor-1 (CSF-1)
might reflect microglia activation, whereas the increased
plasma levels of chemokines CCL23, CX3CL1 and
CXCL9 might reflect the migration of these microglia to-
wards amyloid plaques, neurofibrillary tangles and dying
neurons. The fact that these biochemical alterations, known
to occur in the Alzheimer’s disease brain, are detectable in
plasma could be explained by a disruption of the blood–
brain barrier. Indeed, the endothelial nitric oxide synthase
3 (NOS3) was reduced by 27% while the vascular endothe-
lial growth factor A (VEGF-A) was increased by 20% in
MCI-progressors versus MCI-stable participants, suggesting
that endothelial cell injury and angiogenesis are early phe-
nomena.34,35 In addition, the higher levels of the metallopro-
tease stromelysin-1 (SL-1) and metalloprotease inhibitor 4

(TIMP-4) in MCI-progressors versus MCI-stable partici-
pants would have opposing effects on the integrity of colla-
gen and other components of the extracellular matrix and
capillary basement membranes, further reinforcing the no-
tion that the blood–brain barrier might be disrupted and lea-
ky early in the progression to dementia.36 Alternatively, the
increased plasma levels of CSF-1, CCL23, CX3CL1 and
CXCL9 we observed might represent a systemic immune
dysregulation detectable in blood in parallel to immune pro-
cesses within CNS. Peripheral immune dysregulation may be
independent and only parenthetically related to Alzheimer’s
disease.37 Similarly, the alterations in endothelial and extra-
cellular matrix plasma biomarkers might partly reflect per-
ipheral changes, however these pathways have been
highlighted by previous large-scale plasma/CSF biomarker
and brain proteomic studies.38,39

Second, these results suggest that a multiplexed plasma
biomarker panel like the one used here, with further valid-
ation, could provide useful prognostic information in a clin-
ical setting by profiling various pathogenic cascades that
might occur upstream, downstream, or in parallel to Aβ,
pTau and neurodegeneration. Indeed, we show that applying
a machine learning algorithm on such a multidimensional
biomarker data set improves clinical prognosis, which re-
mains an unmet need of patients at the MCI stage and their
families. Of note, although other studies have identifiedmar-
kers of inflammation,15,16,20 there is little overlap with the

A B

Figure 3 Machine learning model to discriminate MCI-progressors from stable. (A) ROC curves for (i) Model 1 with candidate
variables: baseline cognitive measures, age, sex, education and APOE genotype (AUC= 0.68, 95% CI: 0.55-0.81) (ii) Model 2 with candidate
variables: baseline cognitive measures, age, sex, education, APOE genotype, plasma Aβ42/40 ratio and plasma pTau-181 (AUC= 0.79, 95% CI:
0.75-0.83) and (iii)Model 3with candidate variables: baseline cognitive measures, age, sex, education, APOE genotype, plasma Aβ42/40 ratio, plasma
pTau-181, and Olink plasma proteins (AUC= 0.88, 95% CI: 0.83-0.93). (B) Heatmap of the standardized beta coefficients [exp(β)] of the variables
selected by LASSO regularization in Model 3. A total of 12 plasma proteins, plasma pTau-181, CDR Sum of Boxes, APOE genotype, education, age
at baseline and MMSE at baseline, were selected in Model 3. All continuous variables were centred and scaled for these analyses
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proteins identified in our study. Similarly, the extracellular
matrix proteins identified by our study are distinct from
those reported by Yang et al.’s proteomics study.14

However, since the pathways identified in various studies
are similar (even though the individual proteins are differ-
ent), perhaps a large number of combined markers can be
used to develop robust validated prognostic biomarkers.

Third, such panels could inform clinical trials,40 especially
those targeting vascular or inflammatory risk factors41

and those testing multimodal lifestyle interventions.42

This approach may also enable the field to move closer to
personalized medicine where it can be envisioned that MCI
individuals will be enrolled in trials based on their biomarker
profile of different pathophysiological processes involved in
neurodegeneration. Further, the sample size required for a
clinical trial can be reduced by enriching the trial with parti-
cipants who are more likely to decline in the next few years.
Indeed, using simulations Cullen et al. demonstrated that a

combination of plasma Aβ42/40, pTau-217 and NF-L could
potentially reduce the sample size of trials with cognition as
primary endpoint by as much as 70%.43

Neuroimaging and CSF biomarkers have also been success-
fully used topredict disease progression.44 For example, baseline
brain MRI measures, such as cortical thinning has been asso-
ciatedwith a faster decline.45 Another study used a combination
of neuropsychological tests, hippocampal volume and the CSF
markers Aβ42, P-tau and T-tau to predict conversion from
MCI to dementia (AUC=0.96).46 Yet another applied a deep
learning model to baseline neuroimaging biomarkers and longi-
tudinal CSF and cognitive testing to predict conversion from
MCI to probable Alzheimer’s disease (AUC=0.86).47 While
neuroimaging and CSF prognostic biomarkers may achieve
similar or better performance, blood-based biomarkers have
the distinct advantage of low costs and higher accessibility.

Strengths of this study include the multiplexed quantifi-
cation of 362 protein biomarkers to characterize an array

Figure 4 Differential expression analysis of Alzheimer’s disease and other dementia versus CN participants. (A) Alzheimer’s
disease (AD) versus CN participants. (B) Dem-Other versus CN (C) AD vs Dem-Other participants. Proteins with a P< 0.05 and fold-change
>10% are displayed. NF-L was significantly increased in Dem-Other versus CN (fold-change= 2.03, P= 4.43× 10−10) but is not shown on the plot
to keep the scales between the plots consistent.
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of diverse functional alterations known to play a role in
Alzheimer’s disease pathophysiology; the careful selection
of clinically characterized MCI, Dem-Alzheimer’s disease,
Dem-Other and CN samples from a longitudinal cohort
study with long follow-up time the use of discovery and
validation samples; and the application of machine learn-
ing models to find predictors of MCI progression to
Alzheimer’s disease dementia. Some limitations should
also be acknowledged. The small sample size limits the gen-
eralizability of our results and warrants confirmation in
larger, more diverse and independent external cohorts.
Use of dementia-related medications was not considered
in the analyses. Some of the participants may have been
misclassified due to the lack of Alzheimer’s disease CSF,
PET or autopsy confirmation of Aβ and pTau pathologies.
Finally, comorbid pathologies (i.e. vascular, Lewy body,
TDP-43) may contribute to the progression from MCI to
dementia but likely were not fully accounted for by the bio-
markers studied.

In summary, our multiplexed plasma biomarker panel
highlights inflammation/chemotaxis, extracellular matrix re-
modelling and vascular injury as early phenomena in
Alzheimer’s disease pathophysiology predicting the progres-
sion of MCI to dementia due to probable Alzheimer’s dis-
ease. These plasma biomarker panels may provide useful
prognostic information in a clinical setting and offer an op-
portunity for personalized medicine strategies beyond Aβ
and tau-directed therapies.
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