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A type of cancer which originates from the breast tissue is referred to as breast cancer. Globally, it is the most common cause of
death in women. Treatments such as radiotherapy, chemotherapy, hormone therapy, immunotherapy, and gene therapy are the
main strategies in the fight against breast cancer. (e present study aims at investigating the effects of the combined radiotherapy
and chemotherapy as a way to treat breast cancer, and different treatment approaches are incorporated into the model. Also, the
model is fitted to data on patients with breast cancer in Tanzania.We determine new treatment strategies, and finally, we show that
when sufficient amount of chemotherapy and radiotherapy with a low decay rate is used, the drug will be significantly more
effective in combating the disease while health cells remain above the threshold.

1. Introduction

Cancer begins when healthy cells in the breast change and
grow out of control, forming a mass or sheet of cells called
tumor. Usually breast cancer occurs either in the inner lining
of milk ducts, known as ductal carcinomas, or the lobules of
the breast, known as lobular carcinomas. Breast cancer occurs
in humans and other mammals. While an overwhelming
majority of human cases occur in women, breast cancer
occurs in men as well. Globally, it is the most common cause
of death in women [1–3]. Out of approximately 8.6 million
women diagnosed with cancer in 2018, 2.1 million were breast
cancer cases and 57% of the 2.1 million were from developing
countries. During the same year, 626, 679 breast cancer deaths
were recorded, majority of which were from sub-Saharan
African countries [1, 4].

Studies show that the incidence of breast cancer in sub-
Saharan African countries is increasing, and this concurs
with the World Health Organization (WHO) report in 2015.
It is estimated that, by 2025, over 19.3 million women,
predominantly from sub-Saharan African countries, will be
suffering from breast cancer. (e highest prevalence rate is

noted to be in East, North, and West Africa [4]. In Tanzania,
for instance, breast cancer represents 14.4% of new cancers
among women. (e age-standardized breast cancer incidence
in Tanzania is 19.4 per 100, 000, and the age-standardized
breast cancer mortality rate is 9.7 per 100, 000. (is means
mortality-to-incidence ratio is 0.5, which indicates that half of
all women diagnosed with breast cancer in Tanzania will die of
the disease.(e number of new breast cancer cases is projected
to increase from 2, 732 in 2012, to 4, 961 cases in 2030, an
increase of 82%. Projections for breast cancer deaths follow the
same pattern, with an increase of 80% in breast cancer deaths
by 2030 [5, 6].

Many strategies have been used to control this disease
from the populations, for instance, prevention, early de-
tection, diagnosis, and treatment. Although prevention and
early detection have been the cornerstone of breast cancer
control in low- and middle-income countries, treatment has
remained the main strategy in the fight against breast cancer
[7, 8]. For example, in Tanzania, the struggle to combat
breast cancer is being led byMedicalWomen Associations of
Tanzania (MEWATA) and Tanzania Breast Health Care
Assessment (TBHCA). For successful control of breast
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cancer, treatment should be administered so as to control the
growth of breast tumor cells.

One of the purposes of modelling the dynamics of
breast cancer disease is to provide a rational basis for
policy design to control the spread of cancer cells.
Mathematical models such as in [9–11] have been used to
study some of the interactions between tumor and im-
mune system, tumor-immune system with treatment, and
tumor growth based on tumor population dynamics. For
instance, the model developed in [12] considered the
interaction between transforming growth factor- (TGF-)
inhibitor and vaccine treatments. (ey have showed that
vaccine alone allows for the development of a significant
and long-term immune response that is minimally affected
by the TGF that is present at later time points and the TGF-
inhibitor alone provides conditions that help the pop-
ulations of immune cells to expand during the initial
phases of tumor presentation.

(e model developed in [13] specifically considers the
effects of the cytokine interleukin-2 (IL-2). (eir results
indicate that IL-2 treatment alone does not boost the
immune system enough to clear the tumor. However, large
amounts can have pathologic effects, but the combined
effects of IL-2 and adoptive cellular immunotherapy (ACI)
showed to be the best options for the clearance of tumor. In
this work, we consider the stage at which cancer cells fail to
be controlled even if the immune system is boosted, that is,
invasive breast cancer that spreads to nearby tissue. Tumor-
immune interactions were also studied in [14], where the
authors considered a patient suffering from brain tumor
and formulate a mathematical model for immunotherapy
with T11 target structure (T11TS). (e qualitative results
presented in their work showed that, without T11 target
structure, the body’s own defence mechanism fails to
control the growth of malignant glioma cells, while with
T11 target structure, there is significant decrease in the cell
count of malignant glioma cells. (ey suggested that T11
target structure needs to be investigated in human. In the
work of [15], a mathematical model governing cancer
growth on a cell population level with combination of
immune, vaccine, and chemotherapy treatments was in-
vestigated. It was found that neither chemotherapy nor
immunotherapy alone is sufficient to control tumor
growth, but in combination, the therapies are able to
eliminate the entire tumor. (ere is a lot of literature that
addresses the development of various mathematical models
of cancer and treatment, for example, [16–26]. (e work in
[27] demonstrated the crucial role played by the immune
system in the process of tumor elimination. However, the
results showed that despite immune pressure, cancer is able
to persist if the cells are able to mutate fast and the immune
response is not strong enough.

Despite the overall success of these mathematical
models, it is evident from all literatures presented that most
mathematical models describe tumor-immune system in-
teraction based on cancer in general. Since different cancers
respond differently to treatment, the goal of this study is to
focus on a specific cancer (that is breast cancer) rather than
modelling disease in general. (is goal goes in line with the

suggestion from [20]. Based on old and recent existing
models such as [15, 23, 28–31], we develop a mathematical
model that captures the effects of treatment on the dynamics
of breast cancer. (e use of combination therapy, such as
chemotherapy and radiotherapy, has not been investigated to
study the dynamics of breast cancer disease. (is is important
because radiotherapy and low-dose chemotherapy after
surgery help destroy any remaining cancer cells [32]. In order
to better understand the dynamics of the disease, we consider
three treatment approaches: single therapy, combination
therapy, and amount of drug doses administered while re-
ducing the side effects.(e outline of this work is organized as
follows: Materials and Methods are presented in Section 2.
Results and discussion are presented in Section 3. Finally, we
conclude and give the remarks in Section 4.

2. Materials and Methods

2.1. +e Model. We develop a model by assuming the
logistic growth of cell populations in the absence of
chemotherapy and radiotherapy. Some tumor cells are
assumed to avoid immune response control due to
succession of mutations leading to the development of
immune-resistant cells [27]. At any time t, we consider
immune response as natural killer cells denoted by (I(t))
and describe its dynamics by assuming that the source of
I(t) is constantly infused in the body daily. (e model
views the tumor as a single compartmental population
and divide it into two types of cell subpopulations,
namely, the tumor-sensitive cells denoted as T(t) and the
resistant cells, TR(t). Since the issue at hand is invasive
breast cancer that spreads to nearby tissue, it is assumed
that the impact of normal cells on the tumor cells is
negligible. (e model equations are given below. Table 1
gives explanations of the terms.

(e dynamic of tumor-sensitive cells is represented by

dT

dt
� r1T 1 −

T

Tmax
􏼠 􏼡 − α1IT − μT − aT 1 − e

− δ1M
􏼐 􏼑T

− bT 1 − e
− δ2R

􏼐 􏼑T,

(1)

where we adapt the following terms, that is, growth rate,
natural killer induced tumor death, mutation rate, and death
of tumor-sensitive cells due to chemotherapy from [23, 29].
We added and assumed the death of tumor-sensitive cells
due to radiotherapy is the same as chemotherapy.

(e dynamics of tumor-resistant cells, TR(t), is repre-
sented by

dTR

dt
� r2TR 1 −

TR

Tmax
􏼠 􏼡 + μT − aTR

1 − e
− δ1M

􏼐 􏼑TR

− bTR
1 − e

− δ2R
􏼐 􏼑TR,

(2)

where we assumed that tumor-resistant cells grow lo-
gistically and the second term on the right-hand side of (2) is
adapted as in [23]. (e death of tumor-sensitive cells due to
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chemotherapy and radiotherapy are assumed to be the same
as in equation (1).

(e normal cell compartment is represented by N(t)

and the dynamics, as adapted from [29], is represented by
using the following equation:

dN

dt
� r3N 1 −

N

Nmax
􏼠 􏼡 + kT 1 −

T

T∗
􏼒 􏼓 − aN 1 − e

− δ1M
􏼐 􏼑N

− bN 1 − e
− δ2R

􏼐 􏼑N.

(3)

Since the issue here is invasive breast cancer, the
competition between tumor cells and normal cells, for
resources like nutrients, oxygen, and environment in
a small volume, is not significant. We add the second term
by assuming that normal cells are activated by the pres-
ence of tumor cells and the ability of tumor cells to inhibit
the normal cells growth increases as the population of
tumor cells passes the critical value, i.e., T>T∗. Expla-
nations for the last two terms are similar to equation (1),
and except here, we consider N(t).

Next we consider the immune cells, I(t), as adapted
from [28, 29, 31], and the dynamics is represented by
using the following equation:

dI

dt
� s +

ε1IT

ε2 + T
− dI − α2IT − aI 1 − e

− δ1M
􏼐 􏼑I

− bI 1 − e
− δ2R

􏼐 􏼑I,

(4)

where we added the last two terms as explained in
equation (1).

We also consider the concentration of chemotherapy and
radiotherapy denoted by M(t) and R(t), respectively. To
control breast cancer progression, an equation with che-
motherapy treatment is included as adapted in [15, 23, 29, 30].
(e interaction between chemotherapy and all cells is found
to follow an exponential saturation kinetics model, and this
saturation have been validated by [33] for a reasonable
number of chemotherapeutic drugs. Since the model con-
sidered in this study includes chemotherapy and radiother-
apy, the later also is assumed to interact in a similar way. In
the same way as in [31, 34, 35], the present model ignores any
spatial dependence of the dynamics. (e dynamics of che-
motherapy and radiotherapy, respectively, are represented by
using the following equations:

dM

dt
� VM(t) − d1M,

dR

dt
� VR(t) − d2R.

(5)

Table 1: Equation descriptions.

Equation Term Description Source

dT/dt

r1T(1 − (T/Tmax)) Logistic tumor-sensitive growth [29, 30]
− α1IT NK-induced tumor death [28, 29, 31]
− μT Tumor-sensitive cell mutation [23]

− aT(1 − e− δ1M)T Chemotherapy-induced tumor-sensitive death [30]
− aT(1 − e− δ2R)T Radiotherapy-induced tumor-sensitive death Assumed

dTR/dt

r2TR(1 − (TR/Tmax)) Logistic tumor-resistant growth Assumed
μT Tumor-sensitive cell mutation [31]

− aTR
(1 − e− δ1M)TR Chemotherapy-induced tumor-resistant death Assumed

− bTR
(1 − e− δ2R)TR Radiotherapy-induced tumor-resistant death Assumed

dN/dT

r3N(1 − (N/Nmax)) Logistic normal growth [23]
kT(1 − (T/T∗)) Production of N cells from activated T cells Assumed

− aN(1 − e− δ1M)N Death of normal cells due to chemotherapy toxicity [15, 29, 30]
− bN(1 − e− δ2R)N Death of normal cells due to radiotherapy toxicity Assumed

dI/dt

s Constant source of immune cells [28, 29, 31]
(ε1IT)/(ε2 + T) Stimulatory effect of T on immune cells [28, 29, 31]

− dI Immune turnover [19]

− α2IT
Immune death by exhaustion of tumor-killing

resources [28, 29, 31]

− aI(1 − e− δ1M)I Death of immune cells due to chemotherapy toxicity [15, 29, 30]
− bI(1 − e− δ2R)I Death of immune cells due to radiotherapy toxicity Assumed

dM/dt
VM(t) Chemotherapy drug dose [15, 29, 30]
− d1M Excretion and elimination of chemotherapy toxicity [15, 29, 30]

dR/dt
VR(t) Radiotherapy drug dose Assumed
− d2R Excretion and elimination of radiotherapy toxicity Assumed
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(us, the developed model with chemotherapy and
radiotherapy treatment is composed of six ordinary dif-
ferential equations as follows:

dT

dt
� r1T 1 −

T

Tmax
􏼠 􏼡 − α1IT − μT − aT 1 − e

− δ1M
􏼐 􏼑T

− bT 1 − e
− δ2R

􏼐 􏼑T,

dTR

dt
� r2TR 1 −

TR

Tmax
􏼠 􏼡 + μT − aTR

1 − e
− δ1M

􏼐 􏼑TR

− bTR
1 − e

− δ2R
􏼐 􏼑TR,

dN

dt
� r3N 1 −

N

Nmax
􏼠 􏼡 + kT 1 −

T

T∗
􏼒 􏼓 − aN 1 − e

− δ1M
􏼐 􏼑N

− bN 1 − e
− δ2R

􏼐 􏼑N,

dI

dt
� s +

ε1IT

ε2 + T
− dI − α2IT − aI 1 − e

− δ1M
􏼐 􏼑I

− bI 1 − e
− δ2R

􏼐 􏼑I,

dM

dt
� VM(t) − d1M,

dR

dt
� VR(t) − d2R.

(6)

(e initial conditions are T(0) � To ≥ 0,TR(0) � TRo
≥ 0,

N(0) � No > 0, I(0) � Io > 0, M(0) � Mo ≥ 0, and R(0) �

Ro ≥ 0.

2.1.1. +e Parameters. Determination of parameters is very
important for a complete model. Tables 2 and 3 provide
quick references for the parameter values and their de-
scription used in our model.

2.1.2. Equilibrium States. We obtained reasonable equilib-
rium points for the tumor-free condition and for the en-
demic condition. We first consider the case of a tumor-free
condition, where normal cells and immune cells exist, using
the parameter values given in Table 3 except r1 � 0.00431
and r2 � 0.0025. (at is, N• � 2.7428 × 107 and I• � 1.3793
×106, and tumor cell populations decline to zero (T• �

T•
R ≈ 0), where (N•, I•, T•, andT•

R) represents cell at tumor-
free equilibrium.

Here,

(i) r3 > 0
(ii) I• > (r1/α1)

which shows that tumor-free condition is locally as-
ymptotically stable.

Next, we consider the case of a coexisting equilibrium
using the parameter values given in Table 3 except r3 � 0.007.

Using these parameter values, tumor-sensitive cells, tu-
mor-resistant cells, normal cells, immune cells, the
amount (or concentration) of chemotherapeutic drug,
and the amount (or concentration) of radiotherapy all
exist. (at is, T⊛ � 4.0558 × 107, T⊛R � 3.1085 × 107, N⊛ �

4.0348 × 106, I⊛ � 2.1704 × 105, M⊛ � 44.4873, and R⊛ �

44.4873, where (T⊛, T⊛R, N⊛, I⊛, M⊛, R⊛) represents cells
at the endemic state.

(is indicates that the endemic equilibrium point is
locally asymptotically stable.

Here, I⊛ < (r1/α1) − ((aT(1 − e− M⊛) + bT(1 − e− R⊛))/α1)
which shows that the tumor-free equilibrium becomes
unstable and only the coexisting equilibrium exists. In other
words, through this result, we see that any tumor size T> 0
will grow to this maximal tumor size. If the tumor is not
reduced, then the immune cell population cannot sustain
itself. (erefore, biologically this situation means that the
immune system begins to fail. Note that, since we are dealing
with the population of cells, we consider only positive
populations for N• and T•

R.

2.2. Data Fitting. As an example, in order to check model
conformity with the real data, we fit the model system (6)
with only two data points obtained in the form of recent
reported cases (of one patient) of breast cancer tumor
volume before and during treatment in Tanzania. We use
parameter ranges selected from some published literatures
and others are assumed. Tables 2 and 3, respectively, give
descriptions and estimated parameter ranges.

Before treatment, the data were collected on September
2017 (tumor size and diameter was 2.147 cm), and during
treatment, after 140 days, the data were collected on Feb-
ruary 2018 (tumor size and diameter was approximatly
0.58 cm) fromOcean Road Cancer Institute.(e estimation
process of the parameter point values attempts to find the
best concordance between computed and observed data. It
can be carried out by trial and error or by the use of
software programs designed to find parameters that give
the best fit.

We used the least squares curve fitting method, where
a Matlab code is used when unknown parameter values are
given a lower and upper bound from which the set of pa-
rameters values that produce the best fit were obtained. (e
parameter ranges and resultant point values are given in
Table 3. (e following initial conditions have been con-
sidered in the curve fitting: To � 3500000, TRo

� 1400000,
No � 1000000, Io � 1000000, Mo � 0, Ro � 0, and TTo

�

4900000, where TTo
� To + TRo

represents the total breast
cancer cells.

Figure 1 demonstrates a good fit for the pair of data
obtained when both chemotherapy and radiotherapy are
used. (e results are indicative of a decreasing breast cancer
tumor in which there is a slightly significant increase of
breast cancer tumor in a short period of time, followed by
a significant decrease as time goes up. (e breast cancer
tumor extincts after 150 days. Although the results show
a small sample from a person with breast cancer in Tanzania,
it is indicative of the need to promote the use of combination
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of therapies and the need to promote the preventive
mechanism against the occurrence of breast cancer.

3. Results and Discussion

In this section, we test the behavior of ourmodel by using the
parameter values shown in Table 3. We simulate three
treatment strategies with the same initial conditions: the first
strategy is when the chemotherapy drug dose is used alone,
the second strategy is when radiotherapy drug dose is used
alone, and the third strategy is the combination of the first
and the second strategies. In all numerical simulations, the
three dose tested low, standard, and high is as follows:

(1) Low: VM � VR � 0.25
(2) Standard: VM � VR � 0.5
(3) High: VM � VR � 1.

3.1.First Strategy:ChemotherapyAlone. Numerical solutions
with different chemotherapy doses are presented in Figure 2.

Figures 2(a) and 2(b), respectively, show the evolution of
tumor-sensitive cells and tumor-resistant cells, while
Figures 2(c) and 2(d) show the evolution of normal cells and
immune cells, respectively. (e evolution of coexistence
system is presented in Figure 2(e). Note that the inhibition
time in which the tumor-sensitive cells begin to decrease is
approximately 20 days due to mutation rate (Figure 2(a)),
while the tumor-resistant cells reach the asymptote
(Figure 2(b)). (is indicates that tumor-resistant cells grow
to the maximum carrying capacity in the host tissue in the
absence of therapy. (is suggests that once the tumor has
been detected, there is immediate need for medical treat-
ment. Furthermore, comparing the two figures (Figures 2(a)
and 2(b)), it can be seen that as the chemotherapy drug dose
increases, it reduced the volume of tumor cells but fails to
eradicate the tumor-resistant cells.

(e graph of immune cells (Figure 2(d)) indicates that,
with high chemotherapeutic drug dose, VR � 1, the cells
drop but then remain to more than half the initial values.
(is is in contrast to normal cells (Figure 2(c)). In this case,
we note that the normal cell population is quickly reduced to
an insignificant amount compared to immune cells.
Figure 2(e) shows the coexistence states with high drug dose.
Here, we note that the population of tumor-resistant cell is

Table 2: Description of parameters.

Equation Parameter Description

dT/dt

r1 Growth rate of tumor-sensitive cells
Tmax Carrying capacity of tumor cells
α1 Tumor cell death rate due to immune cells
μ Mutation rate

aT

Chemotherapy kill rate coefficient for
tumor-sensitive cells

bT

Radiotherapy kill rate coefficient for
tumor-sensitive cells

dTR/dt

r2 Growth rate of tumor-resistant cells

aTR

Chemotherapy kill rate coefficient for
tumor-resistant cells

bTR

Radiotherapy kill rate coefficient for
tumor-resistant cells

dN/dt

r3 Growth rate of normal cells
Nmax Carrying capacity of normal cells

k Activation rate of tumor cells into normal
cells

T∗ Critical size of tumor cells

aN

Chemotherapy kill rate coefficient for
normal cells

bN

Radiotherapy kill rate coefficient for
normal cells

dI/dt

s Constant source of immune cells
d Natural death rate of immune cells
ε1 Maximum immune response rate
ε2 Steepness of immune rate

α2
Immune cells death rate due to tumor cell

response

aI

Chemotherapy kill rate coefficient for
immune cells

bI

Radiotherapy kill rate coefficient for
immune cells

dM/dt
VM Chemotherapy drug dose
d1 Chemotherapy drug decay rate

dR/dt
VR Radiotherapy drug dose
d2 Radiotherapy drug decay rate

Table 3: Parameters used for numerical simulation.

ODE Parameter Value range Point
value Units Source

dT/dt

r1 0.02 − 0.95 0.431 Day− 1 [15, 31]
Tmax (1 − 6) × 107 5.5 × 107 Cells Assumed

α1 0.0 − 1.0 1 × 10− 8 Cells
day− 1 [31]

μ 0 − 0.1 0.001 Cells− 1

day− 1 [36, 37]

aT 0.001 − 1 0.08 Day− 1 Estimated
bT 0.001 − 1 0.03 Day− 1 Assumed

dTR/dt

r2 0.02 − 0.95 0.25 Day− 1 Estimated
aTR

0.001 − 1 0.08 Day− 1 Assumed
bTR

0.001 − 1 0.03 Day− 1 Assumed

dN/dt

r3 0.02 − 0.90 0.65 Day− 1 [31]
Nmax (1 − 5) × 107 3 × 107 Cells Assumed
k 0.00 − 1.00 1.1 × 10− 6 Day− 1 [23]

T∗ (1 − 9) × 105 5 × 105 Cells [38]
aN 0.001 − 1 0.03 Day− 1 Estimated
bN 0.001 − 1 0.03 Day− 1 Assumed

dI/dt

s (0.1 − 1.5)5 100000 Day− 1 [31]
d 0.001 − 1.0 0.0125 Day− 1 [31, 39]
ε1 0.0 − 1.0 0.0206 Day− 1 [29, 31]
ε2 50 − 50000 30000 Day− 1 [29, 31]

α2 0.0 − 1.0 1 × 10− 8 Cells
day− 1 [31]

aI 0.001 − 1 0.03 Day− 1 Estimated
bI 0.001 − 1 0.03 Day− 1 Assumed

dM/dt
VM 0 − 1 0.5 mg

day− 1 [18, 40]

d1 0 − 0.1 0.011 Day− 1 [18, 40]

dR/dt
VR 0 − 1 0.5 mg

day− 1 [19]

d2 0 − 0.1 0.011 Day− 1 [19]
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Figure 1: Model system (6) fitted to data for a person with breast cancer. (e blue circle indicates the actual data and the solid red line
indicates the model fit to the data.
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Figure 2: Continued.
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higher compared to all population cells. (is indicates that
cancer cells persist even with high chemotherapy dose.

3.2. Second Strategy: Radiotherapy Alone. As the system of
tumor-sensitive and tumor-resistant cells interact with low
chemotherapy drug dose, both the population of tumor cells

are highly killed (Figures 2(a) and 2(b)) compared to that
when low dose of radiotherapy was used (Figures 3(a) and
3(b)). Ideal chemotherapy agents are agents that are capable
of killing significant numbers of tumor cells with very high
effects on the normal and immune cells populations
(Figures 2(a)–2(c)). In this case, with variations of radio-
therapy, the reduced number of normal cells is significant
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Figure 2: (e finite continuous chemotherapeutic treatment on cell population with different cytotoxic drug doses. (e inhibition time in
which the tumor-sensitive cells begin to decrease is approximately t � 20 days due to mutation rate, while the tumor-resistant cells increase
to its maximum carrying capacity.
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Figure 3: Continued.
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but the shrinkage of tumor volume is not significant. Hence,
radiation therapy alone cannot manage to eradicate tumor
cells (Figures 3(a) and 3(b)).

3.3.+ird Strategy: Combination+erapy (Chemotherapy and
Radiotherapy). Figures 4(a)–4(c)show the reduction of tu-
mor-sensitive cells and tumor-resistant cells with combina-
tion of therapies. We keep chemotherapy in a standard dose
while increasing radiotherapy drug dose. By doing that, in
Figure 4(a), it can be seen that the graph of tumor-resistant
cell does take longer time to reach an asymptotic horizontal
value compared to Figures 4(b) and 4(c). (us, we conclude
that while eradication of tumor-sensitive cells takes a lesser
period of time than that of tumor-resistant cells, there ulti-
mately remain very few sensitive cells which accumulate
mutation to become resistant cells.

It can also be seen that, from the graphs in Figure 4(a),
with a low dosage of radiation, the population of tumor-re-
sistant cells decreases but not as quickly compared to standard
and higher dosage which appears to drop to zero between
100days and 150 days. (is indicates that an average infusion
of radiotherapy and chemotherapy might be a vulnerable
strategy to eradicate both tumor cells. In Figure 4(a), the red
curve highlights the fact that tumor-resistant cells is, generally,
not easy to control with low doses. (at is why resistant cells
have always been ascribed as a major source of failure in many
therapeutic treatments [41].

Generally, insightful results are obtained when chemo-
therapeutic drug and radiotherapy are fixed at standard and
low to standard tolerable content, per day, respectively. It is
interesting to note that the healthy cells (normal cells) ap-
pear to decrease and remain above the threshold, while the

natural killer cells initially increase and then drop off to its
steady state under low to standard radiotherapy doses
(Figures 4(a) and 4(b)).

Nevertheless, with the drug dose within the toxicity
constraints, a majority of both tumor-sensitive and tumor-
resistant cells are greatly reduced between 100 days and
150 days. (is indicates that a low or standard infusion of
radiotherapy with standard chemotherapeutic drug dose
might be a valuable strategy to eradicate sensitive cells and
resistant cells while keeping healthy cells above the threshold
amount.

3.4. Numerical Sensitivity Analysis. Following the work in
[42, 43], we used Latin hypercube sampling (LHS) and the
partial rank correlation coefficient (PRCC) to investigate the
most sensitive parameters to the model outcomes and hence
to determine which of the parameters could be most ef-
fectively controlled in order to mitigate breast cancer
occurrence.

LHS/PRCC was run and analyzed with a sample size of
100.(e choice of this sample size is due to the fact that PRCC
produces accurate results for a lower sample size compared to
other techniques like Fourier amplitude sensitivity test
(eFAST) [43]. Figure 5 displays the parameter value plotted
against a bar graph of PRCCs with tumor compartment as the
baseline-dependent variable. (e parameters that are signif-
icantly positively correlated with tumor cells are r2, d1, and
d2, while aTR

, bTR
, VM, and VR are significantly negatively

correlated.
An increase in the production of tumor-resistant cells,

r2, leads to the higher number of tumor-resistant cells.
Corresponding reasoning can be applied to the positive
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Figure 3: (e finite continuous treatment on tumor cell population with different radiotherapy doses.
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value of the PRCC for d1 and d2 indicating that when a drug
with high decay rate is used, then the number of breast
cancer cells increases. If the drug does not decay quickly,
many breast cancer cells would be killed by the drug
elimination from a surrounding tumor tissue can take place
due to natural decay because chemotherapy and radio-
therapy drug molecules are subject to natural decay before

they are taken up by cells [25], and it is clear that if the drug
does decay fast, then many drug molecules would not in-
teract with breast cancer cells. (is further suggests that if
the number of breast cancer cells increases, then the external
drug influx VM and VR should be increased. However, the
increase of drug influx should be within tolerable toxicity
constraints. (ese results appear to show that drug decay
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Figure 4: (e response of the tumor subpopulations, normal cells, and immune cells to various radiotherapy doses of (a) low, (b) standard,
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and drug influx are an important aspect to consider for
chemotherapy and radiotherapy modelling.

4. Conclusion

A plan for the treatment of breast cancer is a key component
of any overall breast cancer control plans. Its main goal is to
cure breast cancer patients or prolong their life considerably,
ensuring a good quality of life. Here, a deterministic model
for breast cancer disease dynamics that incorporates com-
partment with treatment was developed.

To identify the parameter values with the highest effect
on the model outcome, LHS and PRCC are used. (e results
show that the rate of growth of tumor-resistant cell r2 has the
highest sensitivity index. (is is followed by the drug decay
rates (d2 and d1) for radiotherapy and chemotherapy, re-
spectively. We have also established that the kill rate co-
efficients for tumor-resistant cell have relatively high
negative sensitivity indexes followed by the rates of drug
dose for both therapies. It is clear indication that the pa-
rameters have an impact of reducing breast cancer cells.

As demonstrated from Figures 2 and 3, the use of single
therapy is not sufficient to eradicate breast cancer in either
taking the standard or high drug doses of chemotherapy or
radiotherapy in amodel. However, we can observe that when
a sufficient amount of chemotherapy and radiotherapy are
used, the model system (6) is able to completely eradicate
breast cancer cells (Figures 4(a) and 4(b)) while keeping
health cells above the threshold. (ese results support the
assumption that the combination of therapies increases the
likelihood of eradicating cancer cells.

As with many models, the model presented here should
be treated with caution because of the difficulty in the es-
timation of model parameters. More realistic results can be
obtained if data of more than two measurements from the
person with breast cancer tumor were available. Despite

these shortcomings, the model still provides some useful
insight into the control of breast cancer disease through the
implementation of the discussed treatment strategies. Note
that the same model could be used to investigate the setup of
an optimal control problem relative to the model so as to
minimize the number of breast tumor cells and the che-
motherapeutic and radiotherapeutic doses administered.
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