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1  | INTRODUC TION

Poly [ADP‐ribose] polymerase 1 (PARP‐1) is the founding member 
of the PARP family of enzymes which promotes the formation of 
ADP‐ribose polymers (PARs) and their addition to PARP‐1 itself 
and other acceptor proteins in a process referred to as PARylation.1 
PARP‐1 is an abundant nuclear chromatin‐associated protein in‐
volved in a plethora of functions such as DNA repair, recombination, 
cell proliferation and death, inflammation and gene transcription. 
The regulatory functions of PARP‐1 were established after its dis‐
covery four decades ago, and the initially described role in DNA 

repair was followed by confirmation of its involvement in transcrip‐
tional regulation. The link between PARP‐1 and epigenetic events 
was hypothesised in light of its role related to genome stability and 
histone PARylation that leads to chromatin opening resembling the 
outcome of histone acetylation. The regulation of DNA demethyl‐
ation is a newly discovered housekeeping role of PARP‐1, which is 
realized through interaction with ten‐eleven translocation enzymes 
1 (TET1) and the ability of PARP‐1 to PARylate TET1 both covalently 
and noncovalently.2 DNA methylation introduces 5‐methylcytosine 
(5mC) on CpG dinucleotides by the action of DNA methyltransfer‐
ase (DNMT) enzymes (DNMT1, 3A and 3B). Demethylation primarily 
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Abstract
Poly [ADP‐ribose] polymerase 1 (PARP‐1) has an inhibitory effect on C‐X‐C motif 
chemokine 12 gene (Cxcl12) transcription. We examined whether PARP‐1 affects the 
epigenetic control of Cxcl12 expression by changing its DNA methylation pattern. 
We observed increased expression of Cxcl12 in PARP‐1 knock‐out mouse embryonic 
fibroblasts (PARP1−/−) in comparison to wild‐type mouse embryonic fibroblasts 
(NIH3T3). In the Cxcl12 gene, a CpG island is present in the promoter, the 5′ untrans‐
lated region (5′ UTR), the first exon and in the first intron. The methylation state of 
Cxcl12 in each cell line was investigated by methylation‐specific PCR (MSP) and high 
resolution melting analysis (HRM). Both methods revealed strong demethylation in 
PARP1−/− compared to NIH3T3 cells in all four DNA regions. Increased expression of 
the Ten‐eleven translocation (Tet) genes in PARP1−/− cells indicated that TETs could be 
important factors in Cxcl12 demethylation in the absence of PARP‐1, accounting for 
its increased expression. Our results showed that PARP‐1 was a potential upstream 
player in (de)methylation events that modulated Cxcl12 expression.
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converts 5mC to 5‐hydroxymethylcyosine (5hmC) and then to 5‐
formylcytosine (5fc) and 5‐carboxylcytosine (5caC) by the action of 
the TET family of dioxygenases (TET1, TET2 and TET3). The DNA 
repair pathways remove 5fc and 5caC, rendering the cytosine un‐
methylated, with these sequential modifications of 5mC comprising 
the active DNA demethylation processes.3,4 5hmC is mainly associ‐
ated with promoter proximal regions or distal regulatory elements 
within CpG islands, which indicates its involvement in transcriptional 
regulation of gene expression.2

We previously reported that PARP‐1 has a pivotal role in sup‐
pressing the Cxcl12 gene promoter5 as a transcriptional regulator 
with a strong binding affinity for the Cxcl12 promoter. CXCL12 is a 
chemokine produced in stromal tissues in multiple organs. CXCL12 
is a potent chemoattractant involved in angiogenesis, leucocyte traf‐
ficking, stem cell homing and in processes including development, 
cell survival, tissue repair and regeneration.6 CXCL12 plays an im‐
portant role in β‐cell differentiation, pancreatic islet genesis and in 
anti‐apoptotic/anti‐necrotic protection of β‐cells from diabetogenic 
agents.7,8 Moreover, CXCL12 is as an important player in various 
diseases (including cancer, inflammatory disorders, atherosclerosis, 
HIV pathology and diabetes),9,10 hence the biological significance of 
methylation‐dependent regulation of the Cxcl12 gene.

Our previous results regarding PARP‐1‐related suppression of 
Cxcl12 raised the question whether this regulatory role of PARP‐1 
controls Cxcl12 expression via an epigenetic mechanism. To address 
this possibility, we examined whether epigenetic events such as pri‐
mary DNA de/methylation drive PARP‐1‐mediated suppression of 
Cxcl12 gene expression.

2  | MATERIAL S AND METHODS

2.1 | Cell culture and treatments

Mouse embryonic fibroblasts NIH3T3 (ATCC‐CRL‐1658) and PARP‐1 
knock‐out (PARP1−/−) mouse embryonic fibroblasts (derived from 
PARP‐1 knock‐out mouse11) cell lines were cultured in high glucose 
Dulbecco's Modified Eagle's medium (DMEM) supplemented with 10% 
foetal bovine serum (FBS), L‐glutamine and penicillin/streptomycin (all 
cell culture reagents were supplied by Biological Industries Israel, Beit 
Haemek Ltd.). Both cell lines were treated with either 1 mmol/L di‐
methyloxalylglycine (DMOG) (Frontier scientific, USA) for 24 hours, or 
with 10 µmol/L L‐ascorbic acid (VitC) (Sigma Aldrich, USA) for 48 hours. 
These concentrations correspond to the EC50 for the two cell lines.

2.2 | Immunoblot analysis

Secreted proteins were precipitated with 13% trichloroacetic acid 
from the serum‐free culture media in which NIH3T3 and PARP1−/− 
cells were cultivated for 24 hours. These samples were separated 
by 15% tricine‐sodium dodecyl sulphate‐polyacrylamide gel elec‐
trophoresis (tricine‐SDS‐PAGE) and electrotransferred onto a 
polyvinylidene difluoride membrane. Immunoblotting was per‐
formed using the anti‐CXCL12 primary antibody (FL‐93, Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) incubated overnight at 4°C, 
followed by incubation with horseradish peroxidase‐conjugated 
anti‐rabbit secondary antibody at room temperature for 1 hour. 
Staining was performed by the chemiluminescent technique ac‐
cording to the manufacturer's instructions (Amersham Pharmacia 
Biotech). The intensities of the signals were quantified using 
TotalLab electrophoresis software, ver. 1.10 (Phoretix, Newcastle 
upon Tyne, UK). Statistical significance was estimated by the t test.

2.3 | RNA isolation and real‐time quantitative PCR 
(RT‐qPCR)

The GeneJET RNA Purification Kit (Thermo Fisher Scientific, USA) 
was used to isolate total RNA from NIH3T3 and PARP1−/− cells, 
either cultured under control condition or treated with DMOG 
or VitC. One microgram of DNase I‐treated RNA was reverse 
transcribed using the RevertAid First Strand cDNA Synthesis 
Kit (Thermo Fisher Scientific, USA), a mix of oligo(dT)18 and ran‐
dom hexamer primers. The QuantStudio 3 Real‐Time PCR sys‐
tem (Applied Biosystems, Carlsbad, CA, USA) and Maxima SYBR 
Green/ROX qPCR Master Mix (Thermo Fisher Scientific, USA) 
were used for RT‐qPCR at the following thermal cycles: initial de‐
naturation at 95°C for 10 minutes and 40 cycles of two‐step PCR 
at 95°C for 15 seconds and at 60°C for 60 seconds. The relative 
expression of target genes was calculated relative to GAPDH (as 
an internal control) by the delta Ct method (2dCt). Statistical tests 
were performed using log2 transformed data and mean values, 
and error bars were back transformed to linear scale for graphs. 
Statistical significance was estimated using paired t test by pair‐
ing NIH3T3 and PARP1−/− samples that were isolated simulta‐
neously. Primer‐BLAST (https://www.ncbi.nlm.nih.gov/tools/
primer‐blast/) was used to design the primers (Table S1) for mu‐
rine sequences stored in GenBank with the following accession 
numbers: Dnmt1 — NC_000075.6 (20907206..20959888, com‐
plement), Dnmt3a — NC_000078.6 (3804986..3914443), Dnmt3b 
— NC_000068.7 (153649165..153687730), Tet1 — NC_000076.6 
(62804570..62887581, complement), Tet2 — NC_000069.6 
(133463677..133545196, complement), Cxcl12 — NC_000072.6 
(117168535..117181368).

2.4 | Isolation of high molecular weight DNA

Cells were lysed in buffer (2 mmol/L EDTA, 10 mmol/L Tris HCl pH 
7.5, 10 mmol/L NaCl, 0.5% SDS) supplemented with 0.04 µg/mL 
proteinase K and the lysate was incubated at 55°C overnight. High 
molecular weight DNA was isolated by ethanol precipitation (with 
cold 75 mmol/L sodium acetate diluted in absolute ethanol) and dis‐
solved in water.

2.5 | Bisulphite conversion of DNA

Bisulphite conversion of genomic DNA isolated from NIH3T3 and 
PARP1−/− cells was performed using the EZ‐DNA methylation kit 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
info:ddbj-embl-genbank/NC_000075.6
info:ddbj-embl-genbank/NC_000078.6
info:ddbj-embl-genbank/NC_000068.7
info:ddbj-embl-genbank/NC_000076.6
info:ddbj-embl-genbank/NC_000069.6
info:ddbj-embl-genbank/NC_000072.6
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(D5002; Zymo Research, Orange, CA, USA) according to the manu‐
facturer's instructions. Prediction of a CpG island in the Cxcl12 gene 
was performed by EMBOSS Cpgplot bioinformatics tool (https://
www.ebi.ac.uk/Tools/seqstats/emboss_cpgplot/) with standard 
parameters (window size 100; minimum length 200; minimum ob‐
served 0.6; minimum percentage 50%). Genomic DNA sequences 
uploaded for analysis consisted of the whole Cxcl12 gene (NCBI 
ref. NC_000072.6) with the addition of 2000 bp upstream from the 
transcription start site (TSS) marked as +1 (Figure 2).

3  | PCR‐BA SED METHYL ATION ANALYSIS

For DNA methylation analysis, four sets of primers were designed in 
MethPrimer (http://www.urogene.org/methprimer2/) which encom‐
pass four regions of the Cxcl12 gene: part of the promoter (1MU), the 
TSS, the exon‐intron boundary (2MU) and part of the intron (3MU). 
Each set of primers consists of two primer pairs, one specific for 
methylated (M) and the other for unmethylated (U) bisulphite‐con‐
verted sequence. The same primers were used for both methylation‐
specific PCR (MSP) and high resolution melting analysis (HRM) (Table 
S2). In MSP, each primer pair was used in separate reactions while for 
HRM, both M and U primers from the same set were combined in a 
single reaction in order to cover all possible variants in methylation 
status. Both MSP and HRM runs were performed on the QuantStudio 
3 Real‐Time PCR system (Applied Biosystems). For 1MU, 2MU and 
3MU primer sets, PCR was initiated with initial denaturation at 95°C 
for 10 minutes and 40 cycles of two‐step PCR at 95°C for 15 seconds 
and 58°C for 60 seconds. For TSS, the primer set touchdown PCR 
approach was used with initial denaturation at 95°C for 10 minutes 
and each cycle starting with denaturation at 95°C for 30 seconds 
followed by a 30 seconds annealing step at 61°C for the first five 
cycles, at 58°C for the next five cycles and at 55°C for the final 35 
cycles, with each cycle ending with a 60 seconds elongation step at 
72°C. For HRM analysis, after amplification, the additional melt curve 
stage consisted of temperature ramping from 60‐95°C by 0.025°C/s 
with florescence acquisition at each temperature increment. HRM 
Software v3.1 (Applied Biosystems) was employed for end‐product 
analysis. The reaction mixture for MSP contained Maxima SYBR 
Green/ROX qPCR Master Mix (Thermo Fisher Scientific), 60 ng of 
bisulphite‐converted DNA and 2 µmol/L primers in a final volume of 
10 µL. For HRM, 10 µL of reaction contained 5 µL 2 × MeltDoctor 
HRM Master Mix (Applied Biosystems), 0.15 µmol/L of each primer 
and 10 ng of bisulphite‐converted template.

From MSP, we obtained threshold cycle values (Ct) for reac‐
tions with M and U primer pairs for each set. The relative level of 
methylated DNA for each analysed region was expressed using the 
methylation index defined as: 2(demethylated cycle Ct) − (methylated cycle Ct) 12. 
Statistical tests were performed using log2 transformed data; the 
mean values and error bars were back transformed to linear scale 
for graphs. Statistical significance was estimated using paired t 
test by pairing NIH3T3 and PARP1−/− samples that were isolated 
simultaneously. In HRM analysis, the melting temperatures were 

determined from derivative melting curves and these temperatures 
were used for assessing and comparing overall methylation levels of 
the target regions.

3.1 | In situ nuclear HALO preparation and 
immunostaining

Nuclear HALOs were prepared as previously described.13 In brief, 
nuclei were pelleted onto microscope slides, permeabilized and his‐
tones and soluble proteins were extracted in mild salt extraction 
buffer (0.25 mol/L (NH4)2SO4, 10 mmol/L pipes (pH 6.8), 10 mmol/L 
EDTA, 0.1% digitonin, 0.05 mmol/L spermine and 0.125 mmol/L 
spermidine), which leads to the release of DNA loops which, after 
mild extraction of nuclei, remained attached to the nuclear proteins 
via scaffold/matrix attachment region (S/MAR) sequences. The at‐
tachment patterns are highly reproducible and their dependence on 
the presence of S/MARs has been unambiguously demonstrated. 
For immunostaining, frozen slides were thawed, rehydrated in phos‐
phate buffer solution (PBS) and permeabilized in PBS supplemented 
with 0.25% Triton X‐100. DNA was denatured by 0.01 N HCl at 
37°C for 10 minutes and subsequently neutralized with 100 mmol/L 
Tris HCL (pH 8) for 10 minutes. Next, the slides were incubated in 
70% dimethylformamide supplemented with 0.3 mol/L NaCl and 
30 mmol/L trisodium citrate and blocked for 30 minutes in 1% bo‐
vine serum albumin. Finally, the slides were incubated with primary 
anti‐hmC antibody (Active Motif, USA) at 1:50 dilution, overnight at 
4°C and next with a fluorescein (FITC)‐labelled donkey anti‐rabbit 
secondary antibody (Thermo Fisher Scientific, USA) at 1:400 di‐
lution. The DNA was stained with propidium iodide. Images were 
taken with an Axiocam digital camera attached to the Axio Observer 
Z1 microscope (Carl Zeiss Microscopy GmbH, Jena, Germany), using 
an appropriate filter.

3.2 | Assessment of global levels of DNA 
methylation

Global methylation levels were measured by the 5‐mC DNA ELISA 
kit (Zymo Research, California, USA) according to the manufacturer's 
protocol and guidelines. Statistical significance was estimated using 
one‐way ANOVA with blocking, treating each ELISA plate as a block.

4  | RESULTS

4.1 | The level of Cxcl12 expression in PARP1−/− 
cells compared to NIH3T3

Cxcl12 expression in NIH3T3 and PARP1−/− cells is presented in 
Figure 1A. Real‐time PCR showed that in the absence of PARP‐1, the 
expression of Cxcl12 in the PARP1−/− was much higher (1.3 × 106 
fold) than in NIH3T3 cells, and this difference was statistically sig‐
nificant (P = 0.009). A similar trend was observed at the protein level, 
examined in cell culture media in which the cells were cultivated 
(P = 0.0057) (Figure 1B).

https://www.ebi.ac.uk/Tools/seqstats/emboss_cpgplot/
https://www.ebi.ac.uk/Tools/seqstats/emboss_cpgplot/
info:ddbj-embl-genbank/NC_000072.6
http://www.urogene.org/methprimer2/
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4.2 | Methylation pattern of Cxcl12 in NIH3T3 and 
PARP1−/− cells

We confirmed the presence of a CpG island encompassing a part of 
the promoter, the 5′ UTR, the first exon and part of the first intron 
of the Cxcl12 gene (Figure 2). To assess the overall methylation 
of this CpG island, we analysed four of its regions by PCR‐based 
methods, MSP and HRM (Figure 3). Primers were designed so that 
amplicons covered part of the promoter, the TSS, the exon‐intron 
boundary and part of the intron. The largest difference in aver‐
age methylation index (calculated from MSP data, Material and 
Methods) was observed for the exon‐intron boundary and the pro‐
moter regions (1172.2 and 995.3 times higher methylation index for 
NIH3T3 respectively), followed by the intron region (262.5 times 
higher methylation index for NIH3T3), with the smallest difference 
observed for the TSS region (75.3 times higher methylation index 
for NIH3T3) (Figure 3). All measured differences of the methyla‐
tion index were statistically significant, with the P = 0.006606 
for the promoter, P = 0.005774 for the TSS, P = 0.00036 for the 
exon‐intron boundary and P = 0.002916 for the intron region. A 
methylation index below 1 indicates that the target sequence is 
predominantly unmethylated while a methylation index above 1 
indicates the opposite, that the target sequence is predominantly 
methylated. Thus, for all four target regions, the calculated meth‐
ylation indices indicated that in NIH3T3, methylation prevailed in 

the analysed regions of the Cxcl12 gene, while in PARP1−/−, the 
analysed CpGs in this gene were mostly unmethylated. Our MSP 
results were consistent for all analysed regions, however, they 
only represented the level of methylation of CpGs covered by the 
primer pairs (1‐3 CpGs per primer, 17 CpGs in total in all four sets). 
We also analysed the same target regions with HRM, which pro‐
vided information about the methylation of the whole amplicon 
(Figure 3). Unsurprisingly, the results of HRM analysis were in line 
with MSP findings, as the measured melting temperatures were 
consistently higher for NIH3T3 than for PARP1−/− samples for all 
four amplicons, indicating that there was an overall higher level 
of methylation in NIH3T3 cells over the entire length of the ana‐
lysed target sequences. Namely, the largest difference in melting 
temperatures was observed for the exon‐intron boundary region 
(5.2°C), followed by the promoter and intron regions (respectively 
2.2°C and 2°C), with the smallest difference observed for the TSS 
region (1.7°C).

4.3 | Examining the global level of DNA methylation 
in NIH3T3 and PARP1−/− cells

To better understand the local differential methylation patterns be‐
tween NIH3T3 and PARP1−/− cells, we measured the global levels of 
DNA methylation and observed a statistically significant (P = 0.04) 
decrease in DNA methylation in PARP1−/− compared to NIH3T3 cells 

F I G U R E  1   A, Relative expresssion 
level of Cxcl12 in NIH3T3 and PARP−/− 
cell lines (n = 6). B, Western blot of 
Cxcl12 secreted from NIH3T3 and 
PARP−/− cell lines (n = 3). Data presented 
as mean ± standard error of the mean, 
**P ≤ 0.01, n‐number of independent 
experiments

F I G U R E  2   Schematic representation 
of part of murine Cxcl12 gene with marked 
positions of primers used for methylation‐
specific PCR and high‐resolution melting 
analysis analysis
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(Figure 4A). In order to assess the global DNA demethylation level, 
we looked at 5hmC immunostained HALO preparations as 5hmC 
was the first intermediary product of TET‐mediated DNA demeth‐
ylation. A stronger fluorescent signal was visualized in PARP1−/− 
cells compared to NIH3T3 (Figure 4B). This suggested that PARP‐1 
could indeed influence components of the DNA (de)methylation ma‐
chinery. We therefore next examined mRNA expression of the main 

players involved in DNA methylation, Dnmt1, Dnmt3a, Dnmt3b and 
in demethylation, Tet1, Tet2 (Figure 4C). Only Tet1 and Tet2 mRNA 
levels exhibited a statistically significant increase (pTET1 = 0.016 and 
pTET2 = 0.004) in the absence of PARP‐1 in PARP1−/− compared to 
NIH3T3 cells, while the expression of Dnmts did not show a signifi‐
cant difference. This finding could explain the observed local and 
global differences in DNA (de)methylation levels.

F I G U R E  4   A, Global level of DNA methylation measured by ELISA‐based assay (n = 3). B, Visualisation of 5hmC by immunostaining of 
HALO DNA preparations. C, Relative expresssion levels of Dnmt1, Dnmt3a, Dnmt3b, Tet1, Tet2 in NIH3T3 and PARP−/− cell lines (n = 5). Data 
presented as mean ± standard error of the mean, *P ≤ 0.05, **P ≤ 0.01, n‐number of independent experiments

F I G U R E  3   Methylation levels of different parts of Cxcl12 gene in PARP−/− compared to NIH3T3 cell lines measured by methylation‐
specific PCR (MSP) or high‐resolution melting analysis (n = 3). MSP data presented as mean ± standard error of the mean, *P ≤ 0.05, 
**P ≤ 0.01, ***P ≤ 0.001, n‐number of independent experiments
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4.4 | The Cxcl12 expression related to the 
activities of TETs

The obtained results pointed to the possibility that TET1 and TET2 
were crucial for enhancing Cxcl12 expression via gene promoter de‐
methylation in the absence of PARP‐1. To check whether TET activity 
is indeed involved in the regulation of Cxcl12 mRNA expression, we 
treated both NIH3T3 and PARP1−/− cells with either an activator of 
TET activity, VitC, or with TET inhibitor, DMOG, and then measured 
Cxcl12 mRNA levels (Figure 5). Statistically significant differences 
between control and treatment conditions were observed only for 
PARP1−/− samples but not for NIH3T3. In PARP1−/− cells, Cxcl12 
mRNA expression was significantly increased (P = 0.024) after VitC 
treatment (Figure 5) and also significantly decreased (P = 0.005) 
after DMOG treatment (Figure 5). This indirectly pointed to the in‐
volvement of PARP‐1 in the regulation of TET1/2 activity (indicating 
that in the absence of PARP‐1, TET1 and TET2 are potent enzymes 
exhibiting full enzyme activity).

5  | DISCUSSION

Our previous results based on transfection experiments revealed 
that PARP‐1 plays a role in suppression of the Cxcl12 promoter.5 
Findings presented herein strongly support an inhibitory role of 
PARP‐1 in the regulation of Cxcl12 gene expression. Namely, we 
detected a significantly higher level of Cxcl12 gene expression in 
PARP1−/− cells than in control NIH3T3 cells. This was accompanied 
by increased protein abundance in the PARP1−/− cell medium, con‐
firming previously obtained results regarding the ability of PARP‐1 
to down‐regulate Cxcl12 promoter activity. Thus, we extended our 
research to determine whether DNA methylation is integrated in 
PARP‐1‐dependent Cxcl12 suppression.

It is well established that Cxcl12 is epigenetically regulated by 
the methylation of cytosine in CpG dinucleotides located in the pro‐
moter sequence.14,15 Our results revealed pronounced loss of 5mC 
content across all examined regions of the CpG island (that covers 
part of the promoter, TSS, exon/intron boundary and part of the in‐
tron) in PARP1−/− cells, with the most prominent change related to 
demethylation observed in the exon‐intron boundary and promoter 
regions, with about 1000 times greater methylation indices ascribed 
to NIH3T3 cells compared to PARP1−/− cells. This pronounced de‐
methylation status of the Cxcl12 gene observed in PARP1−/− cells 
pointed to a potential role of PARP‐1 in DNA demethylation that 
down‐regulated Cxcl12 gene expression.

We suggest that epigenetic regulation of Cxcl12 gene expression 
mediated by PARP‐1 could serve as a therapeutic approach in dis‐
eases associated with CXCL12 down‐regulation or in disease where 
CXCL12 was shown to exert a protective effect. Namely, studies 
have shown protective effects of CXCL12 in atherosclerosis and 
in myocardial infarction‐ischaemia‐reperfusion injury, based on in‐
creased recruitment of progenitor cells and neo‐angiogenesis.16‐18 
Also, CXCL12 possesses an anti‐diabetogenic potential due to 
promotion of beta‐cell survival and its involvement in the regula‐
tion of beta‐cell mass in pancreas, suggesting that manipulation of 
Cxcl12 gene expression could be used in a potential diabetes treat‐
ment.6,19‐22 Furthermore, we recently showed that the DNA methyl‐
ation profile of Cxcl12 gene played an important role in progression 
of periodontitis.23

It was reported that epigenetic down‐regulation of Cxcl12 is 
involved in breast carcinoma, higher proliferation rates of breast 
cancer cells, non‐small cell lung cancer and lymph node metastasis 
development.24 Epigenetic down‐regulation of Cxcl12 expression 
by hypermethylation mediated by DNMT1 was documented in os‐
teosarcoma.25 Additionally, the observation that DNMT1 inhibition 
restored CXCL12 secretion, which consequently suppressed tumour 
growth and retained osteosarcoma progression, was in accordance 
with the overall survival effect connected with increased Cxcl12 
expression.25 Hence, due to the potential antitumor effect of ele‐
vated Cxcl12 expression, the epigenetic targeting of Cxcl12 gene 
expression by a demethylating treatment could have therapeutic 
relevance. Our results revealed that PARP‐1 serves as a potential 
upstream regulator of (de)methylation events that modulate Cxcl12 

F I G U R E  5   Comparison of relative expresssion levels of Cxcl12 
in control conditions vs treatment (Vit C or DMOG) in NIH3T3 
and PARP−/− cell lines (n = 3). Data presented as mean ± standard 
error of the mean, *P ≤ 0.05, **P ≤ 0.01, n‐number of independent 
experiments
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expression. According to literature data, depletion of PAR leads to si‐
lencing of Dnmt1 by hypermethylation, which accounts for defective 
methylation activity and consequently demethylation processes.3,26 
Furthermore, site‐specific demethylation has also been documented 
for gene promoters as a result of PARP‐1 depletion.3,27

According to our results, changes in Dnmts expression were not 
statistically significant. We assumed that the detected decrease in 
the global level of DNA methylation in PARP1−/− cells was primar‐
ily due to increased expression of Tet genes. It is more likely that 
promotion of TET‐dependent active demethylation takes place in 
PARP1−/− cells rather than DNMT‐related suppressed methylation. 
The observed hypomethylation of mouse Cxcl12 in PARP1−/− cells 
pointed to the involvement of PARP‐1 in the promotion of DNA 
demethylation, and it is tempting to speculate the inhibitory role of 
PARP‐1 on the expression of Tet genes. This is in disagreement with 
the observation that PARP activity positively regulates Tet1 expres‐
sion, which consequently results in initiation of active demethylation 
processes.28,29 This discrepancy may be due to the different exper‐
imental approach, including different cells and methods for evaluat‐
ing the effect of PARP‐1 on Tet1 transcriptional regulation. Namely, 
the cited authors used HEK293T Parp‐1‐silenced (siPARP‐1) cells 
where PARP‐1 was present in a low amount but was not completely 
absent.28 Also, the authors showed that PARP‐1‐dependent regula‐
tion of Tet1 gene expression depended on the level of Tet1 expres‐
sion in a particular cell line. Thus, in cell line MOLT‐3 with high Tet1 
expression, PARP‐1 exerted a stimulatory effect, while in SKW‐3 
cells with low Tet1 expression, there was no effect of PARP‐1 in‐
hibition on Tet1 transcription. Thus, the inconsistency between the 
obtained results could be explained by the fact that we used PARP‐1 
knock‐out cells and a different cell line in which the transcription of 
Tet genes was not so pronounced.

The role of PARP in the control of active demethylation mediated 
by TET enzymes has emerged, implying a high level of complexity of 
PARP/TET cross‐talk. Also, TET is capable of stimulating PARP‐1 ac‐
tivity in vitro, even in the absence of DNA damage; TET1 could be a 
target of PARP‐1 activity by covalent and non‐covalent PARylation 
which affects TET activity differently, activating or inhibiting it re‐
spectively.3 Namely, non‐covalent PARylation of TET1 resulted in 
negative regulation of TET1 activity while covalent PARylation had 
a stimulatory effect on TET1 activity in vitro. The result obtained 
from an experiment with overexpressed, engineered TET1, and a 
specific DNA binding domain showed that PARylation impaired 
TET1 activity in vivo.2 In our study, besides increased expression of 
Tet genes, an increased level of 5hmC as a first intermediary prod‐
uct in TET‐mediated demethylation in PARP1−/− cells was detected. 
Immunofluorescence analysis of 5hmC level revealed strong stain‐
ing in PARP1−/− cells. This reflected the activities of TETs in mediat‐
ing oxidation of 5mC to 5hmC, which was assumed to be activated 
in PARP1−/− cells, suggesting a potential inhibitory role of PARP‐1 
on the activities of TETs.

Considering the potential involvement of TET‐dependent demeth‐
ylation of Cxcl12, which could be responsible for its elevated expres‐
sion in PARP1−/− cells, we performed experiments with TET enzyme 

activator (VitC) and inhibitor (DMOG) in order to verify whether TET 
activity is involved, at least in part, in the modulation of Cxcl12 gene 
expression. Vitamin C promotes TET‐dependent DNA demethylation 
in embryonic stem cells and increases 5hmC levels through enhanced 
Fe2+ recycling.30‐33 On the other hand, DMOG is a small‐molecule, 
an analogue of 2‐oxoglutarate which inhibits members of 2‐oxogluta‐
rate‐dependent dioxygenases, and is known to impede the enzymatic 
activity of TET enzymes.34,35 In NIH3T3 cells, both treatments did 
not significantly influence Cxcl12 expression. This could be explained 
by the extremely low rate of Cxcl12 expression, which is insufficient 
to allow for the detection of changes in expression. Also, the low 
level of expression of Tet genes and/or PARP‐1 presence may be the 
reasons for the observed insignificant changes in Cxcl12 expression 
under treatments with TET enzyme activator and inhibitor in this cell 
line. However, in PARP1−/− cells where Cxcl12 is more abundant, its 
expression exhibited a tendency to increase in the presence of VitC 
and to decrease upon treatment with DMOG. This suggested that 
Cxcl12 expression could be positively regulated by TET‐mediated de‐
methylation which occurred in the absence of PARP‐1. However, it 
should be noted that VitC and DMOG are not selective activators/
inhibitors of TETs and they can also have other effects. Thus, the ex‐
amination of TET activity in the context of PARP‐1 absence should be 
investigated in more detail in the future.

In conclusion, our study indicates that PARP‐1 maintains the 
hypermethylated state of the Cxcl12 promoter, suppressing its ex‐
pression, and vice versa, disruption of PARP‐1 could mediate events 
such as TET‐dependent hydroxymethylation, leading to Cxcl12 
promoter demethylation and increased expression. Our results sin‐
gled out PARP‐1 as an important upstream regulator of epigenetic 
events such as TET‐dependent demethylation. These findings point 
to the potential regulation of CXCL12 level by targeting PARP/TET 
interplay.
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