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Abstract

AU-rich elements (AREs) are 30 UTR cis-regulatory elements that regulate the stability of mRNAs. Consensus ARE motifs have been deter-
mined, but little is known about how differences in 30 UTR sequences that conform to these motifs affect their function. Here, we use func-
tional annotation of sequences from 30 UTRs (fast-UTR), a massively parallel reporter assay (MPRA), to investigate the effects of 41,288 30

UTR sequence fragments from 4653 transcripts on gene expression and mRNA stability in Jurkat and Beas2B cells. Our analyses demon-
strate that the length of an ARE and its registration (the first and last nucleotides of the repeating ARE motif) have significant effects on
gene expression and stability. Based on this finding, we propose improved ARE classification and concomitant methods to categorize and
predict the effect of AREs on gene expression and stability. Finally, to investigate the advantages of our general experimental design we
examine other motifs including constitutive decay elements (CDEs), where we show that the length of the CDE stem-loop has a significant
impact on steady-state expression and mRNA stability. We conclude that fast-UTR, in conjunction with our analytical approach, can pro-
duce improved yet simple sequence-based rules for predicting the activity of human 30 UTRs.
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Introduction
30 untranslated regions play an important role in regulating
mRNA fate by complexing with RNA binding proteins that help
control mRNA localization, translation, and stability (Glisovic
et al. 2008; Castello et al. 2012; Mayr 2017). Identification of a
consensus UUAUUUAU sequence in the 30 UTRs of human and
mouse mRNAs encoding tumor necrosis factor (TNF-a) and a
variety of other inflammatory mediators led to the suggestion
that these AU-rich elements AREs) could be important for regu-
lating gene expression (Caput et al. 1986). Subsequent studies
confirmed that these and other AREs interact with ARE-binding
proteins such as AUF1 (also known as hnRNPD), HuR and other
Hu family proteins, and the CCCH zinc finger-containing RBPs
ZFP36 (tristetraprolin), ZFP36L1, and ZFP36L2 (Hodson et al.
2010), to alter mRNA degradation and protein expression
(Barreau 2005). In most cases, AREs have been reported to de-
stabilize mRNAs, although in some cellular contexts certain
AREs and ARE-binding proteins have been shown to stabilize
mRNAs (Peng 1998; Barreau 2005). Subsequent analyses of the
human genome concluded that as many as 58% of human
genes code for mRNAs that contain AREs (Bakheet 2001, 2003;

Bakheet et al. 2018), suggesting that these elements play a ma-
jor role in regulating expression of a large group of genes.

An initial classification of AREs was proposed based upon
studies of human 30 UTR sequences and analyses of mutation
effects and the activity of synthetic AREs (Chen and Shyu
1995). AUUUA motifs were recognized as critical for destabiliz-
ing effects of many 30 UTRs, and in many cases destabilizing
AREs contained two or more overlapping repeats of this motif.
However, some AUUUA motif-containing sequences were not
destabilizing and some AU-rich sequences that lacked the
AUUUA motif had potent mRNA destabilizing activity. Based
upon these observations, Chen and Shyu (Chen and Shyu 1995)
divided AREs into two classes of AUUUA-containing AREs and a
third class of non-AUUUA AREs. Class I AUUUA-containing
AREs had 1-3 copies of scattered AUUUA motifs coupled with a
nearby U-rich region or U stretch, whereas class II AUUUA-
containing AREs had at least two overlapping copies of the
nonamer UUAUUUA(U/A)(U/A) in a U-rich region. Non-AUUUA
AREs had a U-rich region and other unknown features, and the
relationship of these sequences to AUUUA-containing AREs
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remains poorly understood. Subsequent studies based on anal-
yses of a set of 4884 AUUUA-containing AREs led to a new clas-
sification based primarily on the number of overlapping
AUUUA-repeats (Bakheet 2001, 2003; Bakheet et al. 2018). This
classification system, with five clusters distinguished by the
number of repeats, was used to identify AUUUA-containing
AREs in the human genome. AREs identified using this classifi-
cation were found to be abundant in 30 UTRs of human genes.
However, the functional activities of this large set of ARE-
containing 30 UTR sequences remains mostly unknown.

To address this shortcoming we relied on novel experimen-
tal and analytical strategies. First, we leveraged massively par-
allel reporter assays (MPRAs), which are capable of
simultaneously characterizing the regulatory impact of thou-
sands of mRNA sequence fragments for functional analysis
(Zhao et al. 2014; Kreimer et al. 2017; Rabani et al. 2017; Avsec
et al. 2021; Sample et al. 2019). We previously developed a mas-
sively parallel method for functional annotation of sequences
from 30 UTRs (fast-UTR) (Zhao et al. 2014). In that study, we
used fast-UTR to analyze a set of 3000 160 nt sequences from
human 30 UTRs that were highly conserved across mammalian
species and confirmed that AREs and constitutive decay ele-
ments (CDEs) in these sequences are important contributors to
30 UTR-mediated mRNA destabilization. However, due to the
limited number of sequences included in that study, we were
unable to identify rules that governed the activity of sequences
that conformed to these motifs.

To address this issue, in this study, we designed, produced,
and analyzed a fast-UTR library containing a comprehensive set
of ARE sequences from human mRNA 30 UTRs in human cell
lines. Although the activity of specific AREs can differ between
cell types, our goal was to discover a general rule that could be
applied in different cells. We began our analysis by studying
Jurkat T cells, given the importance of AREs in T cell development
(Hodson et al. 2010) and autoimmunity. We then studied the
same set of 30 UTR sequences in Beas2B airway epithelial cells to
investigate whether rules discovered in Jurkat T cells were repli-
cated in a different cell type. In total, the MPRA in our current
study included 41,288 sequences from 4653 transcripts from each
of two different cell lines. Applying novel analytic approaches to
this set of sequences (?) allowed us to identify rules that predict
functional effects of AREs on mRNA stability and stead-state ex-
pression.

To verify that our combined fast-UTR approach and analytic
strategy was not uniquely successfully in the context of AREs,
we also considered a second important class of 30 UTR
regulatory elements known as CDEs (Caput et al. 1986; Leppek
et al. 2013). CDEs are conserved stem loop motifs that bind to
the proteins Roquin and Roquin2, resulting in increased mRNA
decay (Leppek et al. 2013). CDEs include an upper stem-loop
sequence of the form UUCYRYGAA flanked by lower stem
sequences. Lower stem sequences are formed by 2–5 nt pairs of
reverse-complementary sequences (e.g., CCUUCYRYGAAGG
has a lower stem length of 2). We similarly generated a fast-
UTR library containing a comprehensive set of CDEs. We again
obtained novel sequence based rules predicting CDE function.
Finally, to show the potential of our approach to aid functional
interpretation of arbitrary 30 UTR sequence fragments, we
conclude by developing statistical models to predict the
activity of entire 160 nt 30 UTR sequence fragments in our full
MPRA data set.

Materials and methods
Sequence design
Definition of 30 UTR regions and regulatory regions
We segmented 30 UTRs from human RefSeq transcripts (v68) into
160 nt sliding windows with a shift of 80 nt. Only regions of at
least 20 nucleotides were included; segments shorter than 160 nt
were padded with a sequence from the CXCL7 30 UTR
(NM_002704, 475-602) that had minimal regulatory effects in
prior experiments (Zhao et al. 2014). We then identified those
160 nt 30 sequence segments that contain suspected ARE motifs
and CDE motifs, as well as several other features that are de-
scribed in the Supplementary Methods. The ARE motifs targeted
for inclusion were those defined according to the ARED website
(Bakheet 2001) as of Fall 2014, generally containing one or more
repeat of AUUUA, following rules that are precisely defined in the
Supplementary Methods (Supplementary Table S1). Since the de-
sign of our experiment, the ARED group has revised their ARE
class definitions into “clusters” in a more recent publication (ARE
Plus) (Bakheet et al. 2018), and our analysis follows those updated
conventions. The CDE motifs contain a central sequence of
UUCYRYGAA, surrounded by a “lower stem” of 2–5 bp and then
an unpaired nt.

In addition to the reference regions containing ARE and CDE
motifs, we designed segments that contain mutated versions of
these motifs. For AREs, we mutated the central U of the AUUUA
pentamer to a C or G, alternating down the sequence (for exam-
ple AUUUAUUUA was mutated to AUcUAUgUa). Since several
features were targeted for inclusion, we noticed that there are
several regions in the dataset that contain core AUUUA pentam-
ers that were shorter than the ARED definitions (for instance, a
region containing a CDE might also contain an “AUUUA” within
the 160 nt window), so we have designed segments where 429 of
these smaller AUUUAs were mutated into AUcUAs (Bakheet
2001). For CDEs, two types of mutations were introduced: (1)
UUCYRYGAA was mutated to UagYRYGAA, and (2) the CDE se-
quence was shuffled. In total, the assay contained 41,288 seg-
ments from 13,334 3’0 UTR regions from 4653 RefSeq transcripts.

Fast-UTR assay
An oligonucleotide pool containing the full set of library seg-
ments was produced by massively parallel synthesis (Agilent),
amplified by PCR, and cloned into the BTV lentiviral plasmid as
previously described (Zhao et al. 2014). Barcodes were introduced
using random 8-mer sequences incorporated into the PCR primer
in order to obtain systematic estimates of technical variability. A
lentiviral library was used to transduce Jurkat T cells or Beas2B
airway epithelial cells expressing tetracycline transactivator tTA,
allowing for doxycycline (Dox)-regulated reporter transcription.
Cells were maintained in culture for 2 weeks after transduction
and were not stimulated. Cells were left untreated (t0) or treated
with Dox (1 lg/ml) for 4 h to inhibit reporter transgene expression
(t4) prior to isolation of DNA and RNA using the AllPrep DNA/
RNA/Protein Mini Kit (Qiagen# 80004) according to the manufac-
turers protocol. RNA was reverse transcribed to cDNA, and both
genomic DNA and cDNA were amplified to produce sequencing
libraries. Sequencing was performed using an Illumina HiSeq
4000. After processing, we were left with an average of 22 clones
per segment for the Jurkat data at t0, 18 clones per segment for
the Jurkat data at t4=ðt4 þ t0Þ, 9 clones per segment for the Beas2B
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data at t0, and seven clones per segment for the Beas2B data at
t4=ðt4 þ t0Þ.

Data analysis
Steady state expression and stability
We quantify mRNA activity in two ways, by measuring “steady-
state expression” and “mRNA stability.” To quantify steady state
expression we use the count-normalized ratio before the addition
of Dox:

steady state expression � RNA
ðRNAþ DNAÞ jt0

(1)

To quantify mRNA stability, we use a ratio of ratios, comparing
the expression 4 h after the addition of Dox (t4) to the steady-
state expression (t0):

mRNA stability �
RNA

ðRNAþDNAÞ jt4

RNA
ðRNAþDNAÞ jt4

þ RNA
ðRNAþDNAÞ jt0

(2)

This is not intended to be a perfect measurement of the decay
time, but should give some measure of the stability with consis-
tent use. For example, if a segment contains a binding site for an
mRNA degrading protein, the steady state expression and stabil-
ity will be small, and a mutation to that binding site will lead to
greater stability; whereas a segment containing a binding site for
a stabilizing protein will result in a larger estimate of steady state
expression and stability. These ratios do not diverge when RNA
or DNA counts are small. In a previous study (Zhao et al. 2014),
we showed that the concentration decays exponentially, and we
used the 4 h timepoint because it contained the most information
and the widest dynamic range.

To investigate the effect of a mutation on the activity of a UTR
segment we examine the change (D) in steady state expression or
stability by subtracting the reference value from the mutant
value: D � Mutant � Reference. If a functional element (ARE or
CDE) is destabilizing, then mutating it will likely lead to a positive
change in stability and expression by disrupting the correspond-
ing mRNA binding proteins.

To set a minimum threshold for the data quality of a 30 UTR
sequence segment, we required segments to be represented by at
least 5 clones with more than 5 counts of DNA each, and for each
segment to have at least 1 count of RNA in at least 1 clone. While
low RNA counts are generally indicative of low gene expression,
we believe the measurement of zero RNA counts to most likely be
a technical artifact, since the correlations across sequencing rep-
licates are greatly increased when segments with zero RNA
counts are removed.

GC content
GC content has been suggested to impact measurements of gene
expression and stability (Benjamini and Speed 2012; Litterman
et al. 2019). Because the primary purpose of this study is to exam-
ine the relative contributions of known sequence motifs to the
expression and stability of mRNAs, confounding effects of GC
content are a critical consideration.

Therefore, to account for GC-content in the fast-UTR data, we
fit 5th-order polynomials to the steady state expression and sta-
bility as a function of GC-content, and subtract them from the
steady state expression and stability. We assessed the perfor-
mance of Nth order polynomial fits (N 2 f1; . . . ; 7g) through leave-
one-out cross validation and found that the prediction accuracy

(Pearson correlation between predicted and actual steady state
expression and stability) did not improve significantly after N¼ 5.
See Supplementary materials for further details.

Evaluation of ARE classification methods
To examine the quality of previously proposed as well as novel clas-
sification systems for AREs, we propose assessment via prediction
quality. We assess the quality of predictions by determining correla-
tions between measured and predicted RNA expression and stabil-
ity values using a leave-one-chromosome-out approach. Broadly,
we argue that better classification approaches will more accurately
predict the affect of individuals AREs.

Leaving out one chromosome eliminates some sources of bias,
such as generating predictions from overlapping genomic
regions. Therefore we split the data into a training set of 30 UTR
segments from 23 chromosomes with which we generated our
model parameters, and a test set of segments from the 24th chro-
mosome (treating Y as a separate chromosome from X). We re-
peated this process for each chromosome to generate a
prediction for every ARE-containing segment in the dataset.
When predicting the effect of a designed mutation on a mutant
and reference sequence pair, we only consider mutations that
disrupt pentamers of the ARE. For categorical predictions, we cal-
culated the categorical means from the training set, then used
those means as predictors for the test set. For example, if the
mean for category 3 AREs was 0.4 in the training set, we assigned
a “predicted value” of 0.4 to any category 3 ARE in the test set. For
regression-based methods, we performed the regressions on the
training set to generate model parameters, then applied those
models to the test set to produce predictions. The correlation be-
tween predicted and measured values is then reported.

The rules for five ARE prediction methods are detailed below,
and additional methods are given in the Supplementary materi-
als. Unless stated otherwise, a segment is classified by its longest
ARE if more than one is present:

i) ARE Plus: We used the five cluster motifs described by
Bakheet et al. (2018) to create a categorical prediction vari-
able. The mean value of each category (cluster) in the
training set was used as the predicted value in the test set.
Clusters 1 and 2 motifs total 13 nucleotides, with AU-rich
segments flanking one or two AUUUA core motifs, respec-
tively. Clusters 3, 4, and 5 include 3, 4, or 5 exact AUUUA
repeats respectively. This system differs somewhat from
the earlier ARED definitions described by the same group
(Bakheet 2001) which we used for the initial design.

ii) AREScore: We used the AREScore website created by Spasic
et al. (2012) to give each sequence fragment in the training
and test sets an ARE “score.” We then treated AREScore as
a continuous variable and performed linear regression.
Regression of steady state and stability measurements on
the AREScores created predictions for a given AREScore in
the test set.

iii) Naive Effective Length Pentamers: Pentamers were classified
by the “effective length” according to the formula
floorððlengthðntÞ þ registration� 2Þ=4Þ. “Registration” refers
to the starting nucleotides of the ARE within the initial
AUUUA pentamer: an ARE that starts AUUU*¼0, UUUA*¼1,
UUAU*¼2, and UAUU*¼3. No mismatches allowed. The num-
ber of pentamers was treated as a categorical prediction vari-
able. The mean value of each category in the training set was
used as the prediction value in the test set.
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iv) Effective Length (nt): AREs classified by the “effective
length” (length(nt) þ starting registration), rather than
class of pentamer. No mismatch allowed. Effective length
is treated as a categorical variable, where the mean of each
category in the training set is used to predict the value in
the test set.

v) Lasso K-Mer Regression: Each 160 nt segment was broken
down into a list of 156 5-mers, which were used in a Lasso
(Tibshirani 1996) regression scheme following (Rabani et al.
2017), solving the linear model y ¼ Xbþc for effect sizes b (y
is the outcome vector containing steady state expression
or stability, and X is the frequency matrix). Further details
are given in the Supplementary materials. Here the train-
ing set is not limited to segments with AREs, and includes
every segment in the full MPRA; but the test set is limited
to the same set of segments with AREs as Figure 3 (any
AUUUA pentamer with length 6 or higher, plus the length-
5 pentamer “AUUUA”). To predict the effect of mutations,
we simply subtract the predicted expression or stability of
the wild-type from the predicted expression or stability of
the mutant; we do not train and test on the difference data
directly.

Results
An MPRA to investigate the effect of AREs on gene
expression and stability
We used our previously developed fast-UTR MPRA to test effects
of a large set of human 30 UTR segments containing elements
conforming to previously defined ARE motifs on mRNA steady-
state levels and mRNA stability (Figure 1). In our initial analysis,
we observed a significant effect of GC content of the 30 UTR seg-
ments on steady state expression, with increased GC content as-
sociated with reduced expression (Supplementary Figure S1A).
We recently reported a similar finding in a fast-UTR-based analy-
sis of �27,000 70-nt RNA binding protein binding 30 UTR sequen-
ces tested in mouse primary T cells (Litterman et al. 2019). GC
content also had an apparent effect on mRNA stability
(Supplementary Figure S1B). The GC content effects are not due
to AU-rich elements, since their effect is to do the opposite: AU-
rich elements have low GC-content but generally lower steady-
state expression and stability. In subsequent analyses, we ad-
justed for GC content as described in the Materials and Methods
(Supplementary Table S2 and Figure S1).

Measurements were performed at several time points with re-
spect to the addition of Dox: before Dox was added (t0), and 4 h af-
ter Dox. Four hours was chosen because evaluating RNA/
(RNAþDNA) at t4=ðt4 þ t0Þ showed greater sequence-based varia-
tion than using t2 or t6 in preliminary data, and because it had a
greater dynamic range in our past study of fast-UTR (Zhao et al.
2014). We did perform similar analyses of some of the data using
t2 and t6 for comparison; see Supplementary Figures S13, S14,
and Table S10. Data analyzed at t2 generally replicated the results
analyzed at t4. The t6 data have limited value for assessing less
stable transcripts, likely because the amount of residual tran-
script is low and difficult to measure accurately, and low levels of
transcription that persist in the presence of Dox are sufficient to
interfere with the measurements of stability.

Established categories of ARE predict gene
expression and stability
We found that ARED-Plus classification was associated with
functional activity of 30 UTR segments. When 30 UTR segments

were classified according to the presence of sequences conform-
ing to the ARED clusters, ARE cluster membership had a signifi-
cant impact on both steady state RNA level (Figure 2A) and RNA
stability (Figure 2B). Both steady state level and stability de-
creased as the number of ARE repeats increased. Segments that
contained the minimal AUUUA sequence only (without any
ARED-Plus motifs) had a slightly lower steady state level and sta-
bility than segments with no AUUUA or ARED-Plus motif
(p ¼ 7� 10�6; 4� 10�30; 7� 10�3, and 3� 10�23 for Figure 2, A–D,
respectively, by two-sided Welch’s t-test). There was a consistent
decrease in steady state RNA and stability with cluster number
from clusters 1 through 3. Cluster 5 motif-containing segments
were more active than cluster 3; cluster 4 segments were also

Figure 1 The fast-UTR MPRA. (A) The BTV plasmid includes a
bidirectional tetracycline regulated promoter (biTet) that drives
expression of enhanced green fluorescent protein (EGFP) and a reference
protein (truncated low-affinity nerve growth factor receptor, DLNGFR).
The EGFP reporter transgene includes a multiple cloning site (MCS) for
insertion of 30 UTR test sequences and a polyadenylation signal (pAS).
Pools of 160-mer oligonucleotides containing 30 UTR segments were
inserted into BTV together with random octamer indexes used to identify
each clone. Cells were transduced with BTV lentiviral libraries and
massively parallel sequencing was used to measure 30 UTR segment
sequences in genomic DNA and mRNA isolated from cells. (B) Steady
state mRNA levels were determined from clone read counts for mRNA
samples before the addition of Dox. mRNA stability was estimated from
mRNA read counts obtained before and 4 h after the addition of Dox to
inhibit transcription. The blue line represents a 30 UTR segment with an
element that promotes rapid mRNA decay and the green line represents
a sequence with an inactivating mutation of the destabilizing element
that increases steady-state mRNA levels and reduces the decay rate.
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associated with low expression and stability although the num-
ber of segments in this cluster was small and the confidence in-
terval was larger than for other clusters.

The 160-nt 30 UTR regions that we tested contained both AREs
and surrounding sequences that could also affect reporter ex-
pression. To more directly examine the effects of the AREs on ex-
pression levels and RNA stability, we leveraged our novel
technology to systematically examine the effect of mutations
that disrupted the AREs (Figure 2, C and D). As expected, disrupt-
ing AREs increased steady state RNA and stability. The effects of
mutations were clearly related to the number of AUUUA repeats,
as represented by ARED-Plus cluster.

Although Figure 2 shows a clear relationship between ARED-
Plus cluster and the effects of mutating AREs, Figure 2 also shows
a significant amount of variation within each cluster. While the
95% confidence intervals in Figure 2 are often very small, the
interquartile ranges typically vary from 0.1 and 0.2. As we contin-
ued to explore the behavior of AREs, we first wished to know how
much of the variation within each cluster was caused by techni-
cal sources of variability such as sampling error, and how much

of this variation could theoretically be improved by some differ-
ent set of rules for the activity of AREs.

To address this issue, we developed MPRAudit, a novel method
to determine the fraction of variance explained by sequence vari-
ation in MPRAs and other barcoded assays (?). The premise of
MPRAudit is that the technical variation from sequence to se-
quence can be estimated from the variation from clone to clone
for a given sequence segment. If this technical variability can be
determined, then we attribute the remaining variability between
sequences to be due to sequence variation. When MPRAudit is
applied to pairs of segments where the ARE motif has been delib-
erately mutated, it can determine the fraction of variance caused
by the type of mutation and the flanking sequence. We call this
quantity the “explainability,” denoted b2. In terms of the technical
and total variances, b2 � total�technical

total . When b2 is close to 0, the
technical variance is the source of all variation. When b2 is close
to 1, the variation from sequence to sequence is the primary
source of variation and technical sources are small. Table 1
shows that there is a significant amount of sequence variation
remaining (b2 > 0) within most of these established groups. This

Figure 2 Effect of established ARE clusters on mRNA expression and stability in Jurkat T cells. Boxplots show medians and quantiles, and notches
indicate 95% confidence intervals. (A, B) Effects of 30 UTR segments containing ARED motifs on (A) steady-state RNA expression and (B) RNA stability.
(C, D) Effects of mutations in ARED motifs on (C) steady-state expression and (D) RNA stability. D represents values for segments containing mutations
in the ARE motif minus values for the corresponding reference segment with intact ARE motifs. For the 3% of segments with more than one ARE, we
categorize them according to the largest ARE present. The “AUUUA” cluster consists of segments that contain the minimal “AUUUA” sequence but lack
the flanking sequences required for ARED-Plus. ARE cluster membership was significantly associated with changes in all four measures (p ¼ 3� 10�22

for A, 6� 10�149 for B, 1� 10�31 for C, and 8� 10�177 for D by linear regression).
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Figure 3 mRNA stability is associated with ARE length and registration. (A, B) Length of the ARE (in nt) is associated with mRNA stability for the
segment containing the ARE (A) and with the change in stability that resulted from mutation of the ARE (B). (C, D) Starting registration of the ARE
(starting nucleotide of the “AUUUA” pattern) is associated with mRNA stability (C) and mutation-induced change in stability (D). Notches in the
boxplots that show confidence intervals are barely visible at this scale. Linear regression shows that the slopes of these datasets (treating the x-axis as
a continuous variable) are nonzero, with two-sided P-values of < 1� 10�300; 9� 10�268; 2� 10�58, and 7� 10�3, respectively. (E) Classification of AREs
by length and registration, a schematic for panels (F) and (G). In (E–G), the x-axis gives the starting registration of the ARE (starting nucleotide of the
repeating “AUUUA” pattern), while the y-axis gives the length of the ARE. In (E), red lines indicate the step between ending registrations (ending
nucleotide of the repeating” AUUUA” pattern) of *UUUA (boxes above the red line) and *UUAU (boxes below the red line). (F) mRNA stability is given by
the shade of blue according to the length and registration of AREs, following the schematic shown in (E). The mean mRNA stability for segments
lacking an ARE is 0.56, represented as white. The diagonal pattern of increasing shades in (F) and (G) show the importance of ARE registration to an ARE
of a given length. (G) Mutation-induced change in mRNA stability is given by the shade of red according to length and registration (white corresponds to
no change). Standard errors for each entry in each panel are given in the Supplementary Figures S6 and S7. In panels F and G, boxes that weren’t
studied, boxes that had no corresponding segments in the dataset, and boxes with large standard errors (�0.07) are excluded and filled with diagonal
stripes.
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suggests that there are different categorical subgroupings that
can explain more of the effects of ARE-containing sequences
than established clusters.

ARE registration and length affect mRNA stability
To create a new ARE classification system that could explain
more of the observed effects of ARE-containing sequence seg-
ments, we examined three parameters that we hypothesized
would correlate with ARE activity: the length of the ARE, the
starting registration of the ARE (the nucleotide on which the
AUUUA pattern starts), and the conservation status of the ARE.
For this analysis, we looked only at perfect matches to a repeat-
ing “AUUUA” pattern of length at least 6, plus exact matches to
the “AUUUA” pentamer itself.( Lagnado et al. 1994; Zubiaga et al.
1995; Wiklund et al. 2002) Hence, we examined “UUAUUU,” de-
spite the fact that it does not contain an “AUUUA,” but did not in-
clude “UAUUU” because it is too short.

As expected, the length of the ARE was associated with activ-
ity. We found a gradual increase in ARE activity as a function of
the ARE length (in nucleotides) without obvious abrupt increases
at 5-nt (AUUUA pentamer) intervals (Figure 3, A and B shows
mRNA stability; Supplementary Figure S2, A and B shows steady
state). This suggests that the length of the ARE may provide addi-
tional information beyond that provided by the ARED-Plus clus-
ters, which depend on the number of pentamers.

We next considered the starting point of the ARE within the
AUUUA pentamer, which we term the “starting registration.” We
define an ARE starting with “A” to have starting registration 0,
and each time a nucleotide is removed from the front of the first
pentamer the registration increases by 1. For instance, the se-
quence “AUUUAUU” has length 7 and registration 0, while
“UUUAUUU” has length 7 and registration 1 (and we consider this
an ARE despite the absence of an “AUUUA”). Since overlapping
pentamers have a periodicity of four nucleotides, an ARE may
have one of four possible starting registrations (and one of four
possible ending registrations, see Supplementary Figures S6 and
S7). We found that starting registration did have an effect on ARE
activity, with sequences beginning with “AUUU” being less active
than sequences with other registrations (Figure 3, C and D shows
mRNA stability; Supplementary Figure S2, C and D shows steady
state). We conclude that both ARE length and registration have
significant associations with ARE activity in univariate analyses.

In contrast to ARE length and registration, we found that con-
servation status had little effect on ARE activity. We used
phastCons, which identifies conserved elements from 100 verte-
brate species (Siepel 2005), to classify AREs as conserved (overlap
with phastCons conserved regions) or non-conserved.
Surprisingly, there was little difference between the activity of
conserved and non-conserved AREs (Supplementary Figure S5).
We also considered whether more highly conserved sequences

might be more active than other conserved sequences. However,
within the set of conserved sequences, we found no significant
association of the phastCons lod score with ARE activity in our
fast-UTR assay.

Since ARE length and registration were each independently as-
sociated with ARE activity, we explored the relationship between
these two parameters further. Any sequence of AUUUA pentamer
repeats can be classified by its length in nucleotides and its start-
ing (or ending) registration. Figure 3E shows the sequence motifs
of several example AREs, organized according to ARE length
along the y-axis and ARE starting registration along the x-axis.
Motifs of constant ending registration appear along the diago-
nals; for instance, the boxes directly above (or below) the red lines
have the same ending registration. Figure 3, F and G are similar
to 3E, except the color of each box represents the mean stability
across sequence segments or change in stability with mutation,
respectively. As expected, activity increases with increasing ARE
length (moving from top to bottom of heat maps). The diagonal
contours arise due to effects of registration. Similar effects are
apparent when analyzing steady state RNA levels rather than
stability, and when using ending registration rather than the
starting registration as a parameter (Supplementary Results and
Supplementary Figures S6 and S7). These results suggest that
registration, in additional to length, should be an integral part of
ARE classification and provide insights into underlying mecha-
nisms.

ARE classification methods development and
comparison with prior methods
We anticipated that our enhanced understanding of how the
length and registration (starting or ending nucleotide) of AREs af-
fect gene expression and stability would allow us to make
improvements to existing categories of AREs and to create better
prediction methods. To quantify the performance of these cate-
gories, we used leave-one-chromosome-out cross validation to
train and test predictions for each of the segments with AREs in
our dataset. Leaving out one chromosome avoids overfitting from
overlapping 30 UTR segments, since overlapping segments will be
within the same chromosome.

We examined correlations between out-of-chromosome pre-
dictions and measured data for several classifications of AREs
and linear models as described in the Methods section. Using the
5 clusters defined by ARED-Plus (Bakheet et al. 2018) (as in
Figure 2, A and B) led to a modest correlation with steady state
mRNA level and a somewhat higher correlation with mRNA sta-
bility (columns 1 and 2 of Table 2). Correlations were somewhat
higher for mutation-induced changes in mRNA level and stability
(columns 3 and 4), since these measures depend more critically
on the targeted ARE itself than on the other sequences within the
30 UTR segments. We also examined the “AREScore” scoring

Table 1 Fraction of variance explained by sequence variation within the clusters of AREs defined using ARED-Plus motifs (Bakheet et al.
2018)

Cluster b2 D steady state b2 D stability NSeqs steady state NSeqs stability

AUUUA 0.2269 6 0.0006 0.057 6 0.002 4098 3714
ARED-Plus Cluster 1 0.2271 6 0.0004 0.116 6 0.001 5278 4725
ARED-Plus Cluster 2 0.214 6 0.002 0.307 6 0.005 1122 1025
ARED-Plus Cluster 3 0.32 6 0.01 0.41 6 0.02 158 155
ARED-Plus Cluster 4 0.09 6 0.15 0.16 6 0.21 9 9
ARED-Plus Cluster 5 0.35 6 0.02 0.50 6 0.01 77 73

If b2 is zero then the variation is due to technical factors; if b2 is greater than zero then the data support more refined subgroupings of AREs with different
functional properties within each class. NSeqs gives the number of distinct sequences that pass our quality control filters.
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algorithm (Spasic et al. 2012), which performs as well as ARED-
Plus on predictions of steady state expression and stability (col-
umns 1 and 2 of Table 2), but poorly predicts the change in steady
state expression and stability due to the deliberate mutations in
our study (columns 3 and 4). Including both ARE length (in nt)
and registration (the starting nucleotide) to form an “effective
length” (as suggested by Figure 3, E–G) resulted in significant
increases in correlations, making 50% improvements to predic-
tions of both steady-state expression and mRNA stability. To ver-
ify statistical significance, we compared the squared out-of-
chromosome residuals generated by the ARED-Plus categories to
the squared out-of-chromosome residuals generated by the
“effective length” method. A Mann-Whitney U-test finds that the
out-of-chromosome residuals were smaller for the “effective
length” categories with P-values of P ¼ 0.010, 5:1� 10�30, and
0.43, 3:1� 10�8 for steady state mRNA, stability, change in steady
state, and change in stability due to mutation, respectively. We
also considered a set of related methods based on ARE length,
starting or ending registration, and allowance of a mismatch to
the strict “AUUUA” motif, but found none that outperformed the
“effective length” (length and starting registration) method
(Supplementary Table S5).

The wealth of data generated by this protocol also opens the
possibility of more complicated sequence-based prediction
approaches to 30 UTR function. As a first step in this direction, we
report the results of a method that makes use of k-mer decompo-
sition and regression. This use of k-mers is different from the
other methods we have attempted, in that it is agnostic to the
presence of AREs in the training data and might be sensitive to
the presence of other active elements in the 30 UTR aside from
AREs. Perhaps for this reason we found that the k-mer method
had the best performance on predictions of steady state expres-
sion and stability. On the other hand, the finite length of the k-
mer limits the scope of the model and may prevent it from learn-
ing rules for longer and more active AREs. Therefore its perfor-
mance on predicting the change in steady state and stability with
ARE mutation was slightly worse than the performance of the ef-
fective length method. The distribution of k-mer effect sizes, the
identity of top k-mers, and the effect sizes of ARE-related k-mers
are given in Supplementary Figure S9 and Table S3 and S4,

respectively. AUUUA is one of the most negative 5-mers, and the
other ARE component sequences (UUUAU, UUAUU, and UAUUU)
have negative lasso amplitudes as well. On the other hand,
substituting a C or G for one of the nucleotides of these four ARE
component sequences results in fewer negative amplitudes: only
2 out of 40 of the mutated 5-mers are negative (p ¼ 1� 10�4 using
a Fisher exact test). The mutated 5-mers are also more positive
than the 980 remaining 5-mers in the dataset (P ¼ 0.003 using a
chi-square test with Yates’ correction for continuity).

Overall, these results show that the new knowledge intro-
duced by our analysis is helpful for categorizing and classifying
AREs and does a better job of predicting gene expression and the
effects of mutations than previously established categories.

Table 2 shows that our methods improve predictions, but
Table 3 shows that there is still room for further improvement.
MPRAudit allows us to calculate an upper limit to the perfor-
mance of prediction methods, and also to calculate the fraction
of variance explained by ARE categories, out of the total possible
variance in the dataset caused by sequence variation (removing
the fraction caused by known technical factors). It does this by
calculating the fraction of sequence variation that remains
within each group (restricting the analysis to sequences with
AREs) before and after the groupings of Table 2 are applied. We
do not apply this technique to the method of k-mers because the
method of k-mers does not create groupings and it has a very
large number of variables. We find that our predictions of steady
state expression and stability explain a small fraction of the total
variation caused by differences in sequence, which might be
expected by the relatively small correlations in the first three col-
umns of Table 2 (the squared correlation is related to the fraction
of variance explained). On the other hand, our novel groupings
explain up to two-thirds of the sequence-based variation for the
effects of ARE mutations on sequence stability, as the technical
sources of variation make up a sizeable fraction of the total vari-
ance. All told, we conclude that human 30 UTRs have many addi-
tional unknown regulatory mechanisms, and ARE-mediated
decay is just one contributor to 30 UTR effects on mRNA stability.

As an additional test of our ability to predict mRNA stability
from the length and registration of AREs, we analyzed full-length
3’UTRs from publicly available measurements of mRNA half-

Table 2 Out-of-chromosome correlations between predictions and measured data for existing and novel ARE categories (i–iii) and a
prediction method (iv)

# Category or method 1. Steady-state expression 2. Stability 3. D Steady-state 4. D Stability

i ARED-Plus (Bakheet et al. 2018) Clusters 0.09 0.21 0.14 0.29
ii AREScore (Spasic et al. 2012) Algorithm 0.09 0.22 �0.04 �0.01
iii Naive Effective Length Pentamers 0.11 0.30 0.15 0.35
iv Effective Length (nt) (Length þ Registration) 0.14 0.31 0.16 0.37
v Lasso K-Mer Regression (K¼ 5) 0.26 0.49 0.13 0.34

See Supplementary Table S5 for further categories and Supplementary Table S6 for Beas2B data.

Table 3 Fraction of sequence-driven variance explained by given classification systems, as calculated by MPRAudit

Categorization b2 Expression b2 Stability b2 D Expression b2 D Stability

ARED-plus 0.00 6 0.02 0.05 6 0.02 0.05 6 0.09 0.39 6 0.12
Effective length pentamers 0.02 6 0.02 0.06 6 0.02 0.06 6 0.09 0.54 6 0.13
Effective length 0.03 6 0.02 0.07 6 0.02 0.08 6 0.09 0.64 6 0.13

b2 ¼ 1 would imply a perfect model of ARE behavior. The b2 statistic is first calculated for the entire dataset, ignoring groupings, then calculated within groups, and

compared. The fraction explained by categories is calculated as
b2

Total�b2
Groups

b2
Total

.
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lives.( Dölken et al. 2010; Tani et al. 2012) Since full-length 3’UTRs
are usually significantly longer than the 160 nt sequences in our
assay, in addition to the “effective length” of the largest ARE, we
also considered the “total effective length,” the sum of the effec-
tive lengths of all AREs in the UTR. We compare these “effective
length” methods to AREScore in Supplementary Table S7. In this
case, the methods perform with similar accuracy, perhaps be-
cause of the added emphasis on very long UTRs with many AREs.

CDE steady-state expression and stability vary
with stem length
To determine if the fast-UTR approach could also be applied to
other known 30 UTR elements we next considered CDEs. The fast-
UTR library we constructed contained all 345 30 UTR segments
with sequences conforming to a previously-defined degenerate
CDE stem-loop motif (Leppek et al. 2013). We found that the
destabilizing effects of the CDE motif increased with increasing
stem length (Figure 4).

As with AREs, we deliberately introduced mutations into the
CDE sequences to isolate the effects of these motifs from the
overall sequence. For CDEs, two types of mutations were intro-
duced: (1) the central motif UUCYRYGAA was mutated to
UagYRYGAA, or (2) the entire motif and surrounding stem were
shuffled. For both cases, the differences between mutant and ref-
erence sequences were recorded. Since these two types of muta-
tions had similar effects on gene expression and stability
(Supplementary Figure S9), we combined them for further analy-
sis. We found that the effect of CDE mutation increased with the
length of the outer stem (Figure 4, C and D), consistent with the
effects on steady state and stability measurements in Figure 4, A
and B: increasing the length of the CDE stem leads to a decrease
in steady-state expression and the stability of the mRNA, and the
effects of mutations increase with increasing stem length.

Other regulatory elements
Although our analysis focuses on the behavior of AREs and CDEs,
Table 3 suggests that there may be many other regulatory ele-
ments in the human 3’ UTR. To investigate additional possibili-
ties, we analyzed the motifs that were highlighted by Rabani
et al. (2017) as being stabilizing or destabilizing in zebrafish and
that also happened to be present in our dataset. Supplementary
Figure S10, A and B shows that only a few of these motifs are ac-
tive in human cell lines, most notably the Pumilio and miR430
motifs (in addition to AREs). miR430 does not exist in humans,
but the human miRNA miR-302a shares the same seed sequence
(Rosa et al. 2009) and therefore might account for this finding.
Comparison with Supplementary Figure S10, C and D shows that
GC-residualization plays an important role in determining the ac-
tivity of these sequences.

Following up on the potential importance of miRNA targets,
we examined the effects of 3’ UTR sequences containing pre-
dicted targets for miRNAs that were relatively abundant in these
cells. We previously found that miRNAs represented by 1% of
miRNA reads in small RNA-sequencing were associated with de-
creased expression of their predicted targets, whereas less abun-
dant miRNAs were not (Zhao et al. 2014). Using the Targetscan
database (Agarwal et al. 2015) to identify associated target
sequences, we compared the steady state expression and stability
of segments with these target sequences to segments without
them. miRNA read counts for the two cell types are given in
Supplementary Table S8, and the results of this analysis are
given in Supplementary Table S9. Sequence segments had lower
steady state expression and mRNA stability for several of the

miRNAs we investigated, which confirms the importance of
miRNA targets as mRNA regulatory elements. Visualizations of
miRNA activity are given as volcano plots in Supplementary
Figure S22. A comparison of the activity of miRNAs to ARE cluster
and CDE stem length is given in Supplementary Table S13.

The position or relative position of an ARE in a sequence seg-
ment has been shown to play a role in its activity in the past
(Cottrell et al. 2018), but we do not find strong supporting evi-
dence for this in our data (see Supplementary Figure S15 and
Table S11).

Analysis of MPRA in Beas2B Cells Confirms Major
Findings in Jurkat Cells
To determine whether insights obtained from our studies of
Jurkat T cells would apply to another cell type, we used fast-UTR
to study the same 30 UTR segment library in Beas2B human bron-
chial epithelial cells. The steady-state expression and mRNA sta-
bility of individual sequences correlate modestly between the
datasets (see Supplementary Figure S21), but analysis of the
Beas2B data confirms that the effects of ARE length and registra-
tion and CDE stem length are also seen in these cells. In both cell
lines, the steady state expression and stability decrease as the
cluster of ARE increases in length (Figure 2 and Supplementary
Figure S17), and the change in steady state expression and mRNA
stability increase with increasing ARE cluster as well. In both cell
lines diagonal patterns due to the starting and ending nucleotides
of an ARE are observed in Figure 3 and Supplementary Figure S7,
and increasing effects for longer AREs are observed in Figure 3
and Supplementary Figure S3. In both cell lines, the steady state
expression and mRNA stability decrease as a function of an in-
creasing CDE stem length (Figure 4 and Supplementary Figure
S18). And in both cell lines, the “Effective Length” method and
“Lasso K-Mer Regression” outperform existing methods for pre-
dicting the activity of AREs in out-of-chromosome predictions
(compare Table 2, Supplementary Tables S5 and S6).

One difference between these sets of results is that the ARE
predictions are better for the Beas2B data than the Jurkat data,
while the effects of mutations in Supplementary Figure S17 are
also larger than those in Figure 2. In general, the ARE activity
appears to be higher in our Beas2B data (see also Supplementary
Figure S19), but whether these differences are due to batch
effects or cell types is not clear since our experimental design did
not include technical replicates for these two cell types.

Discussion
In this study, we have developed and analyzed a massive experi-
mental system for examining 30 UTR biology. Our approach un-
covered novel features that affect the stability and steady-state
expression of AREs and CDEs in 30 UTRs. We show that the length
of an ARE, as well as the starting or ending nucleotide, has an ef-
fect on gene expression and stability, and verify these findings
through designed mutations of the active motif. In CDEs, we simi-
larly show that longer stem loops have an effect on the activity of
the motif. Using our recently developed method MPRAudit, we
show that a model consisting of ARE length and registration
explains up to 64% of the effects of mutations on the stability of
AREs.

One way to assess the strength of different active elements is
to estimate the effect of a single nucleotide mutation in these ele-
ments. As an estimate of the per-nucleotide effect of GC content,
we note that in Supplementary Figure S1C stability decreases
from roughly 0.5–0 as GC content increases from roughly 0.3 to
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0.7. This corresponds to a change of 64 nucleotides, or a change
of roughly 0.0078 per nucleotide. To estimate the per-nucleotide
effect of a mutated ARE, we note that the change in stability for a

category 3 cluster in Figure 2D is 0.158, and it is caused by a mu-
tation of just 3 nucleotides (the middle U in each AUUUA pen-
tamer), for a change in stability of 0.053 per nucleotide. Therefore

Figure 4 Effect of CDE stem length on mRNA expression and stability. (A) Schematic of the CDE stem loop in our investigation. (B) Steady-state
expression, (C) stability, (D) change of steady-state expression with CDE mutation, and (E) change of stability with CDE mutation. Boxplots give
medians and quantiles, notches denote 95% confidence intervals. While lower stem lengths of 2–5 nt are considered active, CDE motifs with stem
lengths of 0–1 are also contained within the dataset and shown here for reference. Linear regression gives slopes that differ from zero with
p ¼ 1:2� 10�6; 2:8� 10�7; 3:2� 10�3, and 2:9� 10�13, for panels (B–E), respectively.
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the ARE mutations have a larger effect than GC content by a fac-
tor of approximately 7. To estimate the per-nucleotide effect of a
mutated CDE, we note that the average change in stability for
2 nt mutations for length 5 CDEs was 0.2 in Supplementary
Figure S9, which gives a change in stability of 0.1 per nucleotide,
which is nearly twice as large as the ARE mutation, the largest
overall. We can also note for comparison that the most signifi-
cant 5-mer in our K-mer analysis of mRNA stability
(Supplementary Table S3) had a Lasso amplitude of �0.0194, or
approximately �0.0038 per nucleotide. Overall, while the effect of
GC content is important, we find that mutations to the active
ARE and CDE elements have much larger effects on a per-
nucleotide basis.

One of our major findings is that the start and end positions of
the ARE within the AUUUA pentamer have a significant effect on
mRNA stability and steady-state expression. Table 2 and
Supplementary Table S5 show that adding the length and registra-
tion of the ARE to form an “effective length” improves the prediction
correlation by almost 50% for steady state expression and stability,
which implies that our new model explains more than twice as
much of the variation in the dataset; but the effect of mutations on
steady state expression remains difficult to predict. We also found
that allowing one mismatch generally gives worse performance
than requiring a perfect ARE match. Lasso regression on k-mers
performs best on predictions of expression and stability, since it
incorporates features from outside the ARE; but it makes slightly
worse predictions for the effects of targeted ARE mutations than
our methods that rely on ARE length and registration alone.
AREScore is unable to predict the effects of our targeted mutations.

The steady state expression and stability of CDEs are consis-
tent with our understanding of their secondary structure. If the
central motif of the CDE (UUCYRYGAA) is a binding site for desta-
bilizing proteins, increasing the prominence of its stem loop
could have an impact on the binding affinity of the CDE.

This research has many other limitations that suggest direc-
tions for future work. We analyze a subset of 30 UTRs and not the
whole genome; and we focus on the behavior of regulatory
sequences, but ignore the important contribution of secondary
structure. Although we study the behavior of two cell lines, a
wider study of more cell types including primary cells or in vivo
studies with technical replicates for each cell type would enable
a wider investigation of general and cell type-specific regulatory
effects. Further studies will be required to understand how stim-
uli that can affect the activity of AREs, for example by affecting
the expression or function of ARE binding proteins, contribute to
ARE-mediated regulation. Within this dataset, a significant
amount of variance is explained by the categories of sequences
that we have uncovered, but a significant amount of variance
remains unexplained by our work. While our work has produced
some general rules for predicting the steady state expression and
stability of mRNAs, we note that there are many ARE binding pro-
teins and we are unable to disentangle their effects from one an-
other. It should also be noted that while we have analyzed the
activity of several sequence motifs in our dataset, our assay was
primarily designed to focus on AREs and CDEs. By making the
raw data in this work publicly available, we hope machine learn-
ing researchers, statisticians, and geneticists will make further
improvements to the models we have devised here.

Data availability
Data has been made available at https://datadryad.org/stash/
share/PHVzsyOxRrGcteykzcBvHKO1c_K-FrWD3jAmZe6uTIo.

Data and python notebooks that demonstrate the generation of
the main figures in the manuscript are available on our github:
https://github.com/david-a-siegel/AU-Rich-Elements.
Supplementary methods, tables, and figures are available online.

Supplementary material is available at G3 online.
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