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Increasing studies have revealed that long noncoding RNAs (lncRNAs) are not transcriptional noise but play important roles in the
regulation of a wide range of biological processes, and the dysregulation of lncRNA genes is associated with disease development.
Alzheimer’s disease (AD) is a chronic neurodegenerative disease that usually starts slowly and gets worse over time. However, little
is known about the roles of lncRNA genes in AD and how the lncRNA genes are transcriptionally regulated. Herein, we analyzed
RNA-seq data and ChIP-seq histone modification data from CK-p25 AD model and control mice and identified 72 differentially
expressed lncRNA genes, 4,917 differential peaks of H3K4me3, and 1,624 differential peaks of H3K27me3 between AD and control
samples, respectively. Furthermore, we found 92 differential peaks of histone modification H3K4me3 are located in the promoter
of 39 differentially expressed lncRNA genes and 8 differential peaks of histone modification H3K27me3 are located upstream of
7 differentially expressed lncRNA genes, which suggest that the majority of lncRNA genes may be transcriptionally regulated by
histone modification in AD.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease with
unknown etiology [1–3]. The main clinical manifestation is
intelligence damage. In addition, it is the cause of 60% to 70%
of cases of dementia. AD often begins in people over 65 years
of age, and it affects approximately 6% of people aged 65 years
and older [4]. There are about 48 million persons suffering
from AD around the world in 2015, and dementia resulted in
about 486,000 deaths in 2010 [5].

Long noncoding RNAs (lncRNAs) are non-protein-
coding transcripts longer than 200 nucleotides in length.
Thousands of human and mouse lncRNAs have been iden-
tified and emerging studies have revealed that lncRNAs play
important roles in a wide range of biological processes and
diseases [6–12]. Many studies have demonstrated that lncR-
NAs play crucial roles in the regulation of gene expression
at epigenetic, transcriptional, and posttranscriptional level
[13]. However, little is known about how lncRNA genes are
transcriptionally regulated [14] in disease such as AD.

In this paper, we analyzed RNA-seq data and ChIP-seq
histone modification data from control mice and CK-p25
AD model at 2 weeks after induction of neurodegeneration
and checked whether lncRNA genes are transcriptionally
regulated by histone modification in AD.

2. Materials and Methods

2.1. RNA-seq and ChIP-seq Data in AD and Control. The
RNA-seq and ChIP-seq data were downloaded from GEO
database with ID GSE65159 [15]. There are three control
samples and three AD mice model samples at 2 weeks after
induction of neurodegeneration. The histone modification
marks include H3K4me3 and H3K27me3.

2.2. IdentifyingDifferentially Expressed lncRNAGenes between
AD and Control. We used RNA-seq data to evaluate gene
expression on control mice and CK-p25 Alzheimer’s disease
model. We used the mm10 reference sequence to build an
index by Bowtie2-build [16]; the mm10 reference sequence
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Figure 1: Positive association between expression level of differential lncRNA genes and H3K4me3 modification level in promoters of the
differential lncRNA genes. (a) Scatter diagram and a fitting line show the positive association between fold change of lncRNA gene expression
and fold change of H3K4me3 modification level in the promoter. (b) Boxplot of expression level of differential lncRNA genes and H3K4me3
modification level in the promoters of the differential lncRNA genes in AD and control samples, respectively, which shows that lncRNA genes
with high H3K4me3 level in the promoters have high expression level.The circle in (b) refers to a singular point in statistics, differential from
other points. But the singular point has statistical significance, showing the accuracy and objectivity of this article.

was downloaded from UCSC. Next the RNA-seq data are
mapped to the mm10 reference sequence with TopHat2 [17]
by default parameters. Cufflinks [18] was used to assemble
the outcome of mapping and evaluate gene expression index.
The lncRNA annotation was downloaded from GENCODE
database, and differentially expressed lncRNA genes were
identified by Cuffdiff with default parameters, a component
of Cufflinks software.

2.3. Identifying Differential Histone Modification Peaks. To
explore whether differentially expressed lncRNAs between
AD and control are regulated by histone modification or
not, we identified differential histone modification regions
by analyzing the ChIP-seq data of histone marks H3K4me3
and H3K27me3 in AD and control. We firstly mapped the
ChIP-seq data to the mm10 reference sequence by Bowtie2
software with default parameters. Then we used MACS2-
callpeak [19] to identify the peaks of histone modification
regions in the control mice and CKp25 Alzheimer’s disease
model [20], respectively. Finally, MACS2-bdgdiff is used to
identify significantly differential histonemodification regions
between the control and AD.

2.4. Linking theDifferential lncRNAGeneswith theDifferential
Histone Modification Peaks Based on the Genomic Position.
After identifying differential histone modification regions
and differentially expressed lncRNA genes, we investigated
whether the differential histone modification regions are
located in the regulatory regions of the differential lncRNA
genes. Herein, the regulatory regions are defined as 10 kbp
upstream to 1 kbp downstream of transcriptional start site
(TSS) of each differentially expressed lncRNA gene.

3. Results

3.1. Differentially Expressed lncRNA Genes between AD and
Control Samples. By analyzing three AD and control RNA-
seq data, we identified 72 significantly differentially expre-

ssed lncRNA genes with the BH-adjusted 𝑝 value < 0.05 and
fold change >2 (Supplementary Table 1, in Supplementary
Material available online at http://dx.doi.org/10.1155/2016/
3164238).

3.2. Differential Histone Modification Peaks between AD and
Control Samples. We analyzed ChIP-seq histone modifica-
tion data from CK-p25 AD model and control mice and
identified 4,917 differential peaks of H3K4me3 and 1,624
differential peaks of H3K27me3 between AD and control
samples, respectively.

3.3. Differential Histone Modification Peaks Are Located
Upstream of Differentially Expressed lncRNA Genes. We
found that there are 92 H3K4me3 differential histone mod-
ification peaks located in the promoters (2 kbp upstream to
−1 kbp downstream) of 39 differentially expressed lncRNA
genes (Supplementary Table 2) and 8 differential H3K27me3
histone modification peaks located in the region from 10 kb
upstream to −1 kb downstream of 7 differentially expressed
lncRNA genes. A positive association between histone modi-
fication level of H3K4me3 and lncRNA gene expression level
is shown in Figure 1, and a negative association between
histone modification level of H3K27me3 and lncRNA gene
expression level is shown in Figure 2. A case study for the
lncRNA gene named Gm20559was shown in Figure 3, where
the lncRNA Gm20559 had differential histone modification
of H3K4me3 between AD and control in its promoter region,
and exon 1 and exon 3 ofGm20559 are differentially expressed
betweenADand control.These results suggest that themajor-
ity of lncRNA genes (39 + 7)/72 may be transcriptionally
regulated by histone modification in AD.

4. Discussion

lncRNA is a type of important regulatoryRNAs that play criti-
cal roles in awide range of biological processes.However, how
the lncRNA genes themselves are transcriptionally regulated
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Figure 2: Negative association between expression level of differential lncRNA genes and H3K27me3 modification level in promoters of the
differential lncRNA genes. (a) Scatter diagram and a fitting line show the negative association between fold change of expression level of
differential lncRNA genes and fold change of H3K27me3 modification level in the promoters. (b) Boxplot of expression level of differential
lncRNA genes and H3K27me3 modification level in the promoters of the differential lncRNA genes in AD and control samples, respectively,
which shows that lncRNA genes with high H3K27me3 level in the promoters have low expression level. The circle in (b) refers to a singular
point in statistics, differential from other points. But the singular point has statistical significance, showing the accuracy and objectivity of
this article.
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Figure 3: A lncRNA gene named Gm20559 with differential
H3K4me3 modification level in the promoter between AD and
control samples shows differential expression in exon 1 and exon 3.
The red rectangle shows exon 1 and exon 3 regions of differentially
expressed lncRNA gene Gm20559. And the green rectangle shows
differential H3K4me3 histone modification in the promoter region,
which suggests transcriptional regulation ofGm20559 byH3K4me3.

remains to be elucidated. In this paper, we used RNA-seq and
ChIP-seq data from AD model and control to demonstrate
that the majority of lncRNA genes are transcriptionally
regulated by histone modification in AD.

As known, a protein-coding gene or lncRNA gene is reg-
ulated by many types of factors rather than one factor.There-
fore, it sounds reasonable to integrate kinds of factors such as
transcription factor, microRNA [21–24], DNA methylation,
and histone modification to investigate the transcriptional
regulation of lncRNAs in a specific condition such as AD,
which will improve our understanding of lncRNA genes in
AD.
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