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Abstract: Hypoxia is one of the representative microenvironment features in cancer and is considered
to be associated with the dismal prognosis of patients. Hypoxia-driven cellular pathways are largely
regulated by hypoxia-inducible factors (HIFs) and notably exert influence on the hallmarks of cancer,
such as stemness, angiogenesis, invasion, metastasis, and the resistance towards apoptotic cell death
and therapeutic resistance; therefore, hypoxia has been considered as a potential hurdle for cancer
therapy. Growing evidence has demonstrated that long noncoding RNAs (lncRNAs) are dysregulated
in cancer and take part in gene regulatory networks owing to their various modes of action through
interacting with proteins and microRNAs. In this review, we focus attention on the relationship
between hypoxia/HIFs and lncRNAs, in company with the possibility of lncRNAs as candidate
molecules for controlling cancer.
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1. Introduction

Hypoxia is an intrinsic characteristic of solid cancers and is perceived as an impedi-
ment towards efficient cancer treatments. In-depth knowledge of the hypoxia-mediated
signaling pathway is vital for the establishment of novel treatment strategies against cancer.
Long noncoding RNAs (lncRNAs) have been recognized as essential regulators of cellular
signaling pathways and as therapeutic targets in cancer. This review highlights the inter-
linkage between hypoxia and lncRNAs, together with the feasibility of exploiting lncRNAs
for the treatment of cancer.

1.1. Hypoxia and Hypoxia-Inducible Factors

The intracellular signaling pathways that respond to hypoxia are mainly regulated
by hypoxia-inducible factors (HIFs) [1]. Oxygen-sensitive HIF-1α and HIF-2α subunits
heterodimerize with HIF-1β, a constitutively expressed subunit, to form HIF-1 and HIF-2
transcription factors, respectively. The ubiquitination and proteasomal degradation of HIF-
1α and HIF-2α are decreased under hypoxia [1]. HIF-3α is an additional alpha subunit and
is generally known to suppress HIF-dependent regulation of target genes via competition
with HIF-1α and HIF-2α [2]. However, depending on the type of transcription isoform,
HIF-3α can serve as an oncogenic factor by promoting cell proliferation, invasion, and
metastasis [3]. Additionally, it has been noted that hypoxia-mediated signaling is regulated
in a HIF-independent manner [4,5]. Additionally, the expression and activity of HIF-1α
and HIF-2α can be controlled independently of hypoxic conditions [6,7].

1.2. Hypoxia and Cancer

A broad spectrum of cellular signaling events are influenced by hypoxia, leading to
the malignant progression of cancer. HIF-1 can upregulate and downregulate the level
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of myeloid cell leukemia 1 (MCL1) and BH3-interacting domain death agonist (BID), re-
spectively, leading to the protection of cells from apoptotic cell death [8,9]. In addition,
activation of the p53 pathway is antagonized by HIF-1 and HIF-2 [10,11]. Hypoxia also
activates the epithelial-to-mesenchymal transition (EMT) process and cancer stemness,
eventually promoting cancer aggressiveness and metastasis [12–16]. In terms of thera-
peutic resistance, several cellular factors and events including anti-apoptotic/survival
factors, EMT, and stemness are associated with a reduction in the sensitivity of cells to
cancer treatments [17,18]. Therefore, hypoxia is considered as one of the causes of drug
resistance in cancer. Another well-known effect of hypoxia includes the augmentation of
angiogenesis. The expression of angiogenesis factors, such as vascular endothelial growth
factor (VEGF), is increased by hypoxia in cancer cells and other cellular components in
the microenvironment, such as endothelial cells and cancer-associated fibroblasts (CAFs),
thereby increasing the metastatic potential of cancer [19–21].

Moreover, hypoxia induces several enzymes, such as glucose transporters and pyru-
vate dehydrogenase kinases, that reprogram cancer cell metabolism from oxidative phos-
phorylation to glycolysis. The production of lactic acids through hypoxia-mediated gly-
colysis creates an acidic microenvironment in cancers. This metabolic reprogramming
consequently supports multiple cellular processes, such as cell survival, stemness, angio-
genesis, and metastasis, and causes drug resistance [22–27]. Hypoxia diminishes anticancer
immunity as well. For example, the uptake of antigens by dendritic cells is inhibited by
hypoxic conditions [28,29]. Immune response can be subdued by regulatory T cells (Tregs),
which are capable of producing immune-suppressive cytokines and inhibiting the activity
of effector cells, such as T cells and natural killer cells [30–32]. Hypoxic cancer cells can
upregulate C-C motif chemokine ligand 28 (CCL28) levels via HIF-1α, stimulating the
recruitment of Tregs into the tumor microenvironment and allowing cancer cells to avoid
immune surveillance [33]. Hypoxia also contributes to immune tolerance via transforming
growth factor β (TGF-β)-mediated enrichment of Tregs in cancer [34].

1.3. LncRNAs

LncRNAs have been shown to regulate gene expression at multiple levels. As an
illustration, lncRNA HOTAIR can mediate histone modifications in target genes by recruit-
ing chromatin-modifying enzymes, thus being able to promote malignant properties such
as EMT [35]. LncRNA PANDA directly binds to nuclear transcription factor Y subunit
alpha (NFYA), restricts the expression of pro-apoptotic genes, and desensitizes cells to
doxorubicin-induced apoptotic cell death [36], indicating that the interaction of lncRNAs
with transcription factors regulates gene transcription as well. It has been also demon-
strated that lncRNAs modulate the stability and activity of proteins, thereby affecting the
progression of cancers [37,38]. Further, one of the documented activities of lncRNAs is
to serve as competitive endogenous RNAs (ceRNAs) by sequestrating microRNAs (miR-
NAs). By molecularly sponging miRNAs, lncRNAs can limit and increase the expression
of miRNAs and target messenger RNAs (mRNAs) of miRNAs, respectively [39]. However,
it is noteworthy that the function of ceRNAs remains a controversial issue. For example,
it was reported that the alteration of lncRNA expression within a physiological range is
insufficient to change miRNA activities [40,41], suggesting the requirement of an improved
understanding of ceRNA mechanisms.

2. LncRNAs Controlled by Hypoxia and HIFs

Although lncRNAs whose expression is affected by hypoxia/HIFs can exert diverse
cellular effects, lncRNAs are subdivided into five groups in an attempt to present the
crucial function of each lncRNA.
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2.1. LncRNAs Regulating Cell Survival and Apoptosis
2.1.1. H19

Several studies demonstrated that miRNA-612 (miR-612) exerts tumor-suppressive
effects through targeting multiple anti-apoptotic genes, such as bromodomain-containing
protein 4 (BRD4), AKT serine/threonine kinase 2 (AKT2), and NIN1/PSMD8 binding
protein 1 homolog (NOB1) [42–44]. Moreover, miR-612 can negatively regulate the expres-
sion of B-cell CLL/lymphoma 2 (BCL2) via interacting with the 3′ untranslated region
(3′ UTR) [45]. In this study, it was further shown that H19 is induced by HIF-1α and
renders miR-612 inactive, resulting in the upregulation of BCL2. Moreover, the knockdown
of HIF-1α significantly restrains the growth of cholangiocarcinoma in vivo, along with
miR-612 upregulation and BCL2 downregulation [45] (Figure 1 and Table 1).
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Table 1. The list of lncRNAs that are modulated by hypoxia and HIFs (alphabetical order).

LncRNA Type of Cancer Expression
(Cell Lines and/or Tissues) Induction Condition In Vivo Experiment Clinical Relevance Ref.

AC093818.1 Breast cancer

Overexpressed in triple-negative
breast cancer tissues and cell
lines (BT-20, MDA-MB-231,

MDA-MB-468, and SUM159)

Upregulated in
MDA-MB-231 and

SUM159 cells by hypoxia
(1% O2)

Orthotopic implantation of
MDA-MB-231 cells stably

knocking down AC093818.1
– [46]

AGAP2-AS1 Hepatocellular
carcinoma

Abundantly expressed in cancer
tissues and cell lines (Hep3B,
SMCC-7721, Huh7, HCCLM3,

and MHCC-97H)

Increased in Hep3B cells
under hypoxia

Tail vein injections of
AGAP2-AS1-overexpressing

Hep3B cells or
AGAP2-AS1-silencing

HCCLM3 cells

Poor overall survival of
patients with high

AGAP2-AS1 expression
[47]

BCRT1 Breast cancer Upregulated in cancer tissues
compared to normal controls

Increased in
MDA-MB-231 and
MDA-MB-468 cells

under hypoxic stress

Subcutaneous or tail vein
injections of MDA-MB-231 cells

stably overexpressing BCRT1

High expression of
BCRT1 is correlated with

poor overall survival
and disease-free survival

[48]

CASC9 Pancreatic cancer –
Increased in PANC-1
and SW1990 cells by

hypoxia (1% O2)

Subcutaneous or tail vein
injections of CASC9-depleted

SW1990 cells
[49]

EIF3J-AS1 Hepatocellular
carcinoma

Upregulated in cancer tissues
and cell lines (HepG2,

SMCC-7721, HCCLM3, and
MHCC-97H)

Induced by hypoxia in
SMCC-7721 cells –

Prognostic features (size,
invasion and stages) are

associated with
EIF3J-AS1 levels

[50]

FEZF1-AS1 Pancreatic cancer
Upregulated in cancer tissues

and cell lines (PANC-1, SW1990,
HuP, and CFPAC-1)

Induced by hypoxia (1%
O2) in PANC-1 and

SW1990 cells
–

Positively associated
with advanced TNM

stages
[51]

H19

Cholangiocarcinoma
Upregulated in carcinoma

tissues compared to normal bile
duct tissues

Increased by HIF-1α
overexpression

Subcutaneous injections of
cholangiocarcinoma cells
transduced with lentiviral

vectors encoding small hairpin
RNA (shRNA) against HIF-1α

– [45]

Glioblastoma –

Increased in U87 and
U251 cells following
exposure to hypoxia

(2% O2)

Subcutaneous injections of U87
cells stably knocking down

HIF-1α

Patients with high H19
levels show poor overall

survival
[52]
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Table 1. Cont.

LncRNA Type of Cancer Expression
(Cell Lines and/or Tissues) Induction Condition In Vivo Experiment Clinical Relevance Ref.

HAND2-AS1 Gastric cancer
Downregulated in cancer tissues

compared to adjacent control
tissues

Reduced by hypoxia (1%
O2) in AGS cells – – [53]

HIF1A-AS2

Glioblastoma
multiforme

Abundantly expressed in
cancer tissues

Upregulated in
mesenchymal

glioblastoma stem cells
exposed to hypoxic
conditions (1% O2)

Intracranial xenografts
generated by implanting

HIF1A-AS2-depleted
mesenchymal glioblastoma

stem cells

– [54]

Bladder cancer Increased in cancer tissues from
patients treated with cisplatin

Upregulated in
cisplatin-resistant and

cobalt chloride
(CoCl2)-treated cells

– – [55]

HIFCAR Oral cancer
Overexpressed in cancer tissues

compared to non-cancerous
tissues

Induced by hypoxia (1%
O2) and CoCl2 treatment

in HeLa cells

Tail vein injections of
HIFCAR-depleted SAS cells

High HIFCAR levels are
associated with worse
overall survival, tumor

differentiation, and
lymph node metastasis

[56]

HITT Colorectal cancer Downregulated in cancer tissues
compared to normal controls

Decreased by hypoxia
(1% O2) in HCT116 and

HeLa cells

Subcutaneous injections of
HCT116 cells stably

overexpressing HITT

Negatively associated
with TNM classification [57,58]

HOTAIR Hepatocellular
carcinoma Upregulated in cancer tissues

Augmented in HepG2
and Huh7 cells after

hypoxic exposure (1%
O2)

– – [59]

HOTTIP

Glioblastoma
Upregulated in metastatic

glioma tissues compared to
non-metastatic tissues

Increased in U87 and
U251 cells under
hypoxia (1% O2)

–
Negatively correlated

with the survival rate of
patients

[60]

Lung cancer Abundant in cancer tissues
compared to normal controls

Induced in A549 and
H1299 cells following

hypoxic exposure
(1% O2)

– – [61]
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Table 1. Cont.

LncRNA Type of Cancer Expression
(Cell Lines and/or Tissues) Induction Condition In Vivo Experiment Clinical Relevance Ref.

KB-1980E6.3 Breast cancer
Highly expressed in cancer

tissues compared to adjacent
normal tissues

Elevated in multiple cell
lines (e.g., BT549 and

Hs578T) under hypoxic
conditions (1% O2)

Subcutaneous injections of stem
cells from Hs578T in which

KB-1980E6.3 is silenced

Negatively correlated
with the overall survival

of patients
[62]

LINC00475 Glioblastoma –
Upregulated in LN229

cells exposed to hypoxia
(1% O2)

Injections of lentiviral vectors
encoding shRNA against

LINC00475 into mice bearing
LN229 cells

High expression is
correlated with the stage

of cancer
[63]

LINC00511 Colorectal cancer
Abundantly expressed in cancer

tissues compared to normal
tissues

Transcription is
promoted by HIF-1α

overexpression
–

The level of LINC00511
is negatively correlated

with the overall survival
of patients

[64]

LINC01436 Lung cancer
Overexpressed in cancer tissues

compared to adjacent normal
tissues

Increased in H1299 cells
under hypoxic

conditions (1% O2)

Subcutaneous or tail vein
injections of A549 cells stably
overexpressing LINC01436

High levels are
associated with worse

overall survival of
patients

[65]

MALAT1 Hepatocellular
carcinoma –

Increased in several cell
lines (Huh7, SNU-423,

PLC, and Hep3B) under
hypoxic conditions

– – [66]

MAPKAPK5-AS1 Hepatocellular
carcinoma

Highly expressed in cancer
tissues

Increased by hypoxia
(1% O2) in Hep3B cells

Subcutaneous or tail vein
injections of

MAPKAPK5-AS1-knockdown
HCCLM3 cells or MAPKAPK5-

AS1-overexpressing Hep3B
cells

Positively associated
with poor prognosis and

pathological stages
[67]

NEAT1

Lung cancer Abundantly expressed in cancer
tissues

Upregulated by hypoxia
(1% O2) in A549 and

SPCA1 cells
–

Positively associated
with the tumor, node
and metastasis (TNM)

classification

[68]

Anaplastic thyroid
cancer Upregulated in cancer tissues

Increased in several cell
lines (SW1736 and

KAT-18) under hypoxic
conditions (1% O2)

Subcutaneous injections of
SW1736 cells stably knocking

down NEAT1
– [69]
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Table 1. Cont.

LncRNA Type of Cancer Expression
(Cell Lines and/or Tissues) Induction Condition In Vivo Experiment Clinical Relevance Ref.

NORAD Pancreatic cancer Upregulated in cancer tissues
Increased in SW1990
cells under hypoxia

(1% O2)

Orthotopic implantation of
SW1990 cells stably knocking

down NORAD

Poor overall and
recurrence-free survival

in patients with high
NORAD levels

[70]

NPSR1-AS1 Hepatocellular
carcinoma

Overexpressed in cancer tissues
compared to control specimens

Increased in Hep3B and
Huh7 cells by hypoxia

and HIF-1α
– – [71]

NUTF2P3-001 Pancreatic cancer
Overexpressed in cancer tissues

compared to noncancerous
tissues

Increased in hypoxia (1%
O2)-exposed and

CoCl2-treated PANC-1
cells

Subcutaneous injections of
NUTF2P3-001-depleted PANC-1

cells

Strong expression is
correlated with distant
metastasis and worse

prognosis

[72]

RAB11B-AS1 Breast cancer Upregulated in cancer tissues

Induced by hypoxia (1%
O2) in multiple cell lines
(e.g., MDA-MB-231 and

BT474)

Orthotopic implantation of
MDA-MB-231 cells stably

knocking down RAB11B-AS1
– [73]

RP11-390F4.3

Multiple types
(hypopharyngeal, breast,
osteosarcoma, prostate,

and lung cancer)

–

Induced by hypoxia (1%
O2) in FADU, MCF-7,

and U2-OS cells.
Decreased by HIF-1α

silencing in H1299,
MDA-MB-231, and

PC3 cells

Tail vein or orthotopic injections
of FADU cells (RP11-390F4.3

overexpressed) and
H1299/MDA-MB-231 cells

(RP11-390F4.3 depleted)

– [74]

UCA1 Gastric cancer –

Increased in
hypoxia-resistant cell
lines (MGC-803 and

BGC-823 cells)

– – [75]

XIST Nasopharyngeal cancer Overexpressed in cancer tissues
Increased by hypoxia
(1% O2) in HK-1 and

C666-1 cells

Subcutaneous injections of
XIST-depleted HK-1 cells – [76]
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2.1.2. HITT

Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, is one of the
subunits of polycomb repressive complex 2 (PRC2) and transcriptionally perturbs the
expression of target genes by catalyzing histone H3 methylation [77]. It was recently
revealed that the level of HITT is downregulated by hypoxia. Moreover, HITT was found
to interact with EZH2 proteins and guide them to the promoter of HIF-1α, exhibiting
a deterrent effect on HIF-1α transcription. The overexpression of HITT inhibits HIF-1α
levels and increases caspase-3 activation and apoptotic cell death under hypoxia [57]
(Figure 1 and Table 1).

2.1.3. LINC00475

In glioblastoma, it was identified that miR-449b-5p targets phosphatidylinositol 3-
kinase enhancer (PIKE, also known as ArfGAP with GTPase domain, ankyrin repeat and
PH domain 2 (AGAP2)) [63], which possesses an anti-apoptotic activity [78,79]. LINC00475
can upregulate PIKE by impeding miR-449b-5p activities. The knockdown of LINC00475
induces apoptotic cell death in vitro and restricts the growth of glioblastoma in vivo [63]
(Figure 1 and Table 1). Accumulating evidence reveals that miR-449b-5p serves as a tumor
suppressor by suppressing various cellular factors, such as yin and yang 1 (YY1), cell-cycle
related and expression-elevated protein in tumor (CREPT), and Wnt family member 2B
(WNT2B) [80–82]. Given that stemness can be facilitated by YY1, CREPT, and Wnt/β-
catenin signaling [83–85], LINC00475 may also contribute to increasing the stemness
property of cancer cells.

2.1.4. LINC00511

It has been noticed that LINC00511 facilitates migration and invasion in several types
of cancer, including breast, lung, and pancreatic cancer [86–88]. LINC00511 was also
reported to play an oncogenic role via upregulating and downregulating nuclear factor
I/A (NFIA) and interleukin 24 (IL-24), respectively, in colorectal cancer [89,90]. Moreover, it
was discerned that LINC00511 is transcriptionally activated by HIF-1α, blocks the function
of miR-153-5p, and supports cell survival in colorectal cancer [64]. Since miR-153-5p
targets BCL2 [91], LINC00511 may exert an anti-apoptotic activity, at least partly through
augmenting BCL2 levels (Figure 1 and Table 1).

2.1.5. MALAT1

Depending on the cancer type, MALAT1 functions as an oncogenic or a tumor-
suppressive factor. For example, MALAT1 prohibits the lung metastasis of breast can-
cer [92]. By contrast, MALAT1 accelerates cell proliferation and metastasis via stimulating
autophagy in pancreatic cancer [93]. In hepatocellular carcinoma, MALAT1 can suppress
the induction of apoptosis via triggering PI3K/AKT signaling [94]. Moreover, a recent study
demonstrated that hypoxia stimulates MALAT1 expression and that the knockdown of this
lncRNA increases miR-200a-3p levels and induces apoptosis in hepatocellular carcinoma
cells under hypoxic conditions [66]. Given that miR-200a-3p acts as an apoptosis-promoting
miRNA by inactivating Wnt/β-catenin signaling [95], MALAT1 may block apoptotic cell
death through the miR-200a-3p/Wnt/β-catenin signaling axis (Figure 1 and Table 1).

2.2. LncRNAs Affecting Cell Migration, Invasion, and EMT
2.2.1. AC093818.1

AC093818.1 (also referred to as IHAT) binds to Sp1 transcription Factor (SP1) and
signal transducer and activator of transcription 3 (STAT3), thereby mediating transcrip-
tional activation of pyruvate dehydrogenase kinase 1 (PDK1). Therefore, AC093818.1 can
accelerate cell migration and invasion in vitro and metastasis of gastric cancer in vivo [96].
Recently, whole transcriptome sequencing revealed that AC093818.1 is one of the lncRNAs
upregulated by hypoxia in triple-negative breast cancer [46]. It was consistently observed
that AC093818.1 promoted the lung metastasis of breast cancer in vivo. Mechanistically,



Int. J. Mol. Sci. 2021, 22, 7261 9 of 31

AC093818.1 was proven to positively regulate the expression of PDK1 and integrin subunit
alpha 6 (ITGA6) [46]. Since SP1 can positively control the level of ITGA6 [97], AC093818.1
may regulate ITGA6 via SP1 (Figure 1 and Table 1).

2.2.2. AGAP2-AS1 and EIF3J-AS1

It was confirmed that both AGAP2-AS1 and EIF3J-AS1 are induced by hypoxia in
hepatocellular carcinoma [47,50]. AGAP2-AS1 promotes cell migration, invasion, and
the EMT process by sequestering miR-16-5p that directly targets annexin A11 (ANXA11),
which is able to activate AKT. Furthermore, it was noticed that the overexpression and
downregulation of AGAP2-AS1 promoted and reduced lung metastasis of cancer cells
in vivo [47]. In the case of EIF3J-AS1, this lncRNA inactivates miR-122-5p to augment
the level of catenin delta 2 (CTNND2). Whereas EIF3J-AS1 reinforces cell migration and
invasion, hypoxia-induced cell migration and invasion are weakened in EIF3J-AS1-depleted
cells [50] (Figure 1 and Table 1). CTNND2 has been discerned to accelerate migration,
invasion, and metastasis through triggering the Wnt/β-catenin and Rac family small
GTPase 1 (RAC1) signaling pathways [98–100].

2.2.3. BCRT1

Polypyrimidine tract-binding protein 3 (PTBP3) can actuate the EMT process, invasive
growth, and metastasis by increasing the stability of zinc finger E-box binding homeobox
1 (ZEB1) mRNA [101]. In breast cancer, BCRT1, a HIF-1α target gene, was identified to
enhance PTBP3 expression via competitively binding with miR-1303 and promoting cell
motility in vitro and lung metastasis in vivo [48] (Figure 1 and Table 1). Since PTBP3 can
activate the translation of HIF-1α mRNA [102], a BCRT1/PTBP3/HIF-1α feedback loop
may control cancer progression. Moreover, PTBP3 contributes to therapeutic resistance to
gemcitabine under hypoxia [103], implying a possibility that BCRT1 regulates the sensitivity
of cancer cells to therapeutic agents.

2.2.4. FEZF1-AS1

FEZF1-AS1 is overexpressed and prompts cell proliferation, migration, invasion,
and metastasis in different cancer types [104–107]. In pancreatic cancer, FEZF1-AS1 also
expedites cell proliferation, migration, and invasion in vitro through interacting with miR-
107 [108]. Furthermore, it was demonstrated that FEZF1-AS1 is increased by hypoxia, posi-
tively regulates HIF-1α expression via repressing the activity of miR-142-3p under hypoxia,
and ultimately promotes cell invasion in pancreatic cancer [51] (Figure 1 and Table 1).

2.2.5. H19 and HOTTIP

As stated in Section 2.1.1, H19 can upregulate BCL2, an anti-apoptotic factor, via
blocking the activity of miR-612. Moreover, H19 was recognized to sponge miR-181d-
5p, which directly targets β-catenin in glioblastoma [52]. Under hypoxic conditions, the
knockdown of H19 lessens the expression of EMT markers, such as cadherin 2 (CDH2, also
called N-cadherin) and snail family transcriptional repressor 1 (SNAI1), demonstrating a
crucial role of H19 in the regulation of hypoxia-driven cell migration and invasion [52].
In this study, it was also confirmed that HIF-1α directly controls the transcription of H19
and SP1. Elevated SP1, in turn, stimulates H19 expression. These findings indicate that
H19 expression is directly and indirectly regulated by HIF-1α [52] (Figure 1 and Table 1).
Another study demonstrated that HOTTIP can increase the level of ZEB1 via spong-
ing miR-101-3p, thereby promoting hypoxia-induced EMT in glioblastoma as well [60]
(Figure 1 and Table 1). In line with this, miR-101-3p was suggested to repress EMT and
metastasis in glioblastoma [109].

2.2.6. HIFCAR

Screening of cancer-related lncRNAs identified that HIFCAR (also known as MIR31HG)
is one of the hypoxia-responsive lncRNAs [56]. The migration and invasion of oral cancer
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cells are potentiated by HIFCAR. Furthermore, the downregulation of HIFCAR leads to
the reduction of lung metastasis in vivo [56]. It was additionally found that the silencing
of HIFCAR downregulates the level of HIF-1α target genes, including L1 cell adhesion
molecule (L1CAM), without altering HIF-1α expression. Interestingly, it was delineated
that HIFCAR physically interacts with HIF-1α, thereby recruiting HIF-1α to the promoter
region of its target genes [56] (Figure 1 and Table 1).

2.2.7. LINC01436 and NEAT1

In lung cancer, both LINC01436 and NEAT1 facilitate cell migration and invasion [65,68].
Hypoxia induces LINC01436 expression through downregulating E2F transcription factor
6 (E2F6), a transcription repressor of LINC01436. LINC01436 advances cancer growth
and metastasis in vivo, and LINC01436 can exhibit its function by sponging miR-30a-3p
that directly regulates HIF-2α (also known as endothelial PAS domain-containing protein
1 (EPAS1)) [65]. In the case of NEAT1, the transcription of this lncRNA is positively
modulated by HIF-2α in lung cancer [68]. The knockdown of NEAT1 diminishes the effect
of HIF-2α on cell migration, invasion, and the level of EMT markers [68], suggesting that
NEAT1 facilitates EMT in a HIF-2α-dependent manner. A mechanism underlying NEAT1-
mediated promotion of EMT indicated that miR-101-3p is inactivated by NEAT1, hence
increasing the level of SRY-box transcription factor 9 (SOX9), an EMT- and Wnt/β-catenin
signaling-activating factor [68] (Figure 1 and Table 1). Overall, these results also imply the
feasibility that LINC01436 may elevate NEAT1 expression via the miR-30a-3p/HIF-2α axis.

2.2.8. MAPKAPK5-AS1

MAPKAPK5-AS1 has been recognized as an oncogenic lncRNA [110–112]. MAPKAPK5-
AS1 binds to enhancer of zeste homolog 2 (EZH2), leading to the transcriptional repression
of cyclin-dependent kinase inhibitor 1A (CDKN1A, also known as p21Cip1). The downreg-
ulation of MAPKAPK5-AS1 induces cell cycle arrest and apoptotic cell death in colorectal
cancer [110]. In addition, MAPKAPK5-AS1 can sponge let-7f-1-3p and cis-regulate the
expression of MAPKAP kinase 5 (MK5), consequently upregulating SNAI1 to promote
EMT [111]. Moreover, MAPKAPK5-AS1 advances the migration and invasion ability
of thyroid cancer cells by constraining miR-519e-5p [112]. In hepatocellular carcinoma,
MAPKAPK5-AS1 was confirmed as a HIF-1α-responsive lncRNA [67]. This lncRNA me-
diates the de-repression of PLAG1-like zinc finger 2 (PLAGL2), a miR-154-5p target, thus
enhancing the EMT process and cell invasion in vitro and lung metastasis in vivo. PLAGL2
upregulated by MAPKAPK5-AS1 can successively increase HIF-1α, showing the presence
of a HIF-1α-MAPKAPK5-AS1-PLAGL2 feedback loop [67] (Figure 1 and Table 1).

2.2.9. NORAD and NUTF2P3-001

NORAD and NUTF2P3-001 are transcriptionally activated by hypoxia and serve as
molecular sponges of miR-125a-3p and miR-3923, respectively, in pancreatic cancer [70,72].
In studies concerning them, miR-125a-3p and miR-3923 were proven to repress ras homolog
family member A (RHOA) and Kirsten rat sarcoma viral oncogene homolog (KRAS), respec-
tively. As a consequence, migration and invasion are prompted by these lncRNAs in vitro.
It was also noticed that knockdown of either NORAD or NUTF2P3-001 significantly re-
presses metastasis in vivo [70,72] (Figure 1 and Table 1). In another study, it was proposed
that NORAD is downregulated in lung and breast cancer and that the overexpression of
NORAD impedes metastasis in vivo [113]. These findings suggest that the function of
NORAD is dissimilar depending on cancer types.

2.2.10. RP11-390F4.3

A reporter gene assay identified RP11-390F4.3 as a HIF-1α-induced lncRNA [74]. The
overexpression of RP11-390F4.3 facilitates in vitro cell migration/invasion together with an
increase in EMT-related genes and potentiates in vivo metastatic activity of cancer cells [74]
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(Figure 1 and Table 1). Although the mechanism underlying oncogenic activities of this
lncRNA is undisclosed, RP11-390F4.3 can be a feasible target for cancer treatments.

2.2.11. UCA1

UCA1 has been discerned to limit apoptotic cell death and prompt migration, invasion,
as well as metastasis by sponging diverse tumor-suppressive miRNAs, such as miR-143,
miR-182-5p, and miR-203 [39,114,115]. Moreover, it was demonstrated that UCA1 is
upregulated in hypoxia-resistant cancer cells generated by chronic hypoxia exposure,
and that this lncRNA contributes to the augmentation of cell migration [75]. Additional
evidence showed that UCA1 promotes cell migration due to its ability to inhibit miR-7-5p,
thereby enhancing the level of epidermal growth factor receptor (EGFR) in hypoxia-resistant
cancer cells [75] (Figure 1 and Table 1).

2.3. A lncRNA Controlling Angiogenesis
2.3.1. RAB11B-AS1

In response to hypoxia, HIF-2α positively regulates the expression of RAB11B-AS1
in breast cancer [73]. RAB11B-AS1 can interact with RNA polymerase II (POL II) and
enhance the recruitment of POL II to the promoters of pro-angiogenic genes, including
VEGFA and angiopoietin-like 4 (ANGPTL4). Therefore, the overexpression of RAB11B-AS1
elevates these angiogenic factors, thereby favoring microvessel formation and distant
metastasis in vivo [73] (Figure 1 and Table 1). By contrast, RAB11B-AS1 acts as a tumor
suppressor through inhibiting proliferation, migration, invasiveness, and cell viability in
osteosarcoma [116], implying a context-dependent role of RAB11B-AS1 in cancer.

2.3.2. HITT

HIF-1α was found to degrade HITT via inducing miR-205 expression. Further, HITT
represses the translation of HIF-1α [58]. These results suggest that HITT regulates HIF-1α
expression at both transcription and post-transcription levels and that there is a regulatory
loop between HIF-1α and HITT (also see Section 2.1.2). A mechanistic study demonstrated
that HITT can directly bind to YBX1, a translational activator of HIF-1α, thus limiting the
physical association between YBX1 and HIF-1α [58]. Functional evidence showed that
the overexpression of HITT results in a decrease in VEGF levels and abates the growth of
colorectal cancer in vivo [58] (Figure 1 and Table 1).

2.4. LncRNAs Related to Stemness and Drug Resistance
2.4.1. HIF1A-AS2

HIF1A-AS2 can maintain stemness and confer resistance to cisplatin [54,55]. HIF1A-
AS2 is abundant in mesenchymal glioma stem cells (M-GSCs) compared to proneural
GSCs, indicating that HIF1A-AS2 is a lncRNA showing a subtype-specific expression
pattern [54]. In this study, HIF1A-AS2 was supposed to stabilize high-mobility group
AT-hook (HMGA1) at the mRNA level and increase its protein levels via interacting with
RNA-binding proteins, namely DExH-box helicase 9 (DHX9) and insulin-like growth
factor 2 mRNA-binding protein 2 (IGF2BP2) [54]. The depletion of HIF1A-AS2 leads
to the reduction of cell viability and neurosphere-forming capacity of M-GSCs in vitro.
Moreover, HIF1A-AS2 knockdown extends survival in intracranial xenograft models [54]
(Figure 1 and Table 1). HMGA1 was demonstrated to support stemness at least partly by
activating Notch signaling [117], suggesting that HIF1A-AS2 may activate Notch signaling
via the DHX9/IGF2BP2/HMGA1 axis to maintain stemness.

Treatments with CoCl2, a hypoxia-mimetic agent, upregulate HIF1A-AS2 in bladder
cancer cells. In addition, the expression of both HIF-1α and HIF1A-AS2 is upregulated
in cisplatin-resistant bladder cancer cells (CRBC cells), denoting that HIF1A-AS2 can be
regulated by HIF-1α in drug-resistant cells [55]. HIF1A-AS2 increases the level of HMGA1
in CRBC cells, consequently lowering the transcriptional activities of tumor suppressor
P53 (TP53), TP63, and TP73, in addition to the level of BCL2-associated X protein (BAX).
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As expected, HIF1A-AS2 knockdown re-sensitizes CRBC cells to cisplatin via promoting
apoptotic cell death [55]. Since DHX9 and IGF2BP2 are involved in HIF1A-AS2-mediated
increase in HMGA1 expression as stated above, HIF1A-AS2 may regulate HMGA1 levels
through physical interaction with DHX9 and IGF2BP2 in CRBC cells (Figure 1 and Table 1).

2.4.2. KB-1980E6.3

IGF2BP1 can maintain stemness properties by stabilizing IGF2 mRNA and positively reg-
ulating the expression of aldehyde dehydrogenase 1 family member A1 (ALDH1A1) [118,119].
IGF2BP1 is also known to stabilize V-Myc avian myelocytomatosis viral oncogene homolog
(MYC) mRNA, a stemness-promoting factor [120]. A recent study revealed that KB-1980E6.3
makes MYC mRNA more stable via recruiting IGF2BP1, thereby facilitating the self-renewal
and in vivo tumorigenesis of breast cancer stem cells [62] (Figure 1 and Table 1). Since
IGF2BP1 can regulate several stemness-related factors as mentioned above, further investi-
gation into the function of KB-1980E6.3 is warranted.

2.5. LncRNAs and Glycolysis
2.5.1. CASC9

Several studies defined CASC9 as an oncogenic factor due to its ability to facilitate
tumorigenesis through activating TGF-β, extracellular signal-regulated kinase (ERK), and
STAT3 signaling [121–123]. Additionally, CASC9 can bring about EGFR-mediated AKT
activation by sponging miR-488-3p [124]. Further, it was connoted that CASC9, a hypoxia-
inducible lncRNA, is regulated by HIF-1α and drives glycolysis via the upregulation
of hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), and glucose transporter type
4 (GLUT4) levels in pancreatic cancer [49]. Moreover, both AKT activation and HIF-
1α induction are mediated by CASC9. Pharmacological inhibition of AKT diminishes
glycolysis as well as HIF-1α levels, indicating a contribution of AKT to CASC9-induced
glycolysis and HIF-1α regulation. These results also show a reciprocal regulation between
CASC9 and HIF-1α. Moreover, the growth and metastasis of pancreatic cancer are impeded
by silencing CASC9, suggesting that CASC9-induced glycolysis is responsible for pancreatic
cancer malignancy [49] (Figure 1 and Table 1).

2.5.2. HAND2-AS1

HAND2-AS1 is downregulated in various cancer types and negatively acts on cell
proliferation, viability, migration/invasion, and metastasis [125–127]. In gastric cancer, it
was demonstrated that the expression of both HAND2-AS1 and HIF-3α is downregulated
by hypoxic conditions [53]. The overexpression of HAND2-AS1 impedes hypoxia-mediated
cell migration, invasion, as well as glycolysis in gastric cancer cells. It was proposed that
such tumor-suppressive effects of HAND2-AS1 can be due to the inhibitory action of
HAND2-AS1 on miR-184, which targets HIF-3α [53] (Figure 1 and Table 1).

2.5.3. HOTAIR and NPSR1-AS1

In hepatocellular carcinoma, both HOTAIR and NPSR1-AS1 are induced by hypoxia
and can impel glycolysis under hypoxia [59,71]. HOTAIR serves as a decoy of miR-130a-3p
that hinders glycolysis by targeting HIF-1α [59], indicating the role of HOTAIR as a positive
feedback regulator of HIF-1α as well (Figure 1 and Table 1).

NPSR1-AS1 was found to activate ERK and elevate the level of pyruvate kinase M2
(PKM2), a glycolysis-promoting enzyme [71] (Figure 1 and Table 1). ERK can also mediate
the nuclear translocation of PKM2, resulting in the transcriptional induction of glycolytic
genes such as LDHA [128]. In additional studies, it was shown that ERK is able to induce
Nima-related kinase 2 (NEK2) and that the expression of PKM2 can be positively regulated
by NEK2 [129,130]. Therefore, NPSR1-AS1 may promote glycolysis via PKM2 nuclear
translocation and the ERK/NEK2/PKM2 pathway.
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2.5.4. HOTTIP

HOTTIP was demonstrated to activate hypoxia-induced glycolysis in lung cancer [61].
In this study, it was supposed that HOTTIP absorbs miR-615-3p and increases glycolysis via
upregulating the level of high-mobility group box 3 (HMGB3) [61] (Figure 1 and Table 1).
Since HMGB3 was reported to activate ERK [131], it is feasible that glycolysis is enhanced
via the HOTTIP/HMGB3/ERK axis. Further, a recent study revealed that ZEB1 can tran-
scriptionally activate phosphofructokinase-M (PFKM), thus enhancing glycolysis [132].
Given HOTTIP’s role in ZEB1 regulation (Section 2.2.5), PFKM could be one of the media-
tors of HOTTIP-induced glycolysis.

2.5.5. NEAT1

In anaplastic thyroid cancer, glycolysis can be repressed by NEAT1 silencing under
hypoxia. Additionally, in vivo growth of thyroid cancer is retarded by the depletion of
NEAT1 [69]. In this study, it was further demonstrated that NEAT1 sponges both miR-206
and miR-599. The knockdown of either miR-206 or miR-599 increases lactate production
and HK2 levels in NEAT1-silencing cells, indicating their involvement in the regulation of
signaling pathways related to glycolysis [69] (Figure 1 and Table 1). In addition, NEAT1 may
positively regulate glycolysis via Wnt/β-catenin signaling, which can enhance glycolysis
through multiple downstream factors such as AKT [133] (also see Section 2.2.7 about
NEAT1 and Wnt/β-catenin).

2.5.6. XIST

XIST elevates cell motility and glycolysis in vitro via confining the activity of miR-381-
3p, which directly targets NEK5. In addition, XIST enhances in vivo growth of nasopharyn-
geal carcinoma [76]. Although the mechanism by which NEK5 regulates glycolysis remains
obscure, the knockdown of NEK5 was found to suppress hypoxia-induced glycolysis [76]
(Figure 1 and Table 1). Since NEK5 can increase the expression of mitochondrial ATP-
dependent protease Lon (LONP1) [134], which is able to serve as a glycolysis-enhancing fac-
tor [135], the miR-381-3p/NEK5/LONP1 axis may be involved in XIST-induced glycolysis.

3. LncRNAs Regulating HIF-1α Expression

As was the case in Section 2, we classified HIF-1α-regulating lncRNAs into six cate-
gories depending on what lncRNAs are involved in cellular events, aiming to display the
function of each lncRNA even though they can have multiple functions.

3.1. LncRNAs Affecting Cell Survival and Apoptosis
3.1.1. CDKN2B-AS1

It has been demonstrated that CDKN2B-AS1 is highly expressed in various cancer
types and serves as an oncogenic factor by regulating multiple cellular events such as
apoptosis [136,137]. Further evidence showed that CDKN2B-AS1 interacts with miR-411–
3p, which directly targets HIF-1α in ovarian cancer [138]. The knockdown of CDKN2B-AS1
induces caspase-3 activation and apoptotic cell death via reducing HIF-1α expression
and p38 activity. In addition, the in vivo growth of ovarian cancer cells is hampered by
CDKN2B-AS1 depletion [138] (Figure 2 and Table 2). Hypoxia is known to activate p38,
thus leading to cancer aggressiveness via enhancing cell survival [139,140]. Moreover,
HIF-1α is activated by p38 [139]. These results imply that both expression and activity of
HIF-1α can be positively regulated by CDKN2B-AS1.
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Table 2. LncRNAs that regulate the expression of HIF-1α (alphabetical order).

LncRNA Type of Cancer Expression
(Cell Lines and/or Tissues) In Vivo Experiment Clinical Relevance Ref.

CDKN2B-AS1 Ovarian cancer
Highly expressed in cancer cells (e.g.,

SKOV-3 cells) compared to normal ovarian
epithelial cells

Subcutaneous injections of
SKOV-3 cells following the

knockdown of CDKN2B-AS1
– [138]

FAM201A Lung cancer Highly expressed in cancer tissues from
patients responding poorly to radiotherapy

Subcutaneous injections of A549
and SK-MES-1 cells following

FAM201A silencing

Unfavorable prognosis in
patients with high FAM201A

levels
[141]

H19

Endometrial cancer Overexpressed in cancer tissues compared
to normal controls

Subcutaneous injections of
H19-silencing HHUA cells – [142]

Glioblastoma
Abundant in cancer cell lines (U373, A172,
and U87) compared to normal glial cells

(HEB)
– – [143]

HOTAIR Renal cancer
Upregulated in cancer tissues and cell lines
compared to adjacent normal tissues and

normal renal cells, respectively

Subcutaneous injections of 769-P
cells transfected with HOTAIR

small interfering RNA

High expression of HOTAIR is
correlated with tumor stages and

metastasis
[144]

HOXA-AS2 Nasopharyngeal cancer Highly expressed in cancer tissues as well as
cell lines (SUNE1 and SUNE2) – – [145]

LINC00152 Gallbladder cancer Abundant in cancer tissues and cell lines
(NOZ and GBC-SD)

Intraperitoneal injections of
GBC-SD cells stably

overexpressing LINC00152

Positively associated with short
overall survival and lymph node

invasion
[146]

LINC00301 Lung cancer Upregulated in cancer tissues compared to
normal counterparts

Implantations of
LINC00301-overexpressing LA-4

and KLN-205 cells

Positively associated with
advanced clinical stage, lymph

node metastasis, and worse
overall survival

[147]

LINC00518 Melanoma Overexpressed in cancer tissues compared
to normal skin controls

Subcutaneous injections of
LINC00518-depleted WM451 and

A375 cells + irradiation (2Gy)

Worse survival in patients with
high LINC00518 levels [148]

NEAT1 Osteosarcoma Enriched in cancer tissues and various cell
lines (HOS, U2OS, SaOS2, and MG63)

Subcutaneous injections of HOS
cells following NEAT1 depletion

Significantly associated with
distant metastasis, advanced

clinical stage, and poor overall
survival

[149]
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Table 2. Cont.

LncRNA Type of Cancer Expression
(Cell Lines and/or Tissues) In Vivo Experiment Clinical Relevance Ref.

SNHG6

Esophageal cancer Upregulated in cancer tissues and cell lines
(EC109, EC9706, KYSE30, and KYSE150) – – [150]

Hepatocellular carcinoma Increased in cancer tissues compared to
control tissues

Subcutaneous injections of Huh7
cells stably knocking down

SNHG6

Associated with overall and
progression-free survival [151]

Clear cell renal cell carcinoma Highly expressed in cancer tissues
compared to normal tissues

Subcutaneous injections of A498
cells stably expressing SNHG6

Short overall survival in patients
with high SNHG6 levels [152]

SNHG11 Colorectal cancer Highly expressed in cancer tissues
compared to normal tissues

Tail vein injections of HCT116
cells stably overexpressing

SNHG11

Positively associated with
lymphatic invasion, metastasis,

distant recurrence, and short
overall survival

[153]

TMPO-AS1 Retinoblastoma Overexpressed in cancer tissues compared
to adjacent normal tissues – Positively associated with the

stages of cancer [154]

TUG1 Osteosarcoma

Highly expressed in cancer tissues compared
to normal controls. Higher in several cancer
cell lines (e.g., U2OS and 143B cells) than in

NHOst (normal osteoplastic cells)

Subcutaneous, intraperitoneal, or
intravenous injections of

TUG1-depleted U2OS cells

Positively associated with poor
prognosis [155]

UCA1 Breast cancer
Abundant in tamoxifen-resistant cell lines
(LCC2, LCC9, and BT474) compared to a

tamoxifen-sensitive cell line (MCF-7)
– – [156]

XIST Colorectal cancer Upregulated in cancer tissues compared to
normal controls

Subcutaneously inject
XIST-silencing LoVo cells or

SW480 cells overexpressing XIST

Positively associated with the
TNM stage [157]

ZEB2-AS1 Gastric cancer

Overexpressed in cancer cell lines
(SGC-7901, BGC-823, and MKN-28)

compared to normal gastric epithelial cells
(GES-1)

Subcutaneous injections of
SGC-7901 cells depleted of

ZEB2-AS1
– [158]
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3.1.2. H19 and HOTAIR

AXL receptor tyrosine kinase (AXL) stimulates pro-survival signaling to protect cells
from apoptosis, and its expression can be transcriptionally activated by HIF-1 and HIF-
2 [159–161]. Recent studies demonstrated that both H19 and HOTAIR facilitate AXL
expression, thereby inhibiting apoptosis induction in vitro [142,144]. It was also noted that
the knockdown of H19 and HOTAIR retards the growth of endometrial cancer and renal cell
carcinoma in vivo, respectively. Mechanistically, H19 and HOTAIR antagonize miR-20b-5p
and miR-217, respectively, thus enhancing the expression of HIF-1α and AXL [142,144]
(Figure 2 and Table 2).

3.2. LncRNAs Regulating Cell Migration, Invasion, and EMT
3.2.1. HOXA-AS2

It has been shown that miR-519d-3p negatively controls cell proliferation, migration,
and invasion by, for example, restraining Wnt/β-catenin, p38, and PI3K/AKT signal-
ing [162–164]. HOXA-AS2 was noticed to inactivate miR-519d-3p, thus reinforcing the
migration and invasion of nasopharyngeal carcinoma cells. In a study concerning them,
miR-519d-3p was confirmed to target HIF-1α [145] (Figure 2 and Table 2). Another study
has shown the direct restraint of HIF-2α expression by miR-519d-3p [165]. These data imply
the possibility of modulation of the hypoxia signaling pathway via the HOXA-AS2/miR-
519d-3p axis and the feasibility of targeting HOXA-AS2 for cancer therapy.

3.2.2. LINC00152

In multiple cancers, LINC00152 supports EMT and metastasis by positively regulating
the level of ZEB1, PI3K, and AKT [166,167]. In gallbladder cancer, LINC00152 was also
observed to exhibit EMT- and metastasis-promoting activities via sponging miR-138-5p
that targets HIF-1α [146] (Figure 2 and Table 2). The transcription of LINC00152 is activated
by krueppel-like factor 5 (KLF5) [168], and KLF5 levels can be increased by hypoxia [169].
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Therefore, the existence of a hypoxia/ KLF5/LINC00152/HIF-1α signaling loop is worth
considering.

3.2.3. NEAT1 and TUG1

In addition to being controlled by hypoxia (Sections 2.2.7 and 2.5.5, and Table 1), NEAT1
can lead to a rise in HIF-1α levels via deactivating miR-186-5p [149] (Figure 2 and Table 2). The
overexpression of NEAT1 provokes EMT, whereas EMT is abrogated by NEAT1 silencing
in osteosarcoma cells. Additionally, the in vivo growth of osteosarcoma was noticed to be
significantly hampered by NEAT1 silencing [149].

TUG1 also boosts the level of HIF-1α by sponging miR-143-5p, thus driving the
invasion, peritoneal spreading, and metastasis of osteosarcoma [155] (Figure 2 and Table 2).
In this study, it was additionally discovered that TGF-β derived from CAFs can increase
the expression of TUG1 in osteosarcoma cells, indicating the contribution of TUG1 to
CAF-mediated control of osteosarcoma progression [155].

Overall, these findings suggest that NEAT1 and TUG1 are attractive targets for os-
teosarcoma therapy.

3.2.4. SNHG6

Numerous studies have shown that cancer progression is fostered by SNHG6 [170–173].
Moreover, SNHG6 can elevate the expression of HIF-1α by either sponging miRNAs or
enhancing the translation of HIF-1α mRNA [150–152].

SNHG6 was confirmed to stimulate the migration and invasion of esophageal cancer
cells by absorbing miR-186-5p, which directly targets HIF-1α [150] (Figure 2 and Table 2).

Moreover, SNHG6 subdues the activity of miR-6509-5p. As a consequence, SNHG6
enhances migration and invasion abilities of hepatocellular carcinoma cells, along with an
increase in HIF-1α expression. In xenografts, the growth of hepatocellular carcinoma is
suppressed by the downregulation of SNHG6 [151] (Figure 2 and Table 2).

Furthermore, the pro-tumorigenic effect of SNHG6 was also reported in clear cell renal
cell carcinoma [152]. In a study concerning them, it was proposed that SNHG6 interacts
with Y-box binding protein 1 (YBX1, also called YB1) and mediates the connection between
YBX1 proteins and HIF-1α mRNAs to activate translation of HIF-1α transcripts [152]
(Figure 2 and Table 2).

3.2.5. SNHG11 and XIST

Von Hippel-Lindau tumor suppressor (VHL) can bind to and degrade HIF-1α via the
ubiquitin–proteasome pathway [174,175]. A recent publication described that SNHG11
physically interacts with and stabilizes HIF-1α proteins by blocking the binding of HIF-
1α to VHL. Consequently, SNHG11 facilitates hypoxia-induced migration and invasion
in vitro and the lung metastasis of colorectal cancer cells in vivo [153] (Figure 2 and Table 2).
It is also acknowledged that SNHG11 upregulates MYC expression [176]. Since MYC can
post-transcriptionally stabilize HIF-1α [177], SNHG11 may regulate the stability of HIF-1α,
at least partly via VHL and MYC.

In colorectal cancer, XIST also augments the level of HIF-1α via negatively regulating
miR-93-5p activity; therefore, XIST can possess stimulatory effects on migration, invasion,
and the EMT process. Further, the overexpression and downregulation of XIST led to
an increase and a decrease in the growth of colorectal cancer, respectively, in a xenograft
model [157] (Figure 2 and Table 2). Since XIST positively controls MYC expression via
Wnt/β-catenin signaling [178], it is feasible that XIST may post-transcriptionally stabilize
HIF-1α as well.

3.2.6. TMPO-AS1

Accumulating evidence shows that TMPO-AS1 exerts oncogenic functions in diverse
cancer types. For instance, TMPO-AS1 and miR-383-5p act competitively in their interaction
with SOX11, which can accelerate the migration and invasion of pancreatic cancer cells. As a
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result, the downregulation of TMPO-AS1 restrains cell migration and invasion in vitro and
the growth of pancreatic cancer cells in vivo [179]. In addition, TMPO-AS1 can accelerate
cancer progression via activating AKT/mechanistic target of rapamycin kinase (mTOR)
signaling [180,181]. Furthermore, the malignant phenotype of retinoblastoma cells is fueled
by TMPO-AS1, owing to its ability to inhibit miR-199a-5p, which targets HIF-1α [154]
(Figure 2 and Table 2).

3.2.7. ZEB2-AS1

In gastric cancer, ZEB2-AS1 can heighten the level of HIF-1α by obstructing the activity
of miR-143-5p, provoking the invasion of gastric cancer cells. As expected, the depletion
of ZEB2-AS1 significantly hinders the growth of gastric cancer in vivo [158] (Figure 2 and
Table 2). ZEB2-AS1 was found to escalate the level of zinc finger E-box-binding homeobox
2 (ZEB2), thus promoting EMT and metastasis [182,183]. In another study, ZEB2-AS1 was
confirmed to activate Wnt/β-catenin signaling via augmenting ZEB2 expression, hence
showing a growth-promoting effect in gastric cancer in vivo [184]. Therefore, HIF-1α
can also be stabilized by the ZEB2-AS1/Wnt/β-catenin axis (see Section 3.2.5 about the
relationship between HIF-1α and Wnt/β-catenin).

3.3. LncRNAs Modulating Angiogenesis
H19

As stated in Sections 2.1.1, 2.2.5 and 3.1.2, H19 has a cell survival- and EMT-promoting
activity. Further, H19 can trigger angiogenesis by regulating several factors. In glioma, H19
increases vasohibin 2 (VASH2) levels and Wnt/β-catenin signaling via impairing the action
of miR-29a-3p and miR-342, respectively, actuating angiogenesis as a consequence [185,186].
By inhibiting miR-29b-3p activities, H19 also activates angiogenesis as well as metastasis in
bladder cancer [187]. Further, recent mechanistic evidence showed that H19 upregulates
the expression of VEGF by interfering with miR-138, which targets HIF-1α [143] (Figure 2
and Table 2).

3.4. LncRNAs Affecting Drug Resistance
3.4.1. FAM201A

EGFR is commonly overexpressed in cancer and renders cells resistant to radiother-
apy [188–190]. EGFR inhibition has been shown to sensitize cancer cells to radiation
therapy through potentiating, for instance, cell cycle arrest and apoptosis [191]. HIF-1α
also promotes radioresistance by regulating multiple cellular events, such as mitochondrial
biogenesis, apoptosis, and EMT [192–194]. FAM201A was recently proven to modulate the
effect of radiotherapy in lung cancer [141]. The silencing of FAM201A significantly reduces
cell proliferation together with an induction of apoptosis in irradiated cells. The efficacy
of irradiation is also improved by FAM201A knockdown in lung cancer xenografts. Such
radioresistant-promoting effects of FAM201A could be due to its sequestering property
towards miR-370-3p, which targets EGFR and HIF-1α [141] (Figure 2 and Table 2).

3.4.2. UCA1

Evidence from an in vitro study suggested that UCA1 silencing inactivates AKT and
mTOR, augmenting tamoxifen-induced apoptosis in breast cancer cells [195]. Similarly, it
was denoted that ectopic expression of UCA1 desensitizes breast cancer cells to tamoxifen
along with an insufficient activation of caspase-3 [156]. It was found that treatments with
tamoxifen caused the induction of HIF-1α and UCA1 expression. UCA1 was validated to
sponge miR-18a-5p that directly represses HIF-1α (Figure 2 and Table 2). Furthermore, it
was shown that tamoxifen-induced UCA1 is abrogated by HIF-1α silencing, illustrating a
feedback loop between UCA1 and HIF-1α [156].
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3.5. A lncRNA and Immunosupression
LINC00301

Recently, LINC00301 was demonstrated to be responsible for the creation of an im-
munosuppressive microenvironment in lung cancer [147]. LINC00301 sponges miR-1276
to upregulate HIF-1α expression. In addition, LINC00301 is able to augment HIF-1α levels
by transcriptionally repressing the expression of ELL-associated factor 2 (EAF2), which
is known to stabilize VHL (see Section 3.2.5 about VHL and HIF-1α). Thus, LINC00301
can increase the number of tumor-infiltrating Tregs in vivo. It was also observed that
transcriptional activation of LINC00301 is mediated by Forkhead box C1 (FOXC1) [147]
(Figure 2 and Table 2). Considering that FOXC1 is induced by HIF-1α under hypoxia [196],
the existence of a LINC00301-HIF-1α-FOXC1 feedback loop is feasible.

3.6. LncRNAs and Glycolysis
LINC00518

LINC00518 is potentially involved in cancer-related processes, such as cell viabil-
ity, migration, invasion, and metastasis [197–200]. Furthermore, LINC00518 can pro-
mote therapeutic resistance to various agents, including paclitaxel, vincristine, and adri-
amycin [201,202]. Moreover, LINC00518 was determined to promote HIF-1α expression
by targeting miR-33a-3p in melanoma cells, consequently inducing glycolysis-mediated
radioresistance in vitro and in vivo [148] (Figure 2 and Table 2).

4. Conclusions

Since hypoxia broadly impacts molecular events involved in cancer progression,
aggressiveness, and therapeutic resistance, targeting hypoxia is an attractive approach
in the management of solid cancers [1,203]. To surmount and exploit this distinctive
feature of solid cancer, efforts to develop HIF inhibitors and hypoxia-activated prodrugs
have been ongoing for targeting oncogenic signaling pathways mediated by hypoxia and
HIFs [203,204]. For this strategy, further studies are still desired to overcome limiting factors
such as dose-limiting toxicity. In addition, the development of resistance is unavoidable.
For instance, prolonged exposure to PT2399, a selective HIF-2 inhibitor, leads to the
development of resistance that is associated with an increase in tumor vascularity and
VEGF levels [205]. Thus, new treatment strategies are necessary to refine therapeutic
benefits.

Accumulating evidence described here shows that the levels of lncRNAs can be
affected by hypoxia/HIFs and that lncRNAs control the expression and activity of HIF-α
subunits. Among lncRNAs in Sections 2 and 3, some lncRNAs can form a regulatory
feedback loop with hypoxia/HIF subunits as shown in Figure 3. Although experimental
confirmation is needed, other lncRNAs may also regulate hypoxia signaling via creating a
feedback loop with HIF-1α (Sections 2.2.3, 3.2.2 and 3.5) and reinforcing the level of both
HIF-1α and HIF-2α (Section 3.2.1). Under hypoxia, HIFs can directly induce lncRNAs.
Additionally, HIFs may control the level and activity of other transcription factors, indirectly
altering lncRNA levels. Moreover, the expression of lncRNAs can be upregulated or
downregulated in a HIF-independent manner. Additionally, the cytoplasmic localization
of LINC00152 is stimulated by hypoxia [206], suggesting that hypoxia can modulate the
function of lncRNAs not only by altering their expression but also by controlling their
intracellular localization. More experimental approaches are necessary to analyze the
profound relationship between hypoxia/HIFs and lncRNAs. Nonetheless, it suggests that
lncRNA-based cancer therapy can be a potential strategy against cancers.

Growing evidence suggests that the modulation of lncRNA expression sensitizes can-
cer cells to anti-cancer agents [17,207,208]. Since a therapeutic response can be improved
by combination therapy, exploring a novel strategy of lncRNA-based cancer therapy in
combination with other hypoxia-targeting agents (e.g., HIF inhibitors and prodrugs) is
worth considering. Moreover, extracellular vesicles (EVs) derived from cancer cells trans-
port cargo molecules, such as lncRNAs, to other adjacent cells, eventually affecting cancer
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progression [209]. It has been reported that lncRNAs are incorporated in hypoxic cancer-
cell-originated EVs. Examples include UCA1 and lincRNA-p21, both of which are delivered
to endothelial cells and promote angiogenesis [210,211]. Therefore, the combination of
hypoxia-targeting agents with EV inhibitors can more effectively control cancers.
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Tumor-suppressive lncRNAs are shown in blue rounded rectangles. At least through HIF-1α or HIF-2α (displayed in
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effect is designated by a perpendicular line.

As mentioned in Sections 2.2.9 and 2.3.1, lncRNAs can behave differently depending
on cancer types. In addition, HIF1A-AS1 is overexpressed in hepatocellular carcinoma and
supports cell survival [212], whereas this lncRNA was reported to promote apoptotic cell
death induced by tumor necrosis factor-α in Kupffer cells [213], suggesting a possibility
of context-specific functions of other lncRNAs. Further, both LINC00511 and miR-31-
5p are oncogenic noncoding RNAs in colorectal cancer [214] (see Section 2.1.4 about
LINC00511). However, a recent study demonstrated that LINC00511 can sponge miR-31-
5p [215], implying intricate lncRNA–miRNA networks. To establish a promising strategy
for lncRNA-based cancer therapy, it is crucial to attentively consider these features of
lncRNAs.

LncRNAs can regulate a broad range of cellular signaling regardless of oxygen lev-
els [17,216,217], and solid cancers are heterogeneous in terms of oxygenation [218]. There-
fore, targeting an individual lncRNA can have a chance of controlling both well-oxygenated
and hypoxic cancer cells. Advanced knowledge of lncRNAs will enable lncRNA-based
cancer therapy to progress toward clinical application.
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Abbreviations

3′ UTR 3′ untranslated region
AGAP2 ArfGAP with GTPase domain, ankyrin repeat and PH domain 2
AKT2 AKT serine/threonine kinase 2
ALDH1A1 Aldehyde dehydrogenase 1 family member A1
ANGPTL4 Angiopoietin-like 4
ANXA11 Annexin A11
AXL AXL receptor tyrosine kinase
BAX BCL2-associated X protein
BCL2 B-cell CLL/lymphoma 2
BID BH3-interacting domain death agonist
BRD4 Bromodomain-containing protein 4
CAFs Cancer-associated fibroblasts
CCL28 C-C motif chemokine ligand 28
CDH2 Cadherin 2
CDKN1A Cyclin-dependent kinase inhibitor 1A
CoCl2 Cobalt chloride
CREPT Cell-cycle related and expression-elevated protein in tumor
CTNND2 Catenin delta 2
DHX9 DExH-box helicase 9
EAF2 ELL-associated factor 2
EGFR Epidermal growth factor receptor
EMT Epithelial-to-mesenchymal transition
EPAS1 Endothelial PAS domain-containing protein 1
ERK Extracellular signal-regulated kinase
EVs Extracellular vesicles
EZH2 Enhancer of zeste homolog 2
FOXC1 Forkhead box C1
GLUT4 Glucose transporter type 4
HIFs Hypoxia-inducible factors
HK2 Hexokinase 2
HMGA1 High-mobility group AT-hook
HMGB3 High-mobility group box 3
IGF2BP2 Insulin-like growth factor 2 mRNA-binding protein 2
ITGA6 Integrin subunit alpha 6
KLF5 Krueppel-like factor 5
KRAS Kirsten rat sarcoma viral oncogene homolog
L1CAM L1 cell adhesion molecule
LDHA Lactate dehydrogenase A
LncRNAs Long noncoding RNAs
LONP1 Mitochondrial ATP-dependent protease Lon
MCL1 Myeloid cell leukemia 1
M-GSCs Mesenchymal glioma stem cells
miRNAs MicroRNAs
MK5 MAPKAP kinase 5
mRNAs Messenger RNAs
mTOR Mechanistic target of rapamycin kinase
MYC V-Myc avian myelocytomatosis viral oncogene homolog
NEK2 Nima-related kinase 2
NFIA Nuclear factor I/A
NFYA Nuclear transcription factor Y subunit alpha
NOB1 NIN1/PSMD8 binding protein 1 homolog
PDK1 Pyruvate dehydrogenase kinase 1
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PFKM Phosphofructokinase-M
PIKE Phosphatidylinositol 3-kinase enhancer
PKM2 Pyruvate kinase M2
PLAGL2 PLAG1-like zinc finger 2
POL II RNA polymerase II
PRC2 Polycomb repressive complex 2
PTBP3 Polypyrimidine tract-binding protein 3
RAC1 Rac family small GTPase 1
RHOA Ras homolog family member A
shRNA Small hairpin RNA
SNAI1 Snail family transcriptional repressor 1
SP1 Sp1 transcription Factor
STAT3 Signal transducer and activator of transcription 3
TGF-β Transforming growth factor β
TNM Tumor, node and metastasis
TP53 Tumor suppressor P53
Tregs Regulatory T cells
VASH2 Vasohibin 2
VEGF Vascular endothelial growth factor
VHL Von Hippel-Lindau tumor suppressor
WNT2B Wnt family member 2B
YBX1 Y-box binding protein 1
YY1 Yin and yang 1
ZEB1 Zinc finger E-box binding homeobox 1
ZEB2 Zinc finger E-box-binding homeobox 2
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