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Vector Integration Sites 
Identification for Gene-Trap 
Screening in Mammalian Haploid 
Cells
Jian Yu1,2 & Constance Ciaudo1

Forward genetic screens using retroviral (or transposon) gene-trap vectors in a haploid genome 
revolutionized the investigation of molecular networks in mammals. However, the sequencing 
data generated by Phenotypic interrogation followed by Tag sequencing (PhiT-seq) were not well 
characterized. The analysis of human and mouse haploid screens allowed us to describe PhiT-seq data 
and to define quality control steps. Moreover, we identified several blind spots in both haploid genomes 
where gene-trap vectors can hardly integrate. Integration of transcriptomic data improved the 
performance of candidate gene identification. Furthermore, we experimented with various statistical 
tests to account for biological replicates in PhiT-seq and investigated the effect of normalization 
methods and other parameters on the performance. Finally, we developed: VISITs, a dedicated pipeline 
for analyzing PhiT-seq data (https://sourceforge.net/projects/visits/).

Forward genetic screens using retroviral (or transposon) gene-trap vectors have opened the doors for the inves-
tigation of molecular circuitries responsible for various biological processes1. Starting with yeast, a significant 
portion of the knowledge in modern biology is built on hypotheses originated from unbiased screens. In mam-
malian cells, this approach has been enabled with the establishment of haploid cells from human2 and mouse3 
organisms. After using phenotypic interrogation via tag sequencing (PhiT-seq) in a haploid genome, researchers 
are now able to produce a reliable genome-wide overview of genes involved in their phenotypes of interest. These 
studies include gene essentiality4,5, different biological processes6–8, diseases mechanisms9,10 and stem cells exit 
from pluripotency11.

Nowadays, PhiT-seq data have not been characterized in depth. Moreover, some basic and important ques-
tions remain unanswered, including: how to determine the quality of the data; and how many genomic elements 
PhiT-seq data could cover? Additionally, there is no dedicated bioinformatics pipeline to analyze and visualize 
these data. Computational frameworks have been developed for the analysis of transposon insertion sequencing 
(Tn-Seq) for essentiality studies in prokaryotes12–14 using sliding-window approaches. These methods cannot be 
generalized to PhiT-seq due to the tremendous difference in the genome size between prokaryotes and mammals, 
leading to a lower coverage of sequencing and an insufficient power of the sliding-window approach15. The com-
plexity of the architecture of mammalian genomes determines if the insertion site of the vector has to be treated 
differently. Indeed, an insertion in the antisense orientation of an intronic region will not have the same effect as 
an insertion in an exonic region. Some computational tools, designed for insertional mutagenesis screens (IMS) 
of tumorigenesis studies, like TAPDANCE16 and PRIM17 have also been developed. Nevertheless, PhiT-seq data 
differ considerably from IMS data in both experiment design and purpose. For example, to account for tumor 
heterogeneity, the data used in IMS always contain multiple samples, to identify common insertion sites involved 
in tumor formation18, while PhiT-seq aims to identify mutation sites enriched with high-density insertions in 
selected compared to control samples10. Therefore, both algorithms developed for IMS and Tn-seq cannot be 
directly implemented to analyze PhiT-seq data.
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In previous publications where PhiT-seq experiments were conducted in human and mouse haploid cells, 
in-house methods (proximity index, Fisher’s exact and the binomial tests) were used for the statistical analy-
sis4,9–11,19; however, none of them were packaged into a functional pipeline with other necessary steps, e.g., 
pre-processing, quality control and visualization. Additionally, these methods were not optimized for mammalian 
gene structures, leading to a potential loss of information. More importantly, with the introduction of biologi-
cal replicates and the paired nature of PhiT-seq experiments (control vs. selected), more complex experimental 
designs have to be supported.

In this study, we first introduced several measurements in order to evaluate the quality of PhiT-seq data and defined 
blind spots of the screening experiment by using two datasets from human and mouse haploid cells7,10. To fully exploit 
the genome structure of mammalian cells, gene models were recompiled by integrating transcriptomic data, increas-
ing the performance for the identification of candidate genes. Several existing frameworks for statistical analysis were 
evaluated, and their usage was adapted to PhiT-seq experiments. We also investigated the effects of duplicated reads on 
the results, and compared different normalization methods used in the analysis of different omics data. Subsequently, 
candidate genes were prioritized using a combined score, which demonstrated increased performance on identifying 
known genes as well as the capability to reveal novel candidate genes. Finally, we presented VISITs (Vector Integration 
Sites Identification from PhiT-seq), a dedicated pipeline for the analysis of PhiT-seq data.

Results and Discussion
Datasets collection. Two datasets from human and mouse were used in this study7,10. The first dataset 
originated from a human PhiT-seq experiment aiming to identify genes involved in Lassa virus entry10 using 
HAP1 cells (referred to as ‘the human dataset’). This dataset was composed of one control library and one selected 
library (the other two selected libraries were mutants, and were only used in the quality control step). Two sin-
gle-end RNA-sequencing (RNA-seq) libraries supplemented this dataset20. The second dataset was derived from a 
mouse PhiT-seq experiment aiming to decipher novel genes regulating X-chromosome inactivation (XCI)7, using 
haploid mouse embryonic stem cells (referred to as ‘the mouse dataset’). It included six paired replicates for both 
control and selected libraries.

Pre-processing and quality control (QC). It is widely accepted that pre-processing and QC are crucial 
steps in Next Generation Sequencing (NGS) data analysis21,22. However, no analytic tools and software dedicated 
to PhiT-seq data are publicly available. In this study, we started with pre-processing of aligned PhiT-seq data and 
proposed several QC measurements for the screening experiment. We assumed that reads trimming, adapter 
removal and alignment of raw reads had already been properly performed by generic tools, e.g., Trimmomatic23 
and bowtie24. We described pre-processing and QC together, as in practice these two steps are coupled, i.e., QC, 
pre-processing, and QC again22.

In the pre-processing step, reads with multiple-hit positions in the genome were removed and only one inser-
tion site of the duplicated reads (reads with same starting site and orientation) was kept for downstream analysis. 
All the reads mapping the ChrY were also discarded as most of the current mammalian haploid cells used for 
screening lack this chromosome, e.g., human HAP1 cells and mouse parthenogenetic haploid embryonic stem 
cells3,25. Indeed, we reasoned that any reads mapping to the ChrY were due to sequencing errors or repeated 
sequences in pseudo-autosomal regions26,27, and should be removed.

In addition to the classical FastQC28 checking for the sequencing quality, we specifically focused on the assess-
ment of the entire screening experiment. The output of its QC was illustrated using the human dataset after 
pre-processing, including: Manhattan plot, saturation curve, insertion profile and principle component analysis 
(PCA) plot (Fig. 1). The Manhattan plot aimed to visualize the landscape of vector insertions in the genome of the 
haploid cells (Fig. 1a). Few insertions should be located on the ChrY before pre-processing and all of them should 
be mapped on autosomes and X chromosome after pre-processing.

The saturation curve determined if the sequencing depth of each library was sufficient in terms of gene cover-
age (Fig. 1b). With the increase of reads resampled, the curve should increase at first and reach saturation at the 
end. Curves without this pattern indicated an unsaturated sequencing, which could lead to a decrease in sensitiv-
ity and specificity in the downstream analysis. Saturation curves also informed about the efficiency of the screen. 
Only the clonal progeny of cells carrying insertions in certain genes should be recovered from a successful screen. 
Consequently, the curves of the selected libraries should be lower than the one for the control library (Fig. 1b).

The insertion profile informed about the integration bias for the vector used, e.g., both transposons and ret-
rovirus favor integration into transcription starting sites (TSS) in human and mouse genomes9,29–32 (Fig. 1c). If 
duplicated reads were not removed in the pre-processing steps, the preference for the TSS is masked due to PCR 
artifacts (see Supplementary Fig. S1); however, the effect of duplicates removal on final outcomes has not been 
investigated yet. We provide more details in the ‘Duplicates Removal’ section.

Finally, PCA plot helped to monitor the similarity between samples (Fig. 1d). Samples belonging to the same 
condition should be clustered together. Otherwise, potential confounding factors, like batch effects, must be 
investigated.

Identification of blind spots. One of the main advantages of gene-trap screens, using haploid cells, is 
thought to be its ‘unbiased’ nature, as all vectors can be inserted into virtually all positions in the host genome. 
However, in previous studies, some integration preferences have been observed (‘hot spots’) for various transpos-
ons and retroviruses close to the TSS of expressed genes29–32. On the contrary, the ‘cold spots’ of these vectors in 
mammalian haploid cells have not been characterized. These genomic elements located in cold spot regions of 
the genome are excluded from the selection process, thus becoming the ‘blind spots’ of the screening experiment. 
Using both human and mouse datasets, we first identified the blind spots existing in both haploid genomes. 
Subsequently, we investigated potential contributing factors, and tested whether the elements could be recovered 
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by increasing the sequencing depth or by introducing more replicates in our analysis. All following analyses were 
performed in the control libraries, as theoretically all insertions identified in the selected libraries are present in 
the control libraries.

A simple but direct explanation of blind spots is the smaller size of a genomic element, as shorter genes 
have fewer chances to get targeted. Instead of investigating individual genes, we performed the analysis in terms 
of gene types defined by Ensembl, aiming to provide a genomic view of the blind spots. For each gene type, 
the log2-odds-ratio of genes getting targeted versus not targeted was plotted against the gene size, as shown in 
Fig. 2a. Gene types with fewer insertions compared to random chance (FDR <  0.05 from Fisher’s exact test and 
log2-odds-ratio <  − 1) were highlighted. We observed several small genomic elements with few insertions, such 
as miRNA (microRNA), snRNA (small nuclear RNA), snoRNA (small nucleolar RNA) and rRNA (ribosomal 
RNA) (Fig. 2a). On the contrary, genes with larger size, such as protein coding genes and lincRNA (long inter-
genic non-coding RNAs) presented a high number of insertions (see Supplementary Table S1A,B). Meanwhile, 
two other types of genes (processed and unprocessed pseudogenes) represented another blind spots in PhiT-seq 
experiments (Fig. 2a). These genomic regions contained many repeated sequences and could be defined as 
low mappability regions. Indeed, reads with multiple-hits in the genome were discarded after alignment (see 
Materials and Methods). Interestingly, these patterns were partially conserved between human and mouse hap-
loid cells (Fig. 2a). Among a total of 40 gene types common between human and mouse, 20 types were identi-
fied enriched by genes lacking insertions in each species, respectively, and 16 of them overlapped (Fig. 2b; see 
Supplementary Table S1C).

To further identify potential factors responsible for these blind spots, we established a regression model, 
including gene essentiality4, number of transcription starting sites (TSS), GC content (%), gene size, gene type and 
gene expression level for human HAP1 cells. This regression model was performed only on human data due to 
the availability of the gene expression level and essentiality information4 missing for mouse haploid cells. Results 
showed that gene size and type were important factors (Fig. 2c). As previously described29–32, we observed that the 
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Figure 1. Quality control (QC) of the human dataset in VISITs, including (a) Manhattan plot showing vector 
insertion densities across all chromosomes in the control library. TPM: Transcripts per Million reads. (b) 
Saturation curves for both control and selected libraries. (c) Insertion profile near transcription starting sites (TSS) 
for both control and selected libraries after removing duplicates. (d) PCA plot showing sample similarities.
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expression level contributed most to blind spots, after adjusting for all the other factors. This is probably linked to 
the chromatin state of unexpressed genes.

Subsequently, we assessed two approaches to circumvent these blind spots. The first approach was to increase 
sequencing depth, thus genes with rare insertions could have higher chance to be identified; the second was to 
introduce more biological replicates, accounting for the inherent stochasticity of vector insertion. As only the 
mouse dataset includes biological replicates (see Supplementary Table S2), the comparison was performed only 
for these PhiT-seq data7. By resampling the reads, we found that more replicates achieved higher coverage rates 
than more sequencing depths (Fig. 2d). These results were in line with what was observed in RNA-seq experi-
ments33. However, the introduction of replicates also challenged the previous methods analyzing PhiT-seq data, 
namely Fisher’s exact and the binomial tests, due to the biological variance. Other methods accounting for this 
biological variance are discussed in the ‘Statistical analysis with biological replicates’ section.

Recompiling annotation with transcriptomic data. Counting insertions for each gene is the basis for 
all downstream statistical analysis. Tools developed for RNA-seq, like HT-Seq34 and featureCounts35, count only 
reads in sense orientation of exons. They cannot be directly implemented in PhiT-seq, as an ‘effective’ insertion 

Figure 2. Blind spots of PhiT-seq. (a) Relation between gene size and enrichment of insertion in both human 
and mouse control libraries. Genes were first categorized into Ensembl gene types. For each gene type the log2-
odds-ratio from Fisher’s exact test was plotted against its median gene size. In the test, a positive value means 
the gene type was enriched by genes getting inserted, and vice versa. Gene types conserved in human and 
mouse, as well as FDR <  0.05 and log2-odds-ratio <  − 1 (dashed line) in Fisher’s exact test, were plotted as dots, 
where the size was proportional to the extent of significance level (−log10-FDR). Other gene types were plotted 
as asterisks. The trend was fitted by LOcally WEighted Scatterplot Smoothing (LOWESS), in grey (human) 
and in orange (mouse) curves. (b) Gene types indicated as circles in (a) significantly overlapped in human 
and mouse (p: 0.0004 from Fisher’s exact test). (c) Factors were ranked according to the contribution to the 
insertion density (TPM) in the human dataset, where transcriptomic data are available. Essentiality, number of 
TSS (transcription starting site), GC content %, gene size, gene type and transcripts abundance (Expression, in 
TPM) were collected from published papers and databases, and a multiple regression model was constructed to 
assess the contribution (goodness of fit χ 2 minus df) of each factor. df: degree of freedom (d) Saturation curves 
in the mouse dataset. For each control library, reads were included repeatedly, either from the same library 
(increasing sequencing depth) or another control library (increasing biological replicates). At each point, recall 
rate was calculated as the number of hit genes with given reads divided by the number of hit genes using all 
reads from all control libraries. Then, the median of the recall rate was calculated across all 6 replicates, together 
with median absolute deviation indicated as error bar.
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(EI) needs to be distinguished from its counterpart. An EI can be located in the promoter, splicing site, exon or 
sense orientation of an intron, as these insertions are assumed to have an influence on the transcription of a gene.

Nowadays, due to existing time/tissue-specific splicing events in mammalian transcriptomes36, the definition 
of ‘exonic region’ remains elusive. To keep as much information as possible, we generated a conceptual gene 
model by combining all possible exons, as well as splicing sites and promoter regions (Fig. 3a). We also recom-
piled the gene model by integrating RNA-seq data (Fig. 3a). Original gene models (here from Gencode37) were 
recompiled by utilizing only expressed transcripts, plus canonical splicing sites (5′ -end GU and 3′ -end AG) and 
optionally, the promoter region. When RNA-seq data were not available, all annotated isoforms were used in 
order to keep all EIs. The advantage of using RNA-seq data is straightforward and can be justified by two argu-
ments. In statistics, removing transcripts reduced the total number of tests, leading to an increase in the specificity 
of the analysis. Moreover, in biology, silent genes cannot play a role in the selection process, even though targeted 
by vectors. A similar strategy has been successfully implemented previously in RNA-seq data analysis, to improve 
the performance on the identification of differential splicing events38.

To illustrate the performance of the recompiled gene model, two tests were conducted in the human dataset 
(as no RNA-seq data are available for mouse haploid cells). In PhiT-Seq experiment, EIs should be enriched in 
relevant genes in the selected library compared to the control library. In this case, data are represented as count 
of EIs and therefore Fisher’s exact test can be used6,39. It is also assumed that the proportion of EIs in relevant 
genes should be increased after selection, as non-EIs cannot disrupt gene expression, thus cells carrying them 
get eliminated during the selection process. In this situation, data are represented as proportion of EIs (ratio 
between EI and total number of insertions for each gene) and the binomial test was used4. Both of these two tests 
were used in the original publications for the selection of candidate genes10,40. Importantly, these two tests can be 
only performed in single replicate and when biological replicates exist, other methods have to be used (see next 
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data. Assuming that this gene has three isoforms, two expressed, A and B, and one not expressed C. The 
recompiling process will combine the exons in A and B. Transcriptomic data, if available, can be integrated 
by removing non-expressed isoforms C. Promoter region could also be included. (b) Receiver Operating 
Characteristics (ROC) curves comparing different annotation methods in the human dataset, using Fisher’s 
exact test for the count enrichment. The red curve represents counting the insertions using the recompiled 
gene model, but without integration of RNA-seq data. The blue curve represents counting the insertions using 
the recompiled gene model, as well as RNA-seq data integrated, i.e., non-expressed isoforms removed, after 
quantification by Kallisto. Partial Area Under ROC Curve (pAUC) were calculated at FPR =  0.01. Asterisks were 
labeled at FDR =  0.01. (c) ROC curves comparing different gene models described in (b) in the human dataset, 
using the binomial test for the sense enrichment, with the same cutoff in (b).
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section). Simply for convenience, we will refer to these two tests as ‘count enrichment test’ and ‘sense enrichment 
test’, regardless of the statistical methods used.

Thereafter, we evaluated the recompiled gene model in the human dataset for both count and sense enrich-
ment test. Performance was measured by ROC (Receive Operating Characteristics) curves and rescaled pAUC 
(partial Area Under Curve) at false positive rate (FPR) =  0.01, using Fisher’s exact test for count enrichment and 
the binomial test for sense enrichment. Improved performances (pAUC: 0.833 vs 0.594 in count enrichment 
test and 0.835 vs 0.777 in sense enrichment test) were observed after integration with RNA-seq data (Fig. 3c,d). 
Finally, we confirmed that the improved pAUC did not happen by chance, using random filtering of the same 
number of non-expressed genes for 1,000 iterations (p <  0.001 for count enrichment test, and p =  0.024 for sense 
enrichment test, see Supplementary Fig. S2).

Statistical analysis with biological replicates. When biological replicates exist, variance has to be taken 
into account in order for genes that are behaving consistently across replicates to rank higher than erratic genes41. 
For this study, we used the mouse dataset7, as it was the only accessible PhiT-seq dataset including biological rep-
licates. For count data, the analysis was performed using the Wald test developed in DESeq2, where generalized 
linear model (GLM) is supported for complex experimental design42. For dispersion estimation, we evaluated 
several methods, including common and tagwise dispersion from edgeR43, Local-Fit methods from DESeq242 
and hierarchical Bayesian methods from DSS44. To exclude the potential influence of normalization methods, 
data were normalized to total count in all following comparison. Effects of normalization methods are evaluated 
in the ‘Normalization’ section. Performance was measured using ROC curves and a rescaled pAUC at FPR =  0.01.

As shown in Fig. 4a, all methods performed comparably, though Local-fit showed a slight improvement in 
pAUC. To further look into the performance on smaller sample size, another comparison was conducted using 
different number of replicates, ranging from 3 to 5 in each condition. Local-Fit and DSS showed consistently 
better performance in terms of pAUC when the sample size was 4 or 5, and comparable performance when 
the sample size was 3, compared to other methods (Fig. 4b). Subsequently, we tested the specificity of these 
methods by using only samples from the control libraries, reasoning that we should identify no genes by com-
paring samples within the same condition. Indeed, all genes with small FDR values were considered to be false 
discoveries. Local-Fit and DSS scored best compared to the other methods (Fig. 4c). Finally, we also compared 
the Wald test from DESeq2 with quasi-likelihood F-test from edgeR and Voom +  Limma packages45,46 (see 
Supplementary Fig. S3). Generally, comparable performances were observed among these methods, with the 
Wald-test scoring highest in terms of pAUC.

For proportion data, similar comparisons were performed using DSS, DESeq2 and ibb47. As DESeq2 does not 
directly model beta-binomial data, it was implemented with an alternative method for testing an interaction term, 
i.e., whether EI depends on the cell type, by comparing the full model in equation (1) with the reduced model in 
equation (2):

+ + + ∗~full_model paired cell_type effective cell_type effective (1)

+ +~reduced model paired cell type effective_ _ (2)

As shown in Fig. 4d, DSS showed superior performance compared to other methods in terms of ROC curves and 
pAUC. The superior performance was also consistent across different sample sizes (Fig. 4e). DESeq2 performed 
moderately in the comparisons, but it became highly conservative under a proper FDR cutoff (sensitivity <  0.1 at 
FDR =  0.01 in Fig. 4d). Moreover, in some comparisons with three replicates, its pAUC almost fell to zero (Fig. 4e, 
two dots around pAUC =  0). Although DSS demonstrated inferior false discovery control compared to DESeq2 
(Fig. 4f), we still recommend this method for the sense enrichment test, as its sensitivity is higher than others. 
Based on these results, we used the Wald-test and Local-Fit for the count enrichment test and DSS for sense 
enrichment tests in the next analysis.

Duplicates removal. Removing duplicates is a widely used practice to correct amplification bias when ana-
lyzing NGS data. However, in PhiT-seq data, there are no agreed strategies for removing duplicates. As shown in 
Supplementary Fig. S1, duplicates might arise from PCR artifacts, leading to unexpected noise. Therefore, in all 
analysis performed above, duplicates have been removed in the pre-processing step. However, duplicates could 
also derive from the expansion of clonal cells, which may carry a predominant insertion after selection. Here, 
we did not attempt to distinguish the origin of the duplicates, but instead tried to test the influence of different 
duplicates-handling strategies on the final outcome. We investigated the effect of different definition of duplicates 
on the statistical performance (starting at the same position in the same strand or with a difference up to 2 bp, as 
well as keeping all duplicates) in both control and selected libraries, across all scenarios, i.e., count/sense enrich-
ment tests, and with/without replicates.

As shown in Fig. 5a–d, performance was greatly improved when duplicates were removed in all situations. 
More stringent definition (e.g., extending the definition of duplicates up to 1–2 bp) further improved the per-
formance in most cases, though the effect was only minor. Moreover, we did not observe a consistent pattern in 
all situations, as most duplicates were located at the same site (see Supplementary Table S4), thus more stringent 
definition had fewer effects on the final outcome. Based on these results, we recommend the elimination of dupli-
cates in both control and selected libraries at the pre-processing step.

Normalization methods. Several normalization methods have been proposed for NGS data analysis to 
correct for potential bias, e.g., GC-content48 and compositional bias49; however, no consensus has been reached 
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Figure 4. Comparison of different statistical methods to account for biological replicates in the mouse 
dataset. (a) Comparing different shrinkage methods in count enrichment tests using ROC curves for all 
samples. The curve was truncated at FPR =  0.01, where rescaled pAUC was calculated. Asterisk was labeled at 
FDR =  0.01. (b) Performance of different methods in count enrichment tests with different subset of samples 
(from 3–5) using pAUC. (c) False discovery curves within control samples for comparing different shrinkage 
methods in count enrichment test. Three samples from control libraries were labeled as ‘selected library’ and 
compared with the rest of the control libraries at FDR <  0.05. The curve showed the number of false discoveries 
after averaging all possible compositions. (d) Comparing different methods in sense enrichment test using ROC 
curves and pAUC, as (a). (e) Performance of different shrinkage methods in sense enrichment test with different 
subset of samples (from 3–6) using pAUC, as (b). (f) For sense enrichment test, false discovery curves were also 
compared using the same method, as (c).
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in the scientific community for PhiT-seq data. Consequently, we first evaluated whether the GC bias needed to be 
corrected and compared the performance of different normalization methods.

To investigate the GC bias, the number of insertions sites was plotted against the GC content of each gene 
(see Supplementary Figs S4–5). Intriguingly, we did not observe an apparent effect of GC bias on the readout. 
Moreover, the patterns were very similar between the controls and the selected libraries in human and mouse 
datasets. We concluded that PhiT-seq data are less vulnerable to GC bias, as duplicates are removed in the 
pre-processing step, thus PCR artifacts have less effects on counting insertion sites compared to counting total 
reads. Therefore, in all our analysis, we did not correct for the GC bias.

Afterwards, we compared four different methods, including total count, relative log expression (RLE)42, 
trimmed mean of M-values (TMM)49 and CisGenome50. Comparisons were performed in all scenarios using 
pAUC as performance index. Results showed that the RLE method outperformed all the other approaches in the 
situation of a single replicate and had comparable performance when multiple replicates were available (Table 1). 
Comparison of different sample sizes (from 3 to 5 replicates in the mouse dataset) (see Supplementary Fig. S6a,b) 
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Figure 5. Comparison of the effects of duplicates removal on VISITs performance in human and mouse 
datasets. Rescaled pAUC were calculated at FPR =  0.01 with different definition of duplicates in control and 
selected libraries of the human dataset, using count (a) and sense enrichment (b) tests. Duplicates were defined 
as those have same insertion site (0 bp), within + /− 1 bp, and + /− 2 bp. Similar analysis was performed in the 
mouse dataset for count (c) and sense enrichments (d).
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also showed comparable performance for all methods. RLE also represented the best false discovery control in 
both count and sense enrichment tests (see Supplementary Fig. S6c,d). Based on these results, RLE was used in 
the following sections and recommended in PhiT-Seq data analysis.

Inclusion of promoter region. When recompiling the gene model, the promoter region can be included, 
considering that the insertion of a vector in this region can suppress or enhance gene transcription9,51. To assess 
the impact of promoter inclusion on the final outcome across all scenarios described above, we tested the inclu-
sion of promoter region ranged from 0 to 5 kb upstream of the TSS (see Supplementary Fig. S7a,b). Results 
showed decreased pAUC curves in all tests. We assumed that the disruptive effect of insertions into upstream 
regions was not as influential as those in gene bodies, which most likely led to a truncated protein instead of 
a regulating effect. Therefore, including insertions in upstream regions will somehow compromise the results. 
However, the performance became stable after 3 kb, probably due to the few insertions found beyond this region 
(see Supplementary Fig. S1).

Prioritization and verification. To rank the candidate list, we derived a combined score from both count and 
sense enrichment tests52. ROC curves and pAUC (see Supplementary Fig. S8a,b) showed enhanced performance 
on both datasets when using the combined score, compared to results using either the count or sense enrichment 
test alone. To illustrate the ability of the combined score to reveal novel candidates, we calculated the connectivity 
between known genes and novel candidates using the protein-protein interaction network defined in the STRING 
database53. In the human dataset, novel candidates revealed with the combined score were more connected to known 
targets compared to count or sense enrichment methods only (see Supplementary Fig. S8c). For the mouse data-
set, better results were obtained by the count enrichment method and the combined score compared to the sense 
enrichment method only (see Supplementary Fig. S8d). The STRING networks incorporating known genes and 30 
potentially novel candidates are presented in Fig. 6 for both datasets. The human study aimed to identify novel regu-
lators of Lassa virus entry. COG3 and COG4 genes were identified as potential candidates (combined FDR: 2.54e-29 
and 8.00e-29, respectively) and represented as direct neighbors to known genes in the network (Fig. 6a). Indeed, 
these two genes have been identified in another screening experiment, which aimed to detect genes involved in the 
infection of Rift Valley fever virus19. The mouse study attempted to reveal unknown regulators of the X chromosome 
inactivation process. The Cbx7 gene was identified as a potential new candidate (combined FDR: 6.19e-7) and was 
also directly connected to known genes in the STRING network (Fig. 6b). Cbx7, a member of the polycomb com-
plex 1, has been implicated in the XCI process previously54. Of note, Cbx7 may not have been included using only 
sense enrichment test given its marginal FDR (0.057). Notably, these candidates were not identified in the original 
paper of these two datasets. The detailed candidate lists from our method and the original papers are provided in 
Supplementary Data 1–2 and compared in Supplementary Fig. S9.

VISITs pipeline. The VISITs pipeline can be divided into several modules: pre-processing, QC, data diag-
nosis, statistical analysis and visualization, as shown in Fig. 7. BAM files from any aligner can be used as input 
files. VISITs will then perform pre-processing and QC in a first step. For data diagnosis, GC-content bias (see 
Supplementary Figs S4–5), intra-group variance (see Supplementary Fig. S10), and Minus-Average (M-A) plot 
(see Supplementary Fig. S11) will be generated. Results from QC and data diagnosis should be interrogated before 
performing statistical analysis (see Supplementary Table S5).

For statistical analysis, when RNA-seq data are available, it is recommended to use the transcriptomic approach, 
where non-expressed transcripts and genes are removed. Two methods of counting are available, i.e., counting 
insertion sites at the gene level or at the transcript level. Due to the lack of ground-truth evidence of interesting 
biological questions (here lassa virus entry and XCI) on the transcript level, results for these studies are presented at 
the gene level. In addition, transcriptome reconstruction remains challenging due to insufficient sequencing depth 
of RNA-seq data or due to the unavailability of data from mouse haploid cells. We also tested a sliding-window 
approach on these two datasets, but the performance obtained was very limited (data not shown), probably due to 
lower coverage of insertions (see Supplementary Table S3) and ignorance of the existing gene model.

Finally, VISITs produces an HTML report for results visualization with insertion tracks (see 
Supplementary Fig. S12) and a bubble plot summarizing top candidates (see Supplementary Fig. S13).

pAUC count.Human sense.Human count.Mouse sense.Mouse

Total Count 0.594 0.777 0.291 0.268

RLE (DESeq2) 0.790 0.806 0.286 0.281

TMM (edgeR) 0.580 0.780 0.268 0.277

CisGenome 0.592 0.776 0.283 0.278

Table 1.  Performance of four normalization methods in different scenarios. Performance was measured 
using rescaled partial area under curve (pAUC) at false positive rate 0.01. Higher pAUC indicates better 
performance. count.Human: count enrichment test without replicates using fisher-exact test in the human 
dataset; sense.Human: sense enrichment test without replicates using the binomial test in the human dataset; 
count.Mouse: count enrichment test with biological replicates using DESeq2 in the mouse dataset; sense.Mouse: 
sense enrichment test with replicates using DSS in the mouse dataset. RLE: Relative Log Expression; TMM: 
Trimmed mean of M-values.
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Conclusions
Compared with other screening approaches, e.g., RNAi or CRISPR-Cas9 screens, PhiT-seq in haploid cells has 
two main advantages: no off-target effects have been reported and the coverage of genomic features is higher, 
including promoters and lncRNAs. In recent publications, comparable performances were also observed between 
these screening methods in identifying essential genes in yeast and human4,5.

One limitation of our study is that all EIs were treated equally in the counting process. However, an insertion 
located in a coding sequence (CDS) might be more influential than an insertion in the 5′ /3′ -untranslated (UTR) 
or enhancer. An ideal approach should consider the different effect of insertions present in the UTR and CDS. 
Nevertheless, in practice it remains very challenging to quantify such differences, due to the lower coverage in 

Figure 6. STRING network showing the interaction between known genes (red) and potential candidates. 
Potential candidates were defined as the top 30 candidates (excluding known genes) using combined FDR in the 
(a) human and (b) mouse datasets. 1st order neighbors of known genes were shown in orange and high-order 
neighbors or isolated nodes were shown in blue. Empirical p-values were generated using a randomly permuted 
STRING network for 10,000 times, calculating the proportion of times where the summarized connectivity to 
the known genes from the novel candidates is larger than the observed one.
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intergenic regions and a short list of verified candidates. Another limitation is how the quality measure and 
analyzing approaches proposed here could be generalized to other experiments. Indeed, available PhiT-seq data 
are still limited. With more PhiT-seq data becoming available, we expect to further refine the measures and 
approaches developed in VISITs.

VISITs is the first pipeline that is dedicated for pre-processing, QC, statistical analysis and results visualization 
of PhiT-seq data. In our study, we illustrated the usage of VISITs on two positive selection screens (identification 
of survival genes after selection). More importantly, although PhiT-seq experiments published before were mostly 
performed without replicates, we have noticed more published experiments with replicates in the recent years4,7. 
By using existing frameworks developed for other NGS data analysis, VISITs enables handling of biological vari-
ance as well as more complicated experiment design.

Materials and Methods
Human and mouse datasets. The human PhiT-seq dataset, used in our study, was retrieved from NCBI 
Sequence Read Archive under accession number SRP018361. In this dataset, SRR663777 was the control library 
and SRR656615 was the selected library10. The 36 genes used as ‘true-positive’ in our study were extracted from 
two publications10 (see Supplementary Table S4). The other two selected libraries undergoing DAG1 (SRR663778) 
and heparan sulfate depletion (SRR663779) were also used, but only in the quality control step. RNA-seq data 
from human HAP1 cells were retrieved from SRA under accession SRP044391. It includes two biological repli-
cates sequenced by single-end protocol20.

The mouse PhiT-seq dataset, used in our study, was retrieved from NCBI Sequence Read Archive under acces-
sion number SRX1060416 (control) and SRX1060407 (selected). Six biological replicates (ELAM4/5/7/8/9/10) 
were retrieved from each accessions in a paired way7.

For detailed information about these two datasets, see Supplementary Table S2.

Mapping. For the human PhiT-seq dataset10, reads were first trimmed to 36 nt, then mapped to hg38 using 
bowtie (v1.0.0)24, allowing no mismatches, as described in Jae et al.10. For the human RNA-seq dataset20, reads 
were mapped to hg38 using STAR (v2.4.2a)55, allowing up to 2 mismatches. For the mouse PhiT-seq dataset7, 
reads were first trimmed to remove adapters using trimmomatic (v0.32)23 and then mapped to mm10 using 
bowtie2 (v2.2.3)56, with default settings as described in Monfort et al.7.

Counting by Transcripts 

Transcriptome  Approach 

Count/Sense Enrichment 

Recompiled  
Transcriptome  

Counting by Gene 

Read alignment (BAM file) 

Pre-processing  (Duplicates/Multiple-hits  removal)

Count/Sense Enrichment 

Candidate  Gene/
Transcript 

Quality Control Data Diagnose

     Pre-process

Optional

    Analyze

  Visualization

Recommmended Workflow

Data Diagnose    

  

Figure 7. Workflow of VISITs. The input should be BAM files after alignment to the genome. After pre-
processing and quality check, two different approaches could be used, 1) counting by gene: Insertions were 
counted in recompiled gene model; 2) counting by transcript: Insertion sites were counted in recompiled 
transcript model. RNA-seq data can be integrated if available in both approaches. An R markdown file was 
generated to visualize the results. The counting-by-gene approach is recommended.
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Pre-processing and quality control (QC). Reads with multiple-hit positions or mapped on the chrY were 
removed. Reads with same starting genomic coordinate and orientation were collapsed to derive independent 
insertion sites. Both procedures were done using customized scripts, which are available in VISITs.

Bedtools (v2.22.0)57 were used to count the number of independent insertions in each gene, using Gencode37 
human V23 and mouse M6 as gene models. For Manhattan plot, TPM (transcripts per million reads) were calcu-
lated for each gene, where the transcript length was replaced by gene size, as the insertions were counted in both 
intron and exon. For PCA plot, data were first transformed by function varianceStabilizingTransformation(), 
then visualized by plotPCA() in DESeq2 (v1.10.1)42. For saturation plot, function generateSubsampledMatrix() 
in subSeq (v1.0.1) was used to randomly sample the count matrix from 1% to 97% in a step of 3%. ggplot258 was 
used to generate all the plots in QC module, except the coverage profile, which was generated using ngsplot59.

Identification of blind spots. Genes were first divided into different types (protein coding genes, rRNAs, 
tRNAs, miRNAs, etc.) by Ensembl using biomaRt60. For each type, the number of genes without insertions 
(defined as no insertions in the control library) was compared with those happened by chance using Fisher’s exact 
test, generating log2-odds-ratio and p-values. All multiple testing corrections in our study were performed using 
Benjamini-Hochberg method61.

A linear model was established to estimate the contribution of following factors to the number of insertions 
(TPM) in each gene:

(1) Gene Essentiality4;
(2) Number of transcription starting sites (Number of TSS), generated from Gencode37;
(3) GC content %, from biomaRt60;
(4) Gene size, from Gencode37;
(5) Gene type, from biomaRt60;
(6) Expression Level from human HAP1 cells. Read counts for each gene were summarized using featureCounts 

(v1.4.5)35. Expression levels were defined as the average TPM of the two replicates.

Number of independent insertions in each gene was first log2-transformed, and fit by function ols in rms62, 
using restricted splines to account for non-linear effects and Akaike information criterion to decide the usage of 
degree of freedom.

Recompiling gene models. The number of independent insertion for each gene was counted and com-
pared using two different approaches:

1. Recompiled Model: All potential exons together with canonical splicing sites (i.e., 2 nt at both ends of intron) 
were concatenated, forming a conceptual transcript. The remaining part of the gene was considered as intron-
ic region. Bedtools57 (v2.22.0) was used to count the insertions for exon and intron in a strand specific way.

2. Recompiled Model with RNA-seq data: Kallisto (v0.42.1)63 was used to quantify the transcripts. The tran-
scripts with positive TPM (Transcripts Per Million reads) were kept, and concatenated to form a conceptual 
transcript.

In both approaches R package genomeIntervals (v1.26)64 was used.

Handling biological replicates. For count enrichment, Voom45, DESeq242, edgeR43 and DSS65 were com-
pared. In edgeR, function estimateDisp() was used; in DESeq2, function estimateDispersions() with Local-Fit 
was used. When implementing DSS, function estDispersion() was used to replace the previous two functions in 
edgeR and DESeq2. For sense enrichment, DESeq242 was also used with default dispersion estimation methods.

For all comparisons, data were normalized to total count first. pAUC (partial Area Under ROC Curve) was 
calculated at false positive rate 0.01, using R package ROCR66. Independent filtering and outlier detections were 
disabled in edgeR and DESeq2, as we focused on comparing the approaches on dispersion estimation. All tests 
were performed as one-sided.

Normalization. Four normalization methods were compared: total count, RLE (used in DESeq242), TMM 
(used in edgeR43) and adapted CisGenome (used in ChIP-Seq50). For CisGenome, the basic unit of counting win-
dows was replaced by gene. For RLE and TMM, function calcNormFactors() in edgeR43 and estimateSizeFactors() 
in DESeq242 were used with default setting, respectively.

Parameter choice. Duplicates were removed using a customized script (pre-processing.sh) provided in 
VISITs. Insertions located in both sense/antisense strands of promoter regions were counted as EIs.

Prioritization and verification. P-values from count and sense enrichment tests were combined using a 
weighed Z-test52, where the weights were the mean cpm (count per-million reads) across all libraries for count 
and enrichment tests. For genes without p-value from sense enrichment (e.g., the sense enrichment test cannot be 
performed on genes with only one exon), the combined p-value was the p-value from count enrichment.

STRING network67 was used to verify the new candidates. The networks were visualized using igraph (v1.0.1)68.

Availability. VISITs is available at https://sourceforge.net/projects/visits/under GPL license.

https://sourceforge.net/projects/visits/
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