
Frontiers in Immunology | www.frontiersin.

Edited by:
Kerstin Nündel,

University of Massachusetts Medical
School, United States

Reviewed by:
Hong Zan,

The University of Texas Health Science
Center at San Antonio, United States

Mark Mamula,
Yale University, United States

Peter Sundström,
Umeå University, Sweden

*Correspondence:
John B. Harley

johnbharley@yahoo.com

Specialty section:
This article was submitted to

Autoimmune and
Autoinflammatory Disorders,

a section of the journal
Frontiers in Immunology

Received: 07 December 2021
Accepted: 25 January 2022

Published: 17 February 2022

Citation:
Laurynenka V, Ding L,

Kaufman KM, James JA and
Harley JB (2022) A High Prevalence
of Anti-EBNA1 Heteroantibodies in

Systemic Lupus Erythematosus
(SLE) Supports Anti-EBNA1 as an

Origin for SLE Autoantibodies.
Front. Immunol. 13:830993.

doi: 10.3389/fimmu.2022.830993

ORIGINAL RESEARCH
published: 17 February 2022

doi: 10.3389/fimmu.2022.830993
A High Prevalence of Anti-EBNA1
Heteroantibodies in Systemic
Lupus Erythematosus (SLE)
Supports Anti-EBNA1 as an
Origin for SLE Autoantibodies
Viktoryia Laurynenka1, Lili Ding2,3, Kenneth M. Kaufman1,3,4, Judith A. James5,6,7

and John B. Harley4,8*

1 Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,
2 Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati,
OH, United States, 3 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,
4 Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States, 5 Arthritis and Clinical
Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States, 6 Department of Medicine,
University of Oklahoma Health Science Center, Oklahoma City, OK, United States, 7 Department of Pathology, University of
Oklahoma Health Science Center, Oklahoma City, OK, United States, 8 Cincinnati Education and Research for Veterans
Foundation, Cincinnati, OH, United States

Background: That Epstein–Barr virus (EBV) infection is associated with systemic lupus
erythematosus (SLE) is established. The challenge is to explain mechanistic roles EBV has
in SLE pathogenesis. Previous studies identify four examples of autoantibody cross-
reactions between SLE autoantigens and Epstein–Barr nuclear antigen 1 (EBNA1). For
two of these examples, the earliest detected autoantibody specifically cross-reacts with
EBNA1; thereby, defined EBNA1 epitopes induce a robust autoantibody response in
animals. These results suggest that the autoantibodies initiating the process leading to
SLE may emerge from the anti-EBNA1 heteroimmune response. If this hypothesis is true,
then anti-EBNA1 responses would be more frequent in EBV-infected SLE patients than in
EBV-infected controls. We tested this prediction.

Methods:We evaluated published East Asian data by selecting those with a positive anti-
viral capsid antigen (VCA) antibody immunoglobulin G (IgG) test and determining whether
anti-EBNA1 was more common among the EBV-infected SLE cases than among
matched EBV-infected controls with conditional logistic regression analysis.

Results: All the qualifying SLE patients (100%) in this dataset were EBV-infected
compared to age- and sex-matched controls (92.2%) [odds ratio (OR) = 28.6, 95% CI
6.4–∞, p = 8.83 × 10-8], confirming the known close association of EBV infection with
SLE. Furthermore, virtually all the SLE cases have both anti-VCA IgG and anti-EBNA1 IgG
antibodies [124 of 125 (99.2%)], which are more frequently present than in age- and sex-
matched EBV-infected controls [232 of 250 (93.2%)] (OR = 9.7, 95% CI 1.5–414, p =
0.0078) for an 89.7% SLE attributable risk from anti-EBNA1, which is in addition to the
100% SLE risk attributable to EBV infection in these data.
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Conclusions: The association of EBV infection with SLE is reconfirmed. The prediction
that anti-EBNA1 is more frequent in these SLE cases than in EBV-infected controls is true,
consistent with the hypothesis that anti-EBNA1 contributes to SLE. This second EBV-
dependent risk factor is consistent with a molecular mimicry model for the generation of
SLE, starting with EBV infection, progressing to anti-EBNA1 response; then molecular
mimicry leads to anti-EBNA1 antibodies cross-reacting with an SLE autoantigen, causing
autoantibody epitope spreading, and culminating in clinical SLE. These results support the
anti-EBNA1 heteroimmune response being a foundation from which pathogenic SLE
autoimmunity emerges.
Keywords: systemic lupus erythematosus (SLE), etiology, Epstein–Barr virus (EBV), anti-EBNA1, molecular
mimicry, autoantibodies
INTRODUCTION

Evidence implicating Epstein–Barr virus (EBV) in the pathogenesis
of systemic lupus erythematosus (SLE) is compelling (1–7). As
a mechanistic component, the immune response against EBV
Epstein–Barr nuclear antigen 1 (EBNA1) has been identified as
a candidate for the heteroimmune response from which
pathogenic lupus autoimmunity arises via cross-reactivity
with anti-Sm B/B’, anti-Sm D, anti-Ro, and, recently, anti-
C1q (8–13). If this phenomenon is general and the anti-EBNA1
heteroimmune antibody response, in all of its complexity, is the
substrate for the generation of SLE autoantibodies, then anti-
EBNA1 antibody responses, which are found in 70% to 90% of
EBV-infected persons, would be present at a higher rate in SLE
patients. A hint that this may be true was previously found in a
small pediatric cohort, where this antibody was present in 69%
of the matched normal EBV-infected controls and in 100% of
the SLE cases, all of whom were also EBV-infected [odds ratio
(OR) >30, p < 0.001] (14). We sought to test the generality of
this finding using independent data, given its potentially
important implications for identifying the origins of
SLE autoimmunity.

EBNA1 is an unusual immunogen and antigen (15). Perhaps,
these properties are potential contributing factors to the possible
anti-EBNA1 origin of SLE autoimmunity. There are many fewer
anti-EBNA1-specificCD8Tcells thanexpectedafterEBVinfection,
despite EBNA1being expressed in virtually all the canonical latency
states of EBV-infected B cells. The lower CD8 response has been
attributed to nuclear localization, to proteosome inhibition by the
Glycine-Alanine repeat domain of EBNA1, and to the inhibition
of EBNA1 mRNA translation by Guanine-quadraplexes (16–22).
The humoral consequences of the unusual features EBNA1
immunogenicity have not been evaluated. A small study (14) also
identified anti-EBNA1 fine specificity differences between pediatric
SLE patients and controls.

Cui et al. (1) provide an independent dataset appropriate to
test the prediction that anti-EBNA1 is increased in SLE. They
reported anti-EBV viral capsid antigen (VCA) IgG serological
studies ordered by practicing physicians for 6,289 patients from
their clinical laboratory in Beijing. These real-world data use as
entry criteria the clinical decision to evaluate anti-VCA serology
org 2
and rely upon the choices and diagnoses of practicing physicians.
The data show that EBV infection is more frequent in SLE than
in the other EBV-tested patients who are not diagnosed with SLE
(1), consistent with previous studies (2–7). Anti-EBNA1 IgG is
virtually always also present in these SLE patients in contrast to
the lower rate in controls with other diagnoses, supporting not
only EBV as an important contributor to the etiology of SLE but
also potentially operating through the hypothetical mechanism
that SLE humoral autoimmunity arises from the anti-EBNA1
heteroimmune response.
METHODS

Patients
Cui et al. (1) ascertained subjects upon the clinical decision to
evaluate EBV serology. For this analysis, we concentrate on 6,289
subjects tested for anti-EBV VCA IgG in blood [see
Supplementary Table in “S1 File” in (1)] as the most reliable
indicator of prior EBV infection. Except for one newborn, the
youngest SLE patient was 6 years old; therefore, this case of
possible neonatal lupus, along with controls less than 6 years old,
was removed from the analysis. In addition, following the
decisions of Cui et al. (1), we removed those with equivocal
anti-VCA IgG test results; all 50 of these were controls, leaving
5,803 patients of all diagnoses and situations with results to
address the question posed. Of the 424 SLE patients in the
database, these steps resulted in 232 SLE patients qualifying for
analyses. No private identifying information was available from
any subject to the authors of this study, and no interaction
occurred between the subjects and the authors.

Serological Testing
EBV serological tests manufactured by Euroimmun (Lübeck,
Germany) were used in Cui et al. (1), who followed the
manufacturer’s instructions for anti-VCA for IgM, IgG, and IgA,
anti-EBNA1 IgG, and anti-Early Antigen Diffuse (EA/D) IgG.

Data Analysis
Logistic regression models were used to examine associations
between anti-EBV antibodies (anti-VCA IgG and anti-EBNA1
February 2022 | Volume 13 | Article 830993
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IgG) and SLE status among anti-VCA IgG-tested and anti-VCA
IgG-positive subjects, with adjustment for age and sex. The non-
linear age effect was investigated by polynomial terms of age.
Firth logistic regression was used for situations where an
antibody was positive in all or virtually all SLE cases (quasi-
complete separation).

The potentially confounding influence of sex and age was
addressed by randomly matching 2 or 3 controls by sex and age
to each case, without replacement. For age, the great majority of
controls (≥98%) were matched to cases within the same year of
age. For three exceptions, older and younger controls of 1–3-year
age differences were randomly selected to complete the case:
control matches for matched sets. The case:control matches used
in this study are presented in Table S1.

Conditional logistic regression was used to examine the
association between anti-EBV antibodies and SLE status for
age- and sex-matched data. Exact conditional logistic
regression was used when any cells formed by the presence of
anti-EBV antibodies and SLE status had no observations or were
too small. Attributable risk, defined as the proportion of disease
attributable to a risk factor in the study sample exposed to that
factor within the context of the matched sets, was estimated with
95% confidence limits from ORs as (OR-1)/OR. Sensitivity
analysis was conducted where attributable risk was estimated
with risk ratio (RR) as (RR-1)/RR when estimated RR was
available from the models (Tables S2–S7).

Since the available controls provided more matches for
younger patients and since age had the well-known strong
impact upon the probability of EBV infection, the sample was
also divided into those <11 years old and those >10 years old and
evaluated separately in subsidiary analyses (see Tables S1–S7).
All analyses were conducted in SAS v9.4 (SAS Institute, Cary,
NC, USA).
RESULTS

Our analysis of the Beijing data (1) reconfirms that the
prevalence of EBV infection is increased in SLE compared to
Frontiers in Immunology | www.frontiersin.org 3
the controls in this dataset. All 232 of the tested patients
diagnosed by their physician with SLE were EBV-infected, as
detected by the presence of anti-VCA IgG, while 175 of 5,571 of
the controls were not EBV-infected by this measure. Logistic
regression shows that, as expected, both sex and age are
important variables contributing to the differences between
SLE cases and controls, respectively, OR = 6.02 (95% CI 4.13–
8.75), p = 6.5 × 10-21 and OR = 0.93 (95% CI 0.92–0.94), p < 1 ×
10-24 (Table S5), which means that the OR difference between
cases and controls decreases by an average of 0.93 for every 1-
year increase in age. Sex and age, thereby, become potential
confounders in assessing the serologic importance of anti-
EBNA1 IgG. Meanwhile, the association of SLE with the
presence of anti-EBNA1 antibodies has a large effect without
considering the influence of sex, age, or EBV anti-VCA IgG
serologic status, OR = 17.6 (95% CI, 3.42–90.4), p = 0.0006
(Table S5).

Anti-VCA IgG Case: Control Matching
To remove the influence of age and sex and isolate the impact of
EBV serology, we, therefore, reorganized and reduced the data
records considered. We matched controls on age and sex to cases
in a 3:1 ratio, resulting in a dataset composed of 232 cases and
696 controls. Overall, a strong association of EBV infection with
SLE is present, as measured by anti-VCA IgG (OR = 28.59 (95%
CI 6.42–∞), p = 8.83 × 10-8) (Table 1). The fraction of SLE
attributable to EBV infection in these data is complete at 100%,
suggesting that all these SLE cases are potentially related to EBV
infection. Anti-EBNA1 antibodies are also more prevalent in the
SLE cases than in matched controls [OR = 19.07 (95% CI 3.09–
789.48), p = 1.82 × 10-5] (Table S2). Similar results have been
obtained in previously evaluated datasets (2, 6, 7, 14). However,
virtually all of these studies save one, our previous evaluation of
pediatric SLE (14), did not separate the evidence that EBV
infection is a risk factor for SLE from any other statistically
independent contribution.

In our view, the association of EBV infection with anti-
EBNA1 does not address the important question of what are
the component risk elements beyond EBV infection that confer
TABLE 1 | Association between SLE status and anti-EBV antibodies in age- and sex-matched cases and controls.

Anti-EBV antibodies1 SLE5 Controls Conditional logistic regression2 Attributable fraction3

OR (95% CI) p4

Anti-VCA IgG POS 232 642 28.59 (6.42–∞) 8.83 × 10-8 100%
NEG 0 54

Anti-EBNA1 IgG in Anti-VCA IgG POS POS 124 232 9.74 (1.49–414.34) 0.0078 89.7%
NEG 1 18

Anti-VCA IgA in Anti-VCA IgG POS POS 72 56 3.47 (2.27–5.29) 5.7 × 10-8 71.2%
NEG 85 258
February 2022 | Volu
1Anti-Epstein–Barr virus (EBV) viral capsid antigen (VCA) IgG or IgA and anti-Epstein–Barr nuclear antigen 1 (EBNA1) IgG-positive (POS) or -negative (NEG) test result. Controls are
matched to each case by age (6–75 years) and sex.
2The exact test is used for anti-VCA IgG and anti-EBNA1 in anti-VCA IgG POS.
3The fraction of systemic lupus erythematosus (SLE) cases attributable to the positive antibody result being tested in each instance, estimated from the odds ratio (OR).
4One-tailed p values andmedian unbiased estimates of OR from exact conditional logistic regression are presented for anti-VCA IgG and anti-EBNA1 IgG in anti-VCA IgG POS cases and controls.
5The cases and assigned matched controls used in these analyses are presented in Supplemental Table S1. Original data are from Cui et al. (1).
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risk for SLE. If specific components of EBV are making a
contribution to disease risk, then they should be separable
from EBV infection by considering their contribution toward
SLE risk in isolation, which can be achieved by limiting
consideration to only those subjects who are EBV-infected.
Since anti-EBNA1 occurs in 70%–90% of EBV-infected
controls, this idea can be evaluated by testing for the predicted
higher proportion of anti-EBNA1 positivity in the EBV-infected
SLE compared to EBV-infected controls. A result showing no
difference or a lower frequency of anti-EBNA1 in SLE would
contradict the hypothesis, rendering the heuristic proposition
false. A result showing that anti-EBNA1 is more frequent in SLE
than in controls would fulfill the prediction that follows from the
hypothesis, providing additional important circumstantial
evidence that the heuristic hypothesis might be true.

For this test, we matched two controls to each SLE case by age
and sex, limiting the analysis to 1) the EBV-infected subjects, as
determined by an anti-VCA IgG positive test, and 2) those who
were tested for anti-EBNA1 and had either a positive or a
negative result. We found that positive anti-EBNA1 IgG results
were virtually always present in the SLE cases [124 of 125
(99.2%)]; meanwhile, the matched controls did not have anti-
EBNA1 as frequently [232 of 250 (92.8%)] [OR = 9.74 (95% CI
1.49–414.34), p = 0.0078] (Table 1). The prediction that anti-
EBNA1 is more common in EBV-infected SLE than in EBV-
infected controls is true in these data with an attributable fraction
of 89.7%, consistent with the possibility that the humoral
autoimmunity characteristic of SLE generally arises from the
anti-EBNA1 heteroimmune response.

Other results in these data provide a comparative perspective
for the relationship of EBV infection to SLE. Anti-VCA IgA is
reported to be more frequent in SLE than in controls (1, 6). To
contrast this association with anti-EBNA1, we selected those
subjects who are EBV-infected (anti-VCA IgG positive) and
compared the proportion of anti-VCA IgA-positive in the SLE
cases [72 of 157 (45.9%)] to matched controls [56 of 314
(17.8%)]. This was also a significant result [OR = 3.47 (95% CI
2.27–5.29), p = 5.7 × 10-8] (Table 1) but with a much lower
estimated attributable fraction at 71.2% than that found with
anti-EBNA1 at 89.7%. Matching sex and age for anti-VCA IgM
and anti-EA/D IgG (Table S1) did not produce significant
results. Additional analyses from matched and unmatched data
can be found in Tables S2–S7.
DISCUSSION

The strong association of EBV infection with SLE in these East-
Asian data (1) confirms our previous observations in European
and African-American children and adults with SLE (2, 23) and
is consistent with previous studies and meta-analyses (3–7).
These studies measured EBV infection mostly by serology,
though a direct assay of EBV DNA from peripheral blood has
also demonstrated an association (2). The conclusion that SLE is
associated with EBV infection is convincing. The association of
EBV with SLE is intriguing, but by itself does not compel a
Frontiers in Immunology | www.frontiersin.org 4
conclusion of causal etiology, despite the many other
abnormalities of the EBV infection found in SLE patients that
contribute additional circumstantial evidence consistent with
causation [reviewed in (4)]. Additional EBV-dependent
features would make the case for causation much stronger.

The anti-EBNA1 antibody response has become a candidate
component or SLE risk from EBV infection based on numerous
findings, though especially because multiple SLE autoantigens
cross-react with EBNA1 heteroimmune antibodies (8–13). For
the autoantigens of Sm B/B’ and Ro, the cross-reactive structures
occur as the first autoantibodies detected that are formed in the
autoimmune response, consistent with being initiating structures
of autoimmunity (9, 12). For Sm B/B’, Ro, and C1q, animal
models made by immunizing with the cross-reactive structures
have manifestations reminiscent of human SLE, demonstrating
the potential for systemic autoimmunity from the immune
response to the viral-originating EBNA1 cross-reactive
structures (12, 24–28).

Herein, we confirm the hypothesis that the anti-EBNA1
heteroimmune response has the potential to be a critical
component in the immunological sequence of events that
culminate in SLE. This realization leads to a model of
pathogenesis (Figure 1) in which EBV infection is followed by
a polyclonal anti-EBNA1 heteroimmune response. As antibodies
produced against EBNA1 increase in complexity through B-cell
epitope spreading (25), some then participate in a cross-reaction
against SLE autoantigens. Perhaps, considerations of
stoichiometry, antigen concentration, and the peculiar
properties of EBNA1 as an antigen are important at this point
on the path toward SLE. EBNA1 is expressed in the latently EBV-
infected B cells, which are rare, while the SLE autoantigens are
ordinarily expressed ubiquitously. The CD8 T-cell anti-EBNA1
response is relatively inhibited, which would appear to help
perpetuate the EBV infection. The molecular details of the
mechanism leading to the cross-reactions between SLE
autoantigens and EBNA1 are not known nor are the
immunological rules that allow tolerance to be broken and
autoantibodies to form in this context.

Our earlier work establishes the cross-reacting peptides for
the autoantigens Sm and Ro as being the first structures of the
autoantibody response (9, 12). Over time, B-cell epitope
spreading then generates a mature autoimmune response,
which in the case of SmB/B’ tends to recognize identical
peptide structures in different SLE patients (8, 9) but for anti-
60 kD Ro tends to be much more heterogeneous and to have a
strong conformational contribution to antigenicity (29–31). For
anti-Ro, autoantibody responses are often present many years
(>5 years) before the onset of SLE symptoms, while anti-Sm
tends to appear much closer to the onset of symptoms (32). After
the generation of pathological autoantibodies in the proposed
model, along with the other components of cellular and innate
immunity supporting inflammatory pathology, the patient then
becomes ill with the autoimmune disease SLE (Figure 1).

Ascertainment bias has an impact on the conclusions that can
be drawn from these data. The entry criterion in Cui et al. (1) was
whether the responsible physician ordered EBV serology. Hence,
February 2022 | Volume 13 | Article 830993

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Laurynenka et al. Anti-EBNA1 Initiates SLE Autoantibodies
neither the SLE cases nor the controls can be considered
authentic samples from the community. Nevertheless,
distortions from the expected population norms are not
apparent and, therefore, do not invalidate the results of the
analysis. For example, EBV infection is known to be associated
with SLE, which is also present in these data. Also, about 80% of
5–10-year-old Chinese children are EBV-infected (33, 34), which
is close to results from the non-SLE controls in Cui et al. (1).

On the other hand, this study has the advantage of being
based upon the choices of a real-world practitioner standard of
care and not distorted by requiring SLE patients to satisfy
academic criteria for study inclusion. These results are,
nevertheless, consistent with the academic inquiries into SLE
epidemiology, being robust for actual clinical practice in this
regard and here vice versa.

Furthermore, none of the biases that originate from how the
dataset was assembled is suspected to influence the central
purpose of this study, to test the prediction that the proportion
of SLE cases with anti-EBNA1 IgG would be higher than that
found in controls matched for age, sex, and EBV infection status
as measured by anti-VCA IgG antibodies. That we find a strong
association supporting this prediction, even considering possible
biases, suggests that the hypothesis that SLE autoimmunity arises
from the anti-EBNA1 heteroimmune response is worth serious
consideration and detailed experimental inquiry into plausible
immune mechanisms.

Many studies have observed an association with anti-EBNA1
in SLE (1–7, 14, 23), but they have not, with one exception (14),
attempted to determine any additional independent contribution
anti-EBNA1 provides to SLE risk beyond EBV infection. In that
small pediatric study composed of European-Americans and
African-Americans, all the SLE cases were EBV-infected and
produced anti-EBNA1, while almost a third of the EBV-infected
controls did not have detectable levels of anti-EBNA1 (OR =
30.4, p < 0.001) (14). The combined results of the earlier study
Frontiers in Immunology | www.frontiersin.org 5
and the data presented herein show that the anti-EBNA1
heteroimmune response is a risk factor for SLE beyond EBV
infection. On the one hand, anti-EBNA1 antibodies make an
independent contribution to SLE risk, but on the other hand,
they are a dependent risk factor in that only EBV-infected
individuals generate anti-EBNA1 antibodies. Therefore,
isolating anti-EBNA1 to assess it as a possible risk factor,
separate from the association with EBV infection, is critical.
We do this by considering an association with anti-EBNA1 in
only those cases and controls who are EBV-infected. Our
conclusion that anti-EBNA1 is an independent risk factor, only
occurring in EBV-infected individuals and therefore also
dependent upon EBV infection, bolsters the argument that
EBV infection is etiologic in SLE.

Our results from both this and the previous study (14) also
suggest that the presence of anti-EBNA1 may be a general
finding in SLE with ~90% attributable fraction, therefore
further supporting EBNA1 immunity being an important
candidate for the origin of SLE autoimmunity. Collectively,
these considerations provide the broad outlines of a model
of SLE pathological generation, progressing from a normal
immune response to a systemic life-threatening autoimmune
disease (Figure 1).

There is another recent evidence potentially implicating EBV
in generating SLE. The association of SLE genetic risk loci with
the DNA-binding patterns of EBNA2 (35–37), a virus-encoded
transcriptional cofactor required for B-cell transformation in the
Latency III state of EBV expression and generating EBV-
transformed B cells is consistent with EBNA2 being involved
in the genomic regulation that alters the risk of developing SLE.
This observation was originally established in Europeans and has
since been independently confirmed twice in East Asians (35–
37), providing consistent findings across the major human
ancestries. This association, by itself however, does not require
a pathogenic role for EBNA2. There are other suggestive results
FIGURE 1 | Model for the generation of systemic lupus erythematosus (SLE) by Epstein–Barr virus (EBV). After infection, EBV establishes a lifelong infection
sustained by EBV in latency usually expressing at least Epstein–Barr nuclear antigen 1 (EBNA1). Anti-EBNA1 antibodies are produced in response to the EBV
infection (green and dark blue Y). Eventually, one or more cross-reacting antibodies form (dark blue Y), binding both EBNA1 and lupus autoantigens (e.g., Sm B/B’)
at structures that are antigenically similar (green triangle). This is the molecular mimicry step with heteroimmune antibodies making the transition to autoimmunity.
Then, B-cell epitope spreading leads to a mature complex autoantibody (lighter blue Y) response, inducing the inflammatory changes that culminate in the systemic
disease manifestations of SLE. The specific role of EBV transcription cofactors [e.g., EBNA2, not shown (22)] and other contributing components in this model of
SLE pathogenesis remains to be defined. (The EBV image, courtesy: National Institute of Allergy and Infectious Diseases. The SLE malar rash image, courtesy: Mayo
Foundation, all rights reserved).
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increasing the circumstantial evidence that EBV infection
contributes to the propensity for autoimmunity, especially with
the latency expression programs of EBV infection. For example,
the CD40-imitating capacity of LMP1 (latent membrane protein
1), an EBV gene product expressed in latency, appears to lower
the threshold for humoral autoimmunity (38). However, when
these observations are combined with the immunochemistry and
epidemiological observations concerning autoantibody origin,
the association of SLE with EBV infection, and the added risk
from anti-EBNA1, the accumulated EBV-related evidence begins
to nominate possible molecular components of mechanism and
to provide a plausible outline of a mechanistic scenario for EBV
action starting with EBV infection and progressing to the clinical
manifestations of SLE (Figure 1).

The fraction of SLE attributable to EBV in this sample, using
the matching strategy to remove the effects of sex and age, is
complete at 100% and is consistent with a previous similarly high
estimate (2). Together, they suggest that EBV infection
contributes to SLE in the great majority of SLE patients, while
major single gene causes of SLE such as C1q or TREX1
deficiencies are uncommon. While useful for understanding
the mechanism to establish that EBV is the likely source for
the pathophysiology in initiating the process culminating in SLE,
EBV infection, by itself, does not much distinguish risk for SLE
from the vast majority of the population that are also EBV-
infected (>90% worldwide) but not afflicted with SLE.
Consequently, other factors must contribute. Certainly, the
collective vagaries of the mature host immune response are
strong candidates for SLE disease risk. Our analyses combined
with other contributing results would suggest that a molecular
mimicry mechanism making the transition from heteroimmunity
to autoimmunity contributes to the pathophysiology of
SLE (Figure 1).

That SLE autoimmunity emerges from the anti-EBNA1
heteroimmune response came from an effort to work backward
temporally. We began with the complex antigenic epitopes of the
mature pathogenic SLE autoantibody responses, then reached
back in time to find the simple, single, earliest antigenic
autoimmune epitope. The goal was to discover the first
initiating autoantibody that identifies the first autoimmune
structure in SLE (9, 12). For both the Sm B/B’ and Ro SLE
autoantigens, the earliest autoantibodies cross-reacted with
EBNA1, leading to the hypothesis that anti-EBNA1 humoral
immunity is the source of pathogenic SLE autoimmunity; hence,
the prediction we test herein. Other investigators have developed
data consistent with anti-EBNA1 being the origin of the anti-Sm
D and anti-C1q autoimmune responses (10, 11, 14). If the
hypothesis is indeed true that SLE autoimmunity has a strong
tendency to originate from the anti-EBNA1 response, then one
might suspect that other SLE autoantigens will eventually join
these four.

A strong candidate SLE autoantibody that begs testing is anti-
double-stranded (ds) DNA. Linda Spatz has shown that
immunizing animals with EBNA1 generates anti-dsDNA
antibodies (39–41), but to our knowledge, no one has
evaluated whether the anti-dsDNA autoantibodies, which are
Frontiers in Immunology | www.frontiersin.org 6
almost unique to SLE and powerfully support an SLE diagnosis
when present, also cross-react with EBNA1. The fact that EBNA1
is a DNA-binding protein raises interesting idiotype and anti-
idiotype issues that await exploration.

Our results clearly show that anti-EBNA1 IgG is present in
virtually all (>99%) SLE patients, providing an origin for SLE in
as many as 90% of SLE cases (Table 1) and supporting the
contention that EBV is the ordinary causal factor in the great
majority of SLE cases. These results confirm the importance of
EBV infection in SLE and provide a starting point for explaining
the mysterious mechanistic steps that lead previously normal
individuals to develop pathogenic SLE autoantibodies and self-
destructive clinical manifestations.

Our model of pathogenesis presents a certain sequence of
events in the following order: EBV infection, anti-EBNA1
antibodies, SLE autoantibodies, and pathogenic expression of
disease. In the military serum collection (32), there are four SLE
patients whose multiple serum samples show exactly this
sequence of events. There are 17 SLE patients in this collection
from whom there were sera available that discriminated the onset
of anti-EBNA1 from SLE autoantibodies. In all 17 SLE cases, the
anti-EBNA1 antibodies were detected in an earlier serum sample
than was any SLE autoantibody. In no instance did
autoantibodies precede anti-EBNA1 antibodies (p < 0.00002,
binomial test). These data also support the model being proposed
(Figure 1). While available data support the outlines of a
proposed mechanism (Figure 1), we are missing the detailed
cellular and molecular mechanism for how these steps lead to
SLE. While the unusual T-cell antigenicity of EBNA1 has been
subject of detailed inquiry (16–22), the humoral B-cell side of
EBNA1 antigenicity has not.

The finding that EBNA2, not EBNA1, is associated with the
risk loci of SLE (35–37) provides an important potential
candidate for mechanistic involvement that increases the risk
of developing SLE in genetically predisposed individuals and
suggests that the cell types that harbor the EBV [infected B cells,
T cells, natural killer (NK) cells, epithelial cells, and
macrophages] would be the most attractive candidates for the
cell types in which these mechanisms operate to alter the SLE
risk. Such factors provide access to gene and environment
interactive mechanisms that, once understood, may prove to
place EBV infection and anti-EBNA1 antibodies in
mechanistic context.

The increased anti-VCA IgA response is consistent with the
mucosal interaction with EBV being more important in SLE
patients than controls. As a result of its prevalence, anti-EBNA1
IgG would appear to be a better candidate for initiation of SLE
autoimmunity than is anti-VCA IgA. Moreover, the increase in
anti-VCA IgA is a relative result, and the fraction attributable to
this immune response at 74.4% is much lower than it is with the
anti-EBNA1 IgG humoral immune response at 89.7%.

In summary, the Cui et al. (1) data further confirm the
association of SLE with EBV and extend these findings to East
Asians. Matched analysis confirms the importance of anti-
EBNA1 responses in SLE, consistent with this heteroimmune
response being important in the origin of autoimmunity in SLE.
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Other data assembled show high EBV viral loads, increased EBV
mRNA expression, elevated humoral responses against EBV in
SLE (3–5), and the concentrationofEBNA2atSLE risk loci (35–37),
all supporting a model of SLE pathogenesis involving EBV with
SLE patients having an altered infection pattern with poor control
of the latent EBV infection and incomplete EBV lytic reactivation
and providing a synergistic environmental interaction with genetic
risk loci through EBNA2. While there is much to learn concerning
the mechanisms that generate the systemic autoimmunity in
SLE, we are left with the conclusion that EBV, probably through
EBNA1, is a strong candidate to be the initiating source for the
autoimmune processes that culminate in SLE.
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