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Abstract

The bipartite network representation of the drug–target interactions (DTIs) in a biosystem enhances understanding of the drugs’
multifaceted action modes, suggests therapeutic switching for approved drugs and unveils possible side effects. As experimental
testing of DTIs is costly and time-consuming, computational predictors are of great aid. Here, for the first time, state-of-the-art
DTI supervised predictors custom-made in network biology were compared—using standard and innovative validation frame-
works—with unsupervised pure topological-based models designed for general-purpose link prediction in bipartite networks.
Surprisingly, our results show that the bipartite topology alone, if adequately exploited by means of the recently proposed local-
community-paradigm (LCP) theory—initially detected in brain-network topological self-organization and afterwards generalized
to any complex network—is able to suggest highly reliable predictions, with comparable performance with the state-of-the-art-
supervised methods that exploit additional (non-topological, for instance biochemical) DTI knowledge. Furthermore, a detailed
analysis of the novel predictions revealed that each class of methods prioritizes distinct true interactions; hence, combining
methodologies based on diverse principles represents a promising strategy to improve drug–target discovery. To conclude, this
study promotes the power of bio-inspired computing, demonstrating that simple unsupervised rules inspired by principles of
topological self-organization and adaptiveness arising during learning in living intelligent systems (like the brain) can efficiently
equal perform complicated algorithms based on advanced, supervised and knowledge-based engineering.
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Introduction

Modern drug development is facing a constant increase in costs,
recently estimated to be above 1 billion US$ for each new drug
reaching the market [1], while the number of new approved
drugs per year is declining [2]. Drug repositioning is a promising
solution to this problem [3], aiming at identifying new uses for
old drugs. However, a prerequisite for drug repositioning is the
identification of possible new targets for known drugs. For this
reason, a plethora of methods and data sets has been proposed
and applied to the drug–target interaction (DTI) prediction prob-
lem in the past years. Such methods can be divided into
two main categories: supervised network inference or
unsupervised/model-based approaches.

In 2008, the DTI inference problem has been formalized as a
supervised learning task in bipartite graphs. Given a known
graph—which is however incomplete—and information about
its nodes, the aim is to predict the unknown part of the graph
[4]. Following this strategy, Yamanishi and Bleakley [5] authored
a groundbreaking paper in which they proposed the bipartite
local model (BLM) as a supervised graph inference method and
applied it to DTI prediction. This model has been used as a
reference in several works, as well as the four gold standard
networks released in the same publication [5, 6]. Related studies
proposed after BLM include the semi-supervised drug–protein
interaction predictions [7], the Gaussian profile kernel [8] and
neighborhood regularized matrix factorization techniques [9].
More recently, improved methods to predict and account for
distinct types of DTIs have been proposed [10]. Supervised
methods are generally bound to one or more biological meas-
ures as prior knowledge. Thus, some limits are present because
of incompleteness of biological data [11] or noise in the experi-
mentally measured similarities. Moreover, the combination of
extra biological information results in increased complexity and
higher computational costs but might result in better prediction
performance, thanks to problem-specific tuning. However, it
has been pointed out that bias in their performance evaluation
can be because of the small size of the data sets and fine-tuned
machine learning methods. This results in lack of generality
[12] and in the risk of performance overestimation because of
simplified settings [13].

An alternative to supervised learning is the application of
unsupervised techniques or topology-based models, which rely
only on network structure to infer novel links. Contrary to
supervised methods, there is no model learning based on exter-
nal knowledge; therefore, such methods do not require addi-
tional biological measures and are less prone to overfitting.
However, unsupervised methods accept only the bipartite net-
work of the known DTIs as data input; hence, the incomplete-
ness and noise in such topological data influence the network
structure. For instance, a severe limitation of unsupervised
topology-based methods is the difficulty to predict interactions
involving new drugs or targets for which there are no known
network interactions (i.e. ‘orphan’ nodes [14] isolated out of the
network), or to predict interactions between drugs or targets
that are located in two disconnected parts of the network.
Supervised methods overcome these limitations (which origi-
nate from the missing network connectivity) by exploiting addi-
tional and external biological knowledge that is independent of
the network structure.

Under an unsupervised setting, the task of DTI prediction
can be generalized as a link prediction problem [15] in bipartite
networks, and many strategies have been proposed in various
fields.

Algebraic link prediction methods like collaborative filtering
(CF) [16] or matrix factorization (MF) techniques [17] are popular
approaches for online personal recommendation. Evolutionary
models, such as the preferential attachment (PA) model [18],
have been successfully used to make predictions in various
domains, involving both monopartite and bipartite networks.
Moreover, a previous analysis of many real bipartite networks
[19] showed that PA has generally better performance than vari-
ous MF methods. Topological measures based on node neigh-
bourhood similarity—such as common neighbour (CN) [20] or
Jaccard coefficient (JC) [21]—are powerful topology-based link
prediction methods in monopartite networks. However, such
methods are based on the triadic closure principle [22], there-
fore not applicable to bipartite networks [19] because of the spe-
cific properties of these networks [23] where the triadic closure
is not anymore valid. To overcome this theoretical limitation,
Zhou et al. [24] proposed a method called network-based
inference (NBI) for topological link prediction in bipartite net-
works. This method decomposes the original bipartite topology
in two separated monopartite topologies between nodes of the
same class. However, in this manner, the original content of the
bipartite structure is downgraded in two monopartite projec-
tions, which have been demonstrated to be always less infor-
mative than the original network [25]. Despite that, NBI was
shown to outperform PA and CF in the personal recommenda-
tion task [24]. More recently, Cheng et al. [26] applied NBI for DTI
prediction in previously used networks [5, 6] and in networks of
the Food and Drug Administration-approved and experimental
drugs, showing that such topology-based method outperformed
biological measures based on either drug or target similarity.
Many improvements of the method have been also proposed [9,
27–29]. However, as already mentioned, each of the topology-
based methods described above relies on the projection of a
bipartite network into its two monopartite topologies.

To overcome this limitation and apply topological measures
based on node neighbourhood similarity directly in the bipartite
topology, we recently proposed a definition of CN in bipartite
networks [30]. This definition originates from the observation
that the generally accepted notion of CNs as emerging from the
triadic closure rule is misleading. The triadic closure seems the
generative rule of common neighbours only as a specific case
valid in particular for monopartite network topology. In fact, in
bipartite networks, CNs between nodes of different classes are
associated to the quadratic closure rule and, more in general,
the definition of CNs between two seed nodes should be given
as: the nodes touched by all the possible shortest paths of the
minimum length allowed by a given topology between two seed
nodes (see ‘Methods’ subsection on ‘Model-based methods’ for
details). Consequently, having defined the notion of CN in
bipartite networks, we could also translate and extend to these
types of networks a novel theory named the local-community-
paradigm (LCP) theory [31]. Initially detected in brain-network
self-organization topology and afterwards extended to any
monopartite complex network, the LCP theory derives from a
purely topological-inspired interpretation of a local learning
rule of neuronal networks named Hebbian learning rule [31]. A
thoughtful discussion of the fundaments that advocate this
theory is offered in a dedicated paragraph of the next section.
At this point, we just need to report that one of the corollary of
the LCP theory suggests that neighbourhood-based (local-based)
topological link prediction should complement the information
content related with CN nodes using also the topological knowl-
edge emerging from the cross-interactions between them.
Accurate tests on several real networks in both monopartite
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[31–36] and bipartite topologies [30] confirmed the theory’s val-
idity. In fact, the LCP-based variations of the standard CN-based
link predictors showed in general a significant improvement.

Here, we apply the LCP theory in the context of drug–target
bipartite networks and thoroughly compare the prediction per-
formance of 24 variations of six state-of-the-art methods
(included LCP-based): three unsupervised and three supervised.
In addition, we propose three diverse evaluation frameworks.
The first evaluation strategy serves as comparison with refer-
ence methods and is identical to the one applied in previous
works [37], where the ability of prediction methods is judged by
their ability to highly score existing links in the considered net-
works. The second is based on random removal and re-
prediction of DTIs [38]; thus, it is less prone to overfitting the
existing network structure, and it aims at estimating the predic-
tion performance under more general settings. To complement
these evaluation strategies, we add a comprehensive external
and independent validation set by integrating bioactivity assays
and drug activity data from various resources. Using such data,
predicted links are classified into active [i.e. true-positive (TP)
predictions], inactive [i.e. false positives (FPs)] or candidate
interactions (i.e. unknown). Having positive and negative infor-
mation allows not only to evaluate a method for its ability to
recover true interactions but also the estimation of how precise
a method is in respect to its prioritization of active versus inac-
tive interactions. In this manner, we can circumvent the prob-
lem of underestimating a method’s precision caused by
considering all newly predicted interactions that are not
included in the positive independent set as FPs, although they
might be valuable candidates. Finally, we provide a detailed
analysis that compares the novel predictions from the repre-
sentative methods, one for each distinct class that offers high
performance, and discuss their differences in detail.

Results

Interactions between drugs and their targets can be represented
as bipartite networks, where two types of nodes are present,
and only connections between distinct types of nodes might be
present (Figure 1A, left). An equivalent representation of such
networks are rectangular matrices (Figure 1A, right), with the
number of drugs as the first dimension and the number of tar-
gets as the second. In this form, observed and missing interac-
tions are labelled following a binary schema, or assigning real
numbers and/or labels if data such as chemical affinity or type
of interaction are known [10]. Similarly to many biological net-
works, DTIs are highly incomplete [39], and thus, several com-
putational methods, which exploit known interactions to
predict putative ones, have been proposed.

Generally, such approaches are either supervised or unsu-
pervised. In this article, we compare 24 variations of the state-
of-the-art methods (Table 1), which are either mere link predic-
tors exploiting only the topology (unsupervised) or advanced
methods exploiting not only topology but also additional biolog-
ical information (supervised), to assign the likelihood of any
possible missing DTI in the network.

The main unsupervised methods are the projection-based
and the LCP-based, which are regarded, respectively, the old
and new state of the art for general-purpose link prediction in
complex networks. In particular, we consider five recent LCP-
based topological models for link prediction, which directly
exploit the bipartite nature of those networks. They assign a
likelihood to any observed or missing interaction based on the
local information of the neighbourhood of the two involved

nodes. These measures—which were already applied for link
prediction on monopartite networks [31]—are derived from a
recent generalization of both the CN concept and the LCP to the
bipartite domain [30]. Starting from the toy network in Figure
1A, Figure 1B gives emphasis to the neighbourhood information
of two seed nodes, which is exploited by LCP-based measures to
assign the likelihood of an existing interaction dz-ty (Figure 1B,
left), and a missing interaction dx-ty (Figure 1B, right). Finally, a
third type of unsupervised method, which is MF-based, was
included and used as a reference in respect to the supervised
version that we will discuss hereafter.

The first supervised method is the bipartite local model
(BLM), which is based on support vector machine (SVM) [6]. It
was the state-of-the-art until recently, and is still considered an
important reference for supervised methods that, together with
the network topology, exploit the biological information given
by the chemical and sequence similarity of the molecules. The
second supervised method was recently proposed, in 2016, and
it is an advanced predictor named graph regularized matrix fac-
torization (GRMF).The graph regularization (GR) boosts the per-
formance because it prevents overfitting by facilitating the
learning of a non-linear manifold on which the network is
assumed to lie. Same strategies have been used in the past also
to improve prediction in protein interaction networks [42,
43].The third supervised method is named weighted-K-nearest-
known-neighbour (WKNKN)þGRMF, but here for brevity, we
will call it wGRMF. In practice, it consists of GRMF applied on a
pre-adjusted drug–target adjacency matrix by means of a
preprocessing named WKNKN, which transforms all the 0’s
(missing values rather than confirmed non-interactions) in the
original drug–target adjacency matrix into interaction likelihood
values in the range 0–1. Essentially, WKNKN can be interpreted
as a method for pre-weighting the missing interactions accord-
ing to the biological information of the known neighbours. Both
GRMF and wGRMF demonstrated to improve results dramati-
cally, therefore represent the new state-of-the-art methods that
exploit the chemical and sequence similarity of the molecules
as biological information to guide the supervised learning.

As described in the ‘Methods’ section, any observed/missing
interaction was ranked by their likelihood, and the prediction
performance of each method in Table 1 was evaluated by calcu-
lating the area under the precision–recall curves (AUPR) for the
distinct evaluation frameworks. To compare the performance
across different networks, each AUPR was normalized (nAUPR)
against the random predictor.

nAUPR ¼ AUPRMethod� AUPRRandom

1�AUPRRandom
(1)

The original values of AUPR are reported for reference in the
Supplementary Information 2.

A set of well-established and widely used gold standard DTI
networks [4, 37]—including four distinct protein classes:
enzymes, ion channels, G-protein-coupled receptors (GPCRs)
and nuclear receptors (NRs)—was used as a benchmark for the
predictions. In addition, to verify whether the same topology-
based principles work also when applied to a more diverse tar-
get space, the same prediction methods were compared on a
high-quality heterogeneous drug–target network [44]. The addi-
tional biological knowledge to compute the features needed for
the supervised methods is not available, and thus, the super-
vised methods cannot be applied to this fifth network.

Further, we considered three different evaluations frame-
works. First, we compared the performance following the
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strategy in Figure 2A, which is a commonly applied evaluation
[5] that relies on the complete network topology. The prediction
performance is quantified by how well a predictor is able to
highly rank existing interactions over missing ones. However,
this approach has been criticized, as the set of used interactions
and the one used for the evaluation are the same, thus increas-
ing the risk of overestimating the real performance because of
overfitting [13]. Nevertheless, we report the prediction perform-
ance using previously applied settings, and analyse the
behaviour of our topological-based methods versus state-of-
the-art-supervised approaches in these evaluation frameworks.
Afterwards, we summarize the results from the removal and re-
prediction framework (Figure 2B) in which a certain percentage
of interactions is removed (10%), while the topological informa-
tion of the remaining 90% is used. In this case, the performance
is evaluated by how well a prediction method is able to highly
rank the removed interactions, which were not existing in the
network used to assign the prediction likelihood, compared
with all the other possible missing interactions. Finally, we
investigate how each method performs exploiting an independ-
ent data set of DTIs, which are not present in the original data
sets. Moreover, we consider experimental evidences and chemi-
cal affinities to define both true-active (positives) and true-inac-
tive (negative) predictions to provide a better estimation of
predictive power. To conclude, we report a comparison of pre-
dictions by each class’ representative method to shed light on
differences in predictions from a network perspective.

Finally, a procedure that summarizes the general perform-
ance of each method within each evaluation framework helps
to conclude about the general prediction power of each method

for each framework. The common sense of creating an evalua-
tor by the mean or median nAUPR across all the networks inside
a given evaluation framework could turn into a biased proce-
dure. In fact, the magnitude of the nAUPRs of the methods for
each network might be sensitive to the topological properties of
a specific network, favouring some methods and disfavouring
others. To this aim, we apply a procedure already adopted with
success in two recent link prediction studies [36, 45], which
takes the name of position ranking. Here, the methods are
ranked for each network by decreasing performance. The mean
method’s position in the ranking over all the networks within
an evaluation framework represents the final evaluation score.
Figure 7 reports these values.

What is and how works the LCP theory

In 1949, Donald Olding Hebb [46] advanced a local learning rule
in neuronal networks that can be summarized in the following:
neurons that fire together wire together. In practice, the
Hebbian learning theory assumes that different engrams (mem-
ory traces) are memorized by the differing neurons’ cohorts that
are co-activated within a given network. Yet, the concept of wir-
ing together was not further specified and could be interpreted
in two different ways. The first interpretation is that the con-
nectivity already present, between neurons that fire together, is
reinforced, whereas the second interpretation is the emergence
and formation of new connectivity between non-interacting
neurons already embedded in a interacting cohort.

The first interpretation has been demonstrated in several
neuroscientific studies, where it was proven that certain forms

Figure 1. CNs and quadrangular closure in bipartite networks. (A) A bipartite network of targets (t, dark green squares) and drugs (d, red circles) and its equivalent

matrix representation. (B) Four CNs (white nodes) together with three LCLs (white links) as defined by Daminelli et al. [30] are used to calculate the interaction likeli-

hood of the two seed nodes dz and ty (black nodes) of the existing link dz-ty (left). Similarly, five CNs and five LCLs are used to predict the likelihood of the missing dx-ty

interaction (right) .
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of learning consist of synaptic modifications, while the number
of neurons remains basically unaltered [47–49]. A first mathe-
matical model of this learning process was implemented in the
Hopfield’s model of associative memory, where neuron -assem-
blies are shaped during engram formation by a re-tuning of the
strengths of all the adjacent connections in the network [50]. It

is important to specify that neuronal networks are oversimpli-
fied models, and between two nodes (that represent two neu-
rons), only one unique connection, which is deceptively called
‘synapsis’, is allowed. This unique artificial synapsis is a net-
work link with a weight (or strength) and abstractly represents
in a unique connectivity all the multitude of synapses that can

Table 1. Overview of the compared methods and their respective class

Class Method Method or formula

Supervised (SVM) BLMdt [37] SVMþchemical and sequence similarity
BLMd [37] SVMþdrug chemical similarity
BLMt [37] SVMþtarget sequence similarity

Supervised (GRþMF) GRMFdt [14] GRþMFþchemical and sequence similarity
GRMFd [14] GRþMFþchemical and sequence similarity
GRMFt [14] GRþMFþchemical and sequence similarity

Supervised (WKNKNþGRþMF) wGRMFdt [14] WKNKNþGRþMFþchemical and sequence similarity
wGRMFd [14] WKNKNþGRþMFþchemical and sequence similarity
wGRMFt [14] WKNKNþGRþMFþchemical and sequence similarity

Unsupervised (MF) MF [14] MF
MFm MF mean score CV
MFb MF best score CV
MFw MF weight score CV

Unsupervised (Projection) BPR [40] Random walk
NBI [41] RA
Jac [40] Jac similarity
Euc [40] Euclidean distance
Cos [40] Cosine similarity
Pea [40] Pearson correlation

Unsupervised (LCP) CAR [30]

CARðdx; tyÞ ¼ CNðdx; tyÞ � LCLðdx; tyÞ

CJC [30]

CJC dx; ty
� �

¼
CARðdx; tyÞ
jNðdxÞ [NðtyÞj

CPA [30]

CPAðdx; tyÞ ¼ ðeN dxð Þ þ CARðdx; tyÞÞ � ðeN ty
� �
þ CARðdx; tyÞÞ

CAA [30]

CAA dx; ty
� �

¼
X

s2CNðdx ;tyÞ

jcðsÞj
log2jNðsÞj

CRA [30]

CRA dx; ty
� �

¼
X

s2CNðdx ;tyÞ

jcðsÞj
jNðsÞj

Note. N(dx) indicates the first neighbours of the drug dx. CN(dx; ty) are the CNs of drug dx and target ty, respectively, and LCL(dx; ty) are their local community links. In

respect to the (dx; ty) link, eN(dx) and eN(ty) represent the neighbours of drug dx and target ty, respectively, which do not belong to the set of CN(dx; ty), thus indicated as

external neighbours. c(s) are the neighbours of s, which are also CN(dx; ty), while N(s) are all the neighbours of s. SVM: Support Vector Machine; GR: Graph

Regularization; MF: Matrix Factorization; MFb: best Matrix Factorization; MFm: mean Matrix Factorization; MFw: weighted Matrix Factorization; WKNKN: Weighted K

Nearest Known Neighbours; BLM: Bipartite Local Model; GRMF: Graph Regularized Matrix Factorization; BPR: Bipartite Projection via Random-walk; NBI: Network-Based

Inference; Jac: Jaccard; Euc: Euclidean; Cos: Cosine; Pea: Pearson; CAR: Cannistraci-Alanis-Ravasi; CJC: Cannistraci-Jaccard; CPA: Cannistraci-Preferential-Attachment;

CAA: Cannistraci-Adamic-Adar; CRA: Cannistraci-Resource-Allocation.
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occur between two real neurons in a brain tissue. For non-
computational readers, we stress that the word ‘synapsis’ used
in computational modelling of artificial neural networks might
be misleading for neurobiologists, and should be intended as a
mere link between two nodes of a network that comprehen-
sively symbolize the strength of all the real biological synapses
connecting two neurons. Here, and in the reminder of this para-
graph, we will refer only to this artificial neural network model
where a link between two nodes (neurons) indicates an abstract
interaction between them. In fact, although this artificial net-
work model is based on evident simplifications, it demonstrated
to be a powerful tool to simulate learning processes of intelli-
gent systems [50, 51].

Surprisingly, the second possible interpretation of the
Hebbian learning—a cohort of interacting neurons that fire
together and give rise to new connections between non-
interacting neurons in the cohort—to the best of our knowledge
was never formalized as a general paradigm of learning, and
therefore, it was never used with success to modify the archi-
tecture of abstract neural networks to simulate pure topological
learning. We acknowledge the existence of studies that investi-
gate how neuronal morphology predicts connectivity [52]. For
instance, Peters’ rule predicts connectivity among neuron types
based on the anatomical colocation of their axonal and den-
dritic arbors, providing a statistical summary of neural circuitry
at mesoscopic resolution [52]. However, no paradigms were pro-
posed to explain the extent to which new connections between
non-interacting neurons could be predicted in function of their
likelihood to be collectively co-activated (by firing together) on
the already existing network architecture. This likelihood of
localized functional interactions on the existing neural network
can be influenced by external factors such as the temporal co-
occurrence of the firing activity on a certain cohort of neurons,
and by other factors that are intrinsic to the network architec-
ture such as, among the most important, the network topology.

In 2013, Cannistraci et al. noticed that considering only the
network topology, the second interpretation of the Hebbian
learning could be formalized as a mere problem of topological
link prediction in complex networks. The rationale is the

following. The network topology plays a crucial role in isolating
cohorts of neurons in functional communities that naturally
and preferentially—by virtue of this predetermined local-
community topological organization—can perform local proc-
essing. In practice, the local-community organization of the
network topology creates a physical and structural ‘energy bar-
rier’ that allows the neurons to preferentially fire together
within a certain community and therefore to add links inside
that community, implementing a type of local topological learn-
ing. In few words: the local-community organization influences
(by increasing) the likelihood that a cohort of neurons fires
together because they are confined in the same local commun-
ity, and, consequently, also the likelihood that they will create
new connections inside the community is increased by the
mere structure of the network topology. Inspired by this intu-
ition, Cannistraci et al. called this local topological learning
theory epitopological learning, which stems from the second
interpretation of the Hebbian leaning. The definition was not
clearly given in the first article [31] that was immature, and
therefore, we now provide an elucidation of the concepts
behind this theory by offering new definitions. Epitopological
learning occurs when cohorts of neurons tend to be preferen-
tially co-activated because they are topologically restricted in a
local community, and therefore, they tend to facilitate learning
of new network features by forming new connections instead of
merely re-tuning the weights of existing connections. As a key
intuition, Cannistraci et al. postulated also that the identifica-
tion of this form of learning in neuronal networks was only a
special case; hence, the epitopological learning and the associ-
ated LCP were proposed as local rules of learning, organization
and link growth valid in general for topological link prediction
in any complex network with LCP architecture [31]. On the basis
of these ideas, they proposed a new class of link predictors that
demonstrated—also in following studies of other authors—to
outperform many state-of-the-art local-based link predictors
[31–36, 45, 80] both in brain connectomes and in other types of
complex networks (such as social, biological, economical, etc.).
In addition, they proposed that the LCP is a necessary paradigm
of network organization to trigger epitopological learning in any

Figure 2. Existing and removal re-prediction evaluation frameworks. (A) Existing link evaluation framework. Every possible link (black and white squares) is left out

one time and re-predicted (B) Removal and re-prediction evaluation framework. Ten percent of the network (gray squares) are randomly removed and re-predicted.
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type of complex network, and that LCP-corr is a measure to quan-
titatively evaluate the extent to which a given complex network
is organized according to the LCP. In conclusion, the LCP origi-
nated from the initial idea to explain how the network topology
indirectly influences the process of learning a memory by adding
new connections in a network of neurons, and consequently gen-
eralized to advocate mechanistic modelling of topological growth
and self-organization in real monopartite [31] and bipartite [30]
complex networks. This explains the title of this article and justi-
fies the theoretical fundaments behind our results.

Evaluation on existing links

In the first evaluation framework (see ‘Methods’ section and
Figure 2A for details), we considered the same settings used in
previous publications [4, 37]. In particular in Figure 3A–H, we repli-
cated the same analysis as described by Bleakley and Yamanishi
[37] on their four data sets. In the left part of Figure 3, we com-
pared the prediction performances of the unsupervised methods,
while on the right part of Figure 3, we compared the prediction
performance of supervised and LCP-based methods. In every net-
work, the computed values of nAUPR for the three versions of the
BLM approach show the reproducibility of previously reported
AUPR values from the original work (Figure 3, right). This means
that the AUPrandom has negligible values, and the nAUPR is close
to the AUPR. Interestingly, in general, the supervised methods
wGRMFdt and BLMdt, which exploit additional biological knowl-
edge from both perspectives (chemical similarity for drugs and
protein sequence similarity for targets) achieve the best results.
However, it is clear that the two components have different
impact, as the prediction performance of wGRMFt and BLMt is gen-
erally outperforming wGRMFd and BLMd. Despite it is not com-
pletely fair to compare supervised with unsupervised methods, it
is surprising that LCP-based measures exploiting only topological
features achieve prediction performances comparable with the
supervised methods (Figure 3, right). This is confirmed because,
considering the overall performance across all the networks
(Figure 7B) and their respective AUPR, there is no significant differ-
ence between wGRMF, BLM and LCP methods (Figure 8).
Conversely, the overall performance of LCP methods, if compared
with the other unsupervised methods, is significantly higher (the
P-values in Figure 8 are < 0.05). Finally, looking at the Precision-
Recall (PR)-curves in Supplementary Figure S1—where the results
of all the best-class methods are reported for each network—it is
evident that in three networks (ion channels, GPCRs and NRs), the
best LCP method overcomes the best BLM one in the first part of
the ranking (in this case, until about recall <0.2). Remarkably, con-
sidering always the prioritization in the first part of the ranking, in
GPCRs network, the best LCP method offers a performance even
higher than the best wGRMF method, while in the NR network,
the best LCP method offers a performance even higher than the
best GRMF.

Removal and re-prediction

In this framework (Figure 2B), we aim to evaluate how well a
method is able to generalize, trying to minimize the risk of over-
fitting to the known existing topology. The median AUPR results
over 100 realizations are shown in Figure 4 as described for the
removal and re-prediction evaluation framework. Every method
behaves similarly as in the previous evaluation framework.
However, few important differences are present and provide
valuable information regarding each prediction strategy. First,
each method’s performance is lower across all the networks

(compare Figure 3B, D, F, and H versus Figure 4B, D, F, and H).
This could be either because of a general overestimation of the
performance in the first framework, or it could be because of
information loss caused by the removal of a certain percentage
of interactions. However, an interesting outcome of this evalua-
tion is that although the difference between supervised and
LCP-based methods is larger (notice that the respective P-values
in Figure 8 are lower), it remains still not significant, and in the
case of the GPCR network, three LCP-based measures perform
better than the BLM-supervised method (Figure 4F). This result
confirms that also in this framework, the performance of LCP-
based methods is comparable with the one of supervised pre-
dictors (Figure 8, right panel, P-values >0.05) and, on the other
side, LCP methods perform again significantly better than the
other unsupervised methods (the respective P-values in Figure
8, left panel, are <0.05). Furthermore, considering the overall
performance across all the networks (Figure 7C), the position of
LCP and BLM methods is clearly in the same range.

We note also that the NRs’ network has a different behaviour
(all the methods perform lower) compared with the other data
sets. However, this data set has a small dimension (only 90
interactions); therefore, both the topological information and
the biological knowledge are limited and not so reliable as
already noted in the original analysis [37]. To provide more
details regarding the performance in the first part of the rank-
ing, which is the most important for real applications, in
Supplementary Figure S2, we show the PR curves of all the best-
class methods for each network. Again, in the same three net-
works (ion channels, GPCRs and NRs), the best LCP method
largely overcomes the best BLM one for prioritization of cor-
rectly predicted links in the first part of the ranking (recall <0.2).
It is also confirmed that, considering the first part of the rank-
ing, in GPCRs network, the best LCP method outperforms even
the best wGRMF one, while in the NR network, the best LCP
method offers a performance even higher than the best GRMF.

Interestingly, in the high-quality network (Figure 4I), all
unsupervised methods, except the Euclidean (Euc) distance,
show a significant improvement versus the random predictor,
suggesting that even in complex scenarios with a variety of
drug and target categories, the network topology offers enough
information content for high-quality link prediction.

Validation with an integrated independent
benchmark set

The validation of novel DTIs is generally a time-consuming and
expensive endeavour. However, we can profit from the
newly experimentally verified interactions, summarized in
Supplementary Table S1, that have been discovered in the years
following the publication of the original networks [37, 44].
Moreover, here, we tackle the known problem of missing drug–
target data, by defining a reasonable chemical affinity range to
consider a DTI as active or inactive. Thanks to the definition of
both positive and negative interactions, it is not only possible to
identify novel TP prediction but also to discriminate inactive
interactions, i.e. FPs, from predictions for which no data are
available (i.e. unknown). In this way, we can reliably estimate
both precision and recall of each method as described in the
‘Methods’ section. Indeed, similar evaluation strategies have
been proven beneficial for model generation and better per-
formance estimation in previous analyses [39]. To compare the
prediction power of different methods in each network, we
report the nAUPR values in Figure 5. Additionally, after ordering
each list of predictions by the specific method ranking, the
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respective 1st (Supplementary Table S2), 5th (Supplementary
Table S3) and 10th (Supplementary Table S4) percentile of inter-
actions has been selected and thoroughly evaluated against the
independent set of novel positive or negative DTIs.

Surprisingly, in contrast to the previous evaluation frame-
works, where BLM-supervised methods offered a comparable
(Figure 8, right panel, P-value >0.05: difference not significant)
but generally higher AUPR than LCP methods (Figure 4B, D and
H), here in three of four networks (Figure 5D, F and H), the AUPR
of LCP methods is higher. This is evident also from the overall

performance across all the networks provided in Figure 7F. With
this third type of evaluation, we have a further evidence that
also in this framework, the performance of LCP-based methods
is comparable with the one of supervised predictors (Figure 8,
right panel, P-values >0.05). On the other side, we have a final
confirmation that the LCP methods perform significantly better
than the other unsupervised methods (the respective P-values
in Figure 8, left panel, are<0.05). However, it is important to
notice that both for LCP and projection methods, the best
approach was always a variation of the Jaccard (Jac) measure. In

Figure 3. Performance comparison in the existing links evaluation framework. Normalized AUPR values considering all existing links as TP as described in Figure 2A.

On the left (A, C, E, G and I), comparison of three types of unsupervised methods: LCP-based, projection-based and MF-based. On the right (B, D, F, and H), comparison

of three types of supervised: BLM, GRMF and wGRMF with unsupervised LCP-based methods.
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fact, the best LCP method was the Cannistraci–Jaccard variation
(CJC), and the best projection method was the Jac similarity
applied after one-mode projection of the bipartite network.

Interestingly, if we analyse the results singularly for each
network, we notice that there is not a real overall predictor win-
ner. BLMdt achieves the best performance in the enzyme net-
work, GRMFdt is the best in ion channels, CJC is the best in
GPCRs and wGRMFd is the best in NRs. Furthermore, many
projection-based spatial distance (such as Jac and Euc) methods,
which offered a lower performance in the previous validation

frameworks, show in the independent validation a predictive
power close (but still significantly inferior, Figure 8, P-value
<0.05) to supervised and LCP-based methods. We speculate that
the reasons for this behaviour might reside in an experimental
bias, as classical spatial distances have been used to identify
novel interactions in drug discovery for longer time, while LCP-
based or bipartite projection via random-walk (BPR) are recent
models. On the other side, the complete picture of all possible
DTIs is still unclear; thus, those results could also suggest that
different methods are indeed all able to retrieve true

Figure 4. Performance comparison in the removal and re-prediction evaluation framework. Median of normalized AUPR values (over 100 repetitions) from the removal

and re-prediction evaluation framework described in Figure 1D. On the left (A, C, E, G and I), comparison of three types of unsupervised methods: LCP-based, projec-

tion-based and MF-based. On the right (B, D, F and H), comparison of three types of supervised methods: BLM, GRMF and wGRMF with unsupervised LCP-based

methods.
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interactions, which might be associated to different topological
properties. For this purpose, in the next section, we will investi-
gate how similar are the first percentile predictions retrieved by
the different classes of approaches. Finally, to investigate the
performance in the first part of the ranking (the most important
for real applications), Figure 6 emphasizes that CJC (the best LCP
method) offers in enzymes and NRs (two of four networks) even
a better prioritization (recall <0.2) than the BLMdt and wGRMFd,
which, respectively, provide the best nAUPR in each of these

networks. For completeness, the best-class methods for all net-
works are reported in Supplementary Figure S3.

Comparison of novel predicted interactions

In this section, we will shed light on the differences in drug–tar-
get prioritization between the distinct approaches considering
the overall performance displayed in Figure 7E and F for the
independent validation framework. We selected the first three

Figure 5. Performance comparison in the independent validation evaluation framework. Normalized AUPR values considering the independent validation evaluation

framework as described in the ‘Methods’ section. On the left (A, C, E, G and I), comparison of three types of unsupervised methods: LCP-based, projection-based and

MF-based. On the right (B, D, F and H), comparison of three types of supervised methods: BLM, GRMF and wGRMF with unsupervised LCP-based methods.
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Figure 6. Precision–recall curves of the independent validation evaluation framework. For each class of prediction methods, the best method in enzymes and NR net-

work was compared with the best LCP-based method: LCP-based (red), BLM (yellow) and wGRMF (green). (A) Precision–recall curves in enzyme network, LCP-based

(CJC) versus BLM (BLMdt). (B) Precision–recall curves in NR network, LCP-based (CJC) versus wGRMF (wGRMFd).

Figure 7. Mean position ranking on drug–target prediction across all networks within the three evaluation frameworks. Mean position for each method in each evalua-

tion framework over all networks. Each bar in the plot is ordered from the best (left) to the worst (right) method. On the left (A, C and E), comparison of three types of

unsupervised methods: LCP-based, projection-based and MF-based. On the right (B, D and F), comparison of three types of supervised methods: BLM, GRMF and

wGRMF with unsupervised LCP-based methods. The arrows point the methods selected for the comparison of drug–target prioritization in the first percentile.
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best-class methods in the unsupervised comparison [Figure 7E,
pointed by an arrow: CJC, Jac and best matrix factorization
(MFb)] and in the supervised comparison (Figure 7F, pointed by
an arrow: GRMFdt, BLMd and CJC) and analysed whether they
prioritize similar interactions in the first percentile of their
ranking. Instead, an overview that reports the comparison
between all the methods is offered in Supplementary Figure S5.

As clearly visible, for each network in Figure 9A and C, a
small percentage of predictions is shared by all the three meth-
ods in the unsupervised and supervised comparison. In the
unsupervised prediction comparison, the projection-based pre-
dictor shows higher mutual overlap with the LCP-based predic-
tor than with the MF-based method. Notably, in the comparison
with supervised methods, GRMFdt has higher mutual overlap
with the LCP-based method CJC than with the BLM one. A simi-
lar trend is observed also considering the predictions identified
as TPs or FPs in the independent validation, which are only par-
tially shared by the methods (Supplementary Figure S4). As
supervised methods rely on additional similarity measures
other than network structural properties, it is not surprising
that they tend to predict different DTIs compared with unsuper-
vised topology-based methods. However, we expected that
supervised methods tend to share more similar predictions
between them than with unsupervised ones. Instead, surpris-
ingly, we found that GRMFdt (which is the more computationally
expensive method, Figure 10) tends to prioritize interactions
more similar to the ones predicted by the unsupervised LCP
method CJC (which is the less computational demanding, Figure
10) than to BLMd.

For instance, considering the biggest network, enzymes,
only around 5% of the predictions in the respective first percen-
tile (139 of 2926) are common to all three unsupervised method-
ologies; however, around 45% of the novel predicted links are
shared between the projection-based Jac and LCP-based method
CJC (which are both local approaches), and around 10% between
MF-based and LCP-based method. This could be because of the
fact that MF is the only global approach between the unsuper-
vised, while LCP is the one that stresses more local topology
prediction. In the comparison with supervised methods, around
17% (500 of 2926) of the predicted interactions are commonly
shared, while around 22% of the predicted interactions are
shared between both supervised methods, and impressively,
around 44% are shared between the GRMF-based and LCP-based
ones. This last result could be interpreted if we recall the theory
behind GRMF. Although GRMF methods are global (because they
use MF for inference), they adopt a GR to prevent overfitting. In
the GR step, the similarity matrices are sparsified beforehand
by keeping only the similarity values to the nearest neighbours
for each drug/target [14]. By doing so, the GR is able to learn a
manifold on which (or near to which) the data are assumed to
lie [14]. In practice, the type of GR used by GRMF methods is
based on nearest neighbours; therefore, it is a local-based
adjustment, which could explain why GRMF prioritization is
more similar to LCP than to BLM one.

Similar trends can be observed in the other networks. In gen-
eral, the small number of shared predictions between all the
methods can be explained by the fact that each class of predic-
tors exploits different properties of the networks. However, con-
sidering the perspective of the number of diverse drugs and
targets included in the respective first percentile predictions,
the supervised methods includes, in general, a higher number
of nodes, suggesting their ability to prioritize interactions across
more diverse nodes. Such result is expected, as supervised
methods rely on biological knowledge. Instead, topology-based

methods (CJC, Jac and MFb) tend to obtain nodes and prioritize
interactions involving a smaller set of drugs and targets limited
by the network topology. In conclusion, meaningful predictions
are proposed by each method, even though different sets of
interactions are prioritized. Those results suggest that an
ensemble algorithm based on a combination of methodologies
could improve the prediction performance of any single
approach.

Discussion

This study deals with the complex problem of drug reposition-
ing and network-based DTI prediction. For this purpose, three
evaluation frameworks were proposed, in which the perform-
ance of distinct predictors revealed how classical validation
strategies might lead to over-optimistic results. In particular,
we investigated the limits of different evaluation frameworks
by comparing 24 variations of six state-of-the-art prediction
methods applicable with bipartite drug–target networks,
belonging to two main classes: unsupervised (among which we
considered the new LCP-based techniques) and supervised.
Precisely, the unsupervised methods rely only on the network
topology, therefore are general-purpose methods for link pre-
diction in bipartite networks that in the context of this study
were applied to drug–target networks. On the other side, the
supervised methods adopt both the network topology and the
biological information, therefore are tailored only for applica-
tions in drug–target networks.

The first important result of this study is that LCP topological
similarities represent ‘next generation’ unsupervised methods for
network-based DTI prediction because they significantly outper-
form the previous state-of-the-art ones, in all the evaluation
frameworks (Figure 8, left panel). The second key result, which is
also surprising, is that LCP topological similarities perform compa-
rably with the state-of-the-art supervised methods because their
performance is not significantly different from the supervised
approaches (Figure 8, right panel).

For application of these methods in real scenario, we could
consider two crucial aspects: the computational time-consump-
tion and the prioritization of true drug–targets offered by each
singly method in the first part of their ranking. For the time-
consumption, in Figure 10, we show that LCP-based methods,
although have comparable results (Figure 8, right panel, P-val-
ues >0.05) with supervised methods, require only seconds
(Figure 10A) or even fraction of seconds (Figure 10B–D) to issue
predictions, while supervised methods require from seconds to
hours depending on the size of the network. Note that the time
reported in Figure 10 was calculated just for one attempt of the
method per network. It means that in the case of the removal
and re-prediction evaluation framework, the required computa-
tional time for the simulation was �100 times bigger. On the
other hand, regarding the prioritization in the first part of the
ranking, the LCP-methods tend to offer a performance often
superior to many supervised ones for recall <0.2, and this is an
impressive result. For instance, in the independent validation
framework, for two of four networks, the same LCP method
(named CJC) unexpectedly offers a better precision in prioritiza-
tion (recall <0.2) of true DTIs, than the best supervised ones,
respectively, in each network (Figure 6). In general, across the
different evaluation frameworks, LCP predictors surpass the
performance of BLM ones in the prioritization of true correct
predictions. However, the fact that the performance of LCP-
methods starts to drop down for recall >0.2 is because of the
fact that, while LCP predictors are local methods (they offer
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prediction only for links with CNs), the other techniques not
only are supervised but also global. In fact, global methods
exploit the entire network topology, and not only the CNs’ top-
ology, for making inference. As the performance in the first part
of the ranking is crucial for suggesting truthful candidate DTIs
in real applications, the good results attained by LCP methods
in this task represent the third key finding of this study.

In practice, the three important results previously discussed
point by point, taken together, suggest that the local topology
(neighbourhood connectivity) alone, if adequately squeezed out
by means of the LCP theory, contains yet enough information to
achieve a prediction performance comparable with the current
and more sophisticated supervised methods, which in turn
exploit additional biological information. From the biological
point of view, this result is reasonable, as the underlying modular
and community-based structure of the drug–target network has
been extensively described [28]. In general, the drugs’ and targets’
ability to bind a small cohort of partners is an accepted property,
although the motivations behind drug promiscuity are not yet
fully understood [53]. The LCP theory—which was initially for-
malized in brain-network self-organization topology and after-
wards generalized to any complex network—and the derived LCP
topological similarities exploit this modular- and community-
based structure of the drug–target networks. In practice, the
local-community organization of the network topology creates a
physical and structural energy barrier that allows the DTIs to
preferentially appear within a certain reduced number of com-
munities, enabling local topological learning of new links in the
complex network. Nevertheless, we expect that creating a geo-
metrical version of the LCP predictors—for instance, taking into
account the biological information as link weights (node dis-
tances)—might boost the performance of the existing ones that
are indeed merely based on the network topology. On the other
hand, also the computational strategy of current supervised
methods might be modified to exploit the topology related with
the local community links (LCLs) as the LCP theory suggests. An
idea could be, for instance, the integration of such more complex
LCP-based topological measures as features for the supervised
classification. Finally—and this represents the forth key finding

of our study—a detailed analysis of the novel drug–target predic-
tions revealed that each class of methods prioritizes distinct true
interactions; hence, combining methodologies based on diverse
principles, by using consensus modelling, represents a promising
strategy to improve drug–target discovery. Herewith, a clarifica-
tion is necessary. This study was focused on the investigation of
the main classes of unsupervised topological-based models. In
addition, the LCP methods, which largely outperformed the other
unsupervised methods, were compared with three important
state-of-the-art-supervised models, two of which (GRMF and
wGRMF) are recent. However, the research of drug–target predic-
tion methods is ‘feverish’ and rich of diverse and multifaceted
approaches [9, 10, 27, 54–60] that either are specialized on particu-
lar types of targets or are able to integrate different types of bio-
logical knowledge. We leave to future studies the mission to
compare the diversity of the drug–target predictions possibly
offered by the multitude of presently available supervised
methods.

The results here provided indicate that the definitions of CNs
and LCP theory in complex bipartite networks, and their particular
application in drug–target ones, are not only an interesting theoret-
ical innovation in the field of complex networks but also a practical
contribution to enhance performance in drug repositioning by
means of network-based drug–target prediction. On the other side,
we should notice that the problem of evaluation and validation is
still an important open problem in this field. We suggest that
future studies involving drug–target prediction methods should
include more general evaluation frameworks to prevent over-
optimistic estimations caused by the overfitting to the known net-
work topology. Finally, this study does not endorse the idea of find-
ing the best drug–target prediction method or of opposing different
methods’ categories. Instead, we advocate a new vision in which
the evaluation and the integration of different strategies in ensem-
ble algorithms or composite models represent the real improve-
ment towards more reliable predictions. From the applicative
perspective, further investigation of the validity of the novel DTIs
predicted here or the application of such methodologies to large-
scale data sets, bares a high potential for drug discovery and
repositioning.

Figure 8. Statistical comparison for the classes of supervised and unsupervised methods. P-values computed by the non-parametric Mann–Whitney test and adjusted

by Bonferroni’s correction for the classes of supervised and unsupervised methods in the three evaluation frameworks. Significant differences between classes of

methods are highlighted in blue. On the left, comparison between three types of unsupervised methods: LCP-based, projection-based and MF-based. On the right, com-

parison of three types of supervised methods: BLM, GRMF and wGRMF with unsupervised LCP-based methods.
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To conclude, previous studies demonstrated how bio-
inspired modelling can capture the basic dynamics of network
adaptability through iteration of local rules, and produce in few
hours of computing solutions with properties comparable with
or better than those of real-world infrastructure networks,
which would require many months of designing by teams of
engineers [61]. Similarly, this article aims to promote bio-
inspired computing, demonstrating that simple unsupervised
rules that emulate principles of network self-organization and
adaptiveness arising during learning in living intelligent sys-
tems (like the brain) can in few seconds offer results compara-
ble with complicated algorithms based on advanced, supervised
and knowledge-based engineering, which require hours of com-
puting when applied on large networks.

Methods

We applied 24 variations of six state-of-the-art methods to five
distinct DTI networks. The methods are summarized in Table 1,
and can be subdivided into approaches belonging to two main

categories: supervised methods and unsupervised topology-
based methods.

Network data sets and biological similarity measures

A set of well-established and widely used gold standard DTI net-
works [4, 37]—including four distinct protein classes: enzymes, ion
channels, GPCRs and NRs—was used as a basis for this work. These
four networks from publication [37] were assembled from the follow-
ing data banks: Kyoto Encyclopedia of Genes and Genomes (KEGG)
BRITE [62], BRENDA [63], SuperTarget [64] and DrugBank [65], where
cofactors are not included except when they are annotated as regula-
tors in BRENDA database. Compounds with molecular weights <100
were removed also. The networks have the following composition:

• Enzymes: 445 drugs, 664 targets, 2926 existing and 292 554 miss-

ing interactions.
• Ion channels: 210 drugs, 204 targets, 1476 existing and 41 364

missing interactions.
• GPCRs: 223 drugs, 95 targets, 635 existing and 20 550 missing

interactions.

Figure 9. Comparison of novel predicted interactions. (A) Overlap of the first percentile predictions in five networks for unsupervised methods, considering the repre-

sentative method of each class: MFb (MF-based), Jac (projection-based) and CJC (LCP-based). (B) Overlap of the nodes (drugs and targets) involved in the first percentile

predictions for the unsupervised methods. (C) Overlap of the first percentile predictions in four networks for supervised and LCP-based methods, considering the repre-

sentative method of each class: BLMd (supervised), GRMFdt (supervised) and CJC (LCP-based). (D) Overlap of the nodes (drugs and targets) involved in the first percentile

predictions for the previous methods.
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• NR: 54 drugs, 26 targets, 90 existing and 1314 missing

interactions.

Moreover, for each of those data sets, in the supervised set-
ting, relevant biological knowledge such as the compound
chemical similarity and the protein sequence similarity is con-
sidered. We use those networks and biological measures as pro-
vided by the authors (http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/
drugtarget/) and as described in the original paper [37].

Additionally, we considered a recent drug–target network of
high-confidence activity data [44], which comprises interactions
from ChEMBL [66] and DrugBank [65]. This network was care-
fully constructed selecting only compounds, targets and their
interactions having high-quality experimental evidences and
consistently reported in different data sources:

• HQ drug–target network: 518 drugs, 358 targets, 1666 existing and

183 778 missing interactions.

Supervised methods for DTI prediction

The supervised method named BLM [37] is generally reported as
an established state-of-the-art approach for DTI prediction.
Table 1 indicates the three versions of the BLMs (BLMdt, BLMt

and BLMd) that are considered in this work. The computation of
predictions from each BLM version is performed using the
MATLAB implementation (http://cbio.ensmp.fr/�yyamanishi/
bipartitelocal/) provided by the authors [37].

On the other hand, we considered also two recent advanced
supervised approaches for DTI prediction that are confirmed to
perform better than many previous ones [14]. The first is known
as GRMF. The second is named WKNKNþGRMF, but here for
brevity, we will call it wGRMF. In practice, it consists of GRMF
applied on a pre-adjusted drug–target adjacency matrix by
means of a preprocessing named WKNKN. Table 1 indicates the
three versions [which include the dt (drug–target), d (drug) and t

(target) variants] for each of these two methods for six varia-
tions. The computation of predictions for GRMF and wGRMF
was performed using the MATLAB implementation provided by
the authors [14].

Unsupervised drug–target prediction methods

For predictions of novel interactions in bipartite networks,
unsupervised methods can be divided into projection-based,
MF-based and model-based methods.

Projection-based methods
It has been shown that any bipartite network can be projected
into its two monopartite networks by bipartite network projec-
tion [24]. Various methods have been proposed, which exploit
one or both monopartite layers obtained from a bipartite net-
work to infer new links. Conceptually, two ways of calculating
scores for novel links are applied on the projected network: sim-
ilarity measures [e.g. Pearson (Pea) correlation [16]] or model
based on physical processes [e.g. resource allocation (RA) [24], or
random walk [40]]. Based on the vectorial representation of the
two one-mode projections, we applied the following models
with a drug-centric perspective: NBI [24] and BPR [40], and calcu-
lated four spatial distance similarities: Jac, Euc, cosine (Cos) and
Pea. All those measures have been computed as described by
Coscia et al. [40], using the authors’ python implementation
(www.michelecoscia.com). For every drug d and target t not
already interacting, the predicted likelihood is computed as the
sum (NBI and BPR) or the average (Jac, Euc, Cos and Pea) of each
similarity of t to all the known targets of d, where the t-t similar-
ity is defined by the above topology-based metrics.

MF-based methods
A subset of singular value decomposition (SVD)-based methods
(using the MATLAB SVD function and the largest singular

Figure 10. Comparison of computational time between supervised and LCP-based methods. Comparison of computational time on supervised and LCP-based methods

for one simulation attempt. (A) Enzyme network, (B) ion channel network, (C) GPCR network, (D) NR network.
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values) were extrapolated following the mechanism of GRMF.
We adapted the supervised method to work in an unsupervised
(without information on chemical and sequence similarities)
environment. Thus, four versions of MF methods were created
using the SVD function: MF, MFb, mean matrix factorization
(MFm) and weighted matrix factorization (MFw). The differences
are in the exploitation of the cross-validations (CVs) to obtain
the final link scores. MF does not use CV at all, and its computa-
tion is given by the following MATLAB code:

½u; s;v� ¼ SVDsðx; 100Þ;

A ¼ u � ðs ^ 0:5Þ;

B ¼ v � ðs ^ 0:5Þ;

y ¼ A � B0;

Where x is the original bipartite network adjacency matrix
(which is not squared because the drugs and targets are in dif-
ferent numbers), and y is its low-rank approximation that con-
tains the scores, which represent the likelihood for each
observed and non-observed link.

The other three methods work in the following way. In the
CV step, the original network is sampled at random to generate
10 different CV networks with 90% of the original network in it.
The SVD function is used to generate the scores for the interac-
tion ranking, and an evaluation function is used in each CV to
calculate the AUPR of the current used CV network. MFb uses
the scores of the CV network that obtained the best AUPR in the
evaluation, MFm uses the mean among all the scores calculated
and MFw uses weighted scores given by the calculated AUPRs
as:

MFw ¼
Pn

i¼1 AUPRi� yiP
j AUPRj

:

Where n is the number of CVs (10 rounds in our case), AUPRi

is the AUPR in CVi, yi are the scores of the subnetwork in CVi

and
P

j AUPRj is the summation of all the AUPRs obtained.

Model-based methods
In many previous works from disparate fields, it has been
shown that node neighbourhood topological information can be
exploited for link prediction. In particular, classical measures
such as CNs [20], JC [21], Adamic and Adar [67] and RA [24] are
powerful measures to estimate the likelihood of an interaction
between two nodes in monopartite networks. Similarly, the PA
model [18] can be generalized to assign the likelihood of appear-
ing interactions in growing networks.

While the PA model has been already applied for link predic-
tion in bipartite networks [19], a reformulation of CN has been
just recently proposed [30] for its application to bipartite net-
works. Here, we report the explicit formulation of CNs for calcu-
lating the likelihood of any possible interaction in undirected
bipartite networks between a drug dx and a target ty:

CN dx; ty
� �

¼ N dxð Þ \ N N ty
� �� �� �

[ N ty
� �
\N N dxð Þð Þ

� ��� �� (2)

where N(dx) and N(ty) indicate the first-layer neighbours, and
N(N(dx)) and N(N(ty)) represent the second-layer neighbours of
the drug dx and target ty, respectively.

Figure 1B shows, for a missing interaction dx-ty (right) or an
existing interaction dz-ty (left), the respective set of CNs
(Equation (2)), which are accounted to calculate the likelihood of

the interaction in consideration. As a matter of fact, the com-
monly accepted notion that CNs are emerging from the triadic
closure rule was demonstrated to be misleading by Daminelli
et al. [30]. Instead, according to their definition [30], CNs
between two nodes of different classes are all the nodes
touched by all the possible shortest paths of the minimum
length allowed by a given topology between these two nodes.
For instance, in a monopartite network, the minimum length
shortest path allowed by the topology is two steps, and there-
fore, it coincides with the triadic closure, which is only a specific
geometrical transfiguration of the general rule. In fact, in a
bipartite network, the minimum length shortest path allowed
by the topology between different-class nodes is three steps;
hence, the generative rule coincides with the quadratic closure.
Instead, the minimum length shortest path allowed by the
bipartite topology between same-class nodes is two steps;
hence, the generative rule coincides with the triadic
closure [68].

Local community-based methods
The LCP theory was developed in the theoretical framework of
undirected monopartite complex networks [31] and recently
extended to the bipartite domain [30] on the basis of the defini-
tion of CNs in bipartite networks discussed in the previous
chapter. An exhaustive clarification of this theory was given in
a dedicated subsection of the ‘Results’. Here, we only need to
report that in both monopartite and bipartite topologies, the
application of the LCP theory significantly improved the link
prediction power of classical CN-based methods. Therefore, in
this study, we decided to consider five LCP-based methods (also
known as Cannistraci formulations [30]) adapted to bipartite
networks: Cannistraci–Alanis–Ravasi (CAR), CJC, Cannistraci
preferential attachment (CPA), Cannistraci–Adamic–Adar (CAA)
and Cannistraci resource allocation (CRA). In each of those
methods, the information content of a drug and a target neigh-
bourhood is complemented with the topological information of
the interactions (LCLs) between the cohort of their CNs
(calculated as in Equation (2)), as depicted in Figure 1B. The for-
mulation of CAR, CJC, CPA, CAA and CRA used to compute an
interaction likelihood is reported in Table 1. The computation of
any LCP-based method has been performed with the MATLAB
code (available at: https://sites.google.com/site/carlovittoriocan
nistraci/5-datasets-and-matlab-code/bipartite-link-predictors)
released in a previous publication [30].

Evaluation frameworks

Three evaluation frameworks have been considered to compare
the performance of each prediction method: a complete leave
one-out CV, a 10% removal and re-prediction evaluation
(repeated 100 times) and an independent validation set. In each
framework, we applied the topological models or the supervised
methods described above to calculate an interaction likelihood
for each possible combination of drugs and targets (Figure 2A
and B). Afterwards, the complete list of interactions is ranked
based on the given likelihood. However, in the first validation,
the complete network is considered to calculate for each possi-
ble link (existing or missing) a likelihood; thus, the set of TPs is
equivalent to all existing links (Figure 2A).

In the supervised methods, as a model needs to be built, the
specific label of the considered link is left out. A model is built
considering all the other interactions, which then is applied to
give a likelihood to the single left out interaction. In the unsu-
pervised methods, each link is assigned a likelihood based on
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the respective metric calculated on the entire topology (all exist-
ing links) minus the considered link. After having a likelihood
for all possible drug–target pairs, the ranked links are given a
class based on increasing thresholds, which are then compared
with the original class in the complete network to calculate pre-
cision and recall values. Finally, a value of AUPR is given for
each method, indicating how good a method is recovering the
existing knowledge in the original network.

Such an analysis is the reference approach used for testing
drug–target predictions [37]. To make our analysis comparable
with previous analyses, we used the identical settings described
in the paper by Bleakley and Yamanishi [37], in which they also
proposed the reference supervised methods (the BLMs). Instead,
in the second evaluation (Figure 2B), a random set of 10% of the
interactions is excluded; thus, the likelihood calculation is
based only on the topology of the remaining 90% of the links.
The performance is evaluated like in the previous framework,
but in this case, the set of TPs is only the excluded 10%, while
the 90% existing links are not considered [9].

In the first two frameworks, assigning a positive or negative
label for each interaction at different thresholds, we calculated the
AUPR values for each method. In the second procedure, we
repeated the random removal 100 times; thus, the AUPR values are
reported as the median over 100 repetitions. The choice of such
measure is motivated by the type of data we are considering, as
only positive examples are available, and the data are assumed to
be highly incomplete [11]. In fact, the AUPR has been reported to be
more appropriate to compare the predictor performance in data
sets were true-negative examples are missing [5, 69, 70]. Here, pre-
cision and recall are calculated at each point in the list, using uni-
tary steps (single new link predicted). Using the values of precision
and recall over the ranked prediction list, the AUPR summarizes
how good a predictor is able to highly rank the correct predictions
as well as its ability to recover all relevant interactions. The ran-
dom predictor assigns an equal likelihood to any existing, missing
or removed DTIs; thus, a list of all possible drug–target combina-
tions is given an independent randomized order in each repetition.
In each figure, error bars represent the standard error, calculated
as the SD divided by the square root of the sample set dimension.

Independent validation

External validation is vital for assessing the performance of the
analysed target prediction algorithms. To this end, millions of
drug–target activity data from BindingDB and ChEMBL, binding
structural evidences from the Protein Data Bank (PDB) and man-
ually curated interactions from the Therapeutic Target
Database (TTD) [71] were integrated into an in-house drug–tar-
get database. This resource was already used in previous stud-
ies [53, 72, 73], and here, it was used to screen for
experimentally validated links, which have been discovered in
the past years and are missing in the five original network data
sets. The enzymes, ion channels, GPCRs and NR networks [4, 37]
are built on KEGG drug and gene ids. Using the KEGG
Application Programming Interface (KEGG API) [74], drugs and
targets ids were mapped to PubChem Compound Identifiers
(CIDs) via Substance Identifiers (SIDs) [75] and Uniprot accession
numbers, respectively. Instead, the high-quality drug–target
network [76] is based on ChEMBL target ids and Drugbank drug
ids. These were mapped to Uniprot accession numbers using
the ChEMBL API and to PubChem CIDs using the UniChem [77]
mapping, respectively. A drug was considered active against a
target if their interaction was reported either in PDB, TTD or in
BindingDB with an activity value at least in the mM range

(i.e. Ki, Half Maximal (50) Inhibitory Concentration (IC50), Half
Maximal (50) Effective Concentration (EC50), Kon or Koff �1 mM).
Consequently, all pairs with activity values >1 mM were regarded
inactive. To complement these data, activity information from
ChEMBL assays was added as follows. PubChem CIDs were
mapped to ChEMBL compounds using UniChem. For each ChEMBL
compound, all available ChEMBL assays were processed and fil-
tered by UniProt accession number using the ChEMBL API. The
Python package Pint by Hernan E. Grecco was used for parsing and
converting the extracted activity data. Again, a drug was consid-
ered active against a specific target if an activity value �1 mM was
found and inactive if>1 mM. Finally, a manually validated updated
network of drug–target pairs recently published by Yamanishi et al.
[78] was integrated and considered as active interactions. For each
network, the number of originally known and the newly identified
interactions (i.e. the independent set), which are missing in the
complete network data sets, is reported in Supplementary Table
S1. Overall, such an integrated data set including chemical affinity
values allows for the definition not only of new positive interac-
tions (active) but also of new negative interactions (inactive). In the
independent validation, we considered the ranking of all missing
interactions from each complete network. Additionally, as our
benchmark set includes both positive and negative evidences, we
are able to better estimate each method’s precision. In fact, the
vast majority of predictions are neither in the independent positive
nor negative set, therefore putative candidates (or unknown).

Statistical comparison between classes of predictor
methods

To compare the AUPR values for each method class (projection-
based, MF-based, LCP-based, BLM, GRMF and wGRMF), a non-
parametric statistical test called Mann–Whitney [79] (which is a
test based also on position ranking) was applied in each of the
evaluation frameworks. The comparison was performed in two
separate manners. For the unsupervised approaches, LCP-
based, MF-based and projection-based classes, five networks
were statistically compared. While for the supervised approach-
es, BLM, GRMF, wGRMF and LCP-based classes, four networks
were statistically compared. All the P-values shown in Figure 8
were adjusted by Bonferroni’s correction [81] considering multi-
ple testing inside each evaluation framework.

Key Points

• The new class of proposed approaches—based on LCP
theory—for unsupervised network-based drug–target
prediction can achieve comparable performance with
more sophisticated supervised methods.

• Current evaluation methods of drug–target prediction
can lead to over-optimistic results; therefore, we also
propose novel evaluation frameworks.

• Unsupervised and supervised methods predict almost
mutual exclusive sets of interactions; thus, we encourage
future studies to combine both classes of algorithms.

• The application of the LCP theory on the prediction of
DTIs can provide a novel surprising proof of efficiency
in support of bio-inspired computing.

Supplementary Data

Supplementary data are available at BRIBIO online.
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11.Mestres J, Gregori-Puigjané E, Valverde S, et al. Data complete-
ness—the Achilles heel of drug-target networks. Nat
Biotechnol 2008;26(9):983–4.

12.Park Y, Marcotte EM. Revisiting the negative example sam-
pling problem for predicting protein-protein interactions.
Bioinformatics 2011;27(21):3024–8.

13.Pahikkala T, Airola A, Pietil€a AS, et al. Toward more realistic
drug-target interaction predictions. Brief Bioinform
2014;16:325–37.

14.Ezzat A, Zhao P, Wu PM, et al. Drug-target interaction predic-
tion with graph regularized matrix factorization. IEEE/ACM
Trans Comput Biol Bioinform 2016, in press.

15.Liben-Nowell D, Kleinberg J. The link-prediction problem for
social networks. J Am Soc Inf Sci Technol 2007;58(7):1019–1031.

16.Breese JS, Heckerman D, Kadie C. Empirical analysis of predic-
tive algorithms for collaborative filtering. In: Proceedings of
14th Annual Conference on Uncertain Artificial Intelligence, 1998,
43–52. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

17.Koren Y, Bell R, Volinsky C. Matrix factorization techniques
for recommender systems. Computer 2009;42(8):42–49.

18.Barab�asi A-L, Albert R. Emergence of scaling in random net-
works. Science 1999;286(5439):509–512.

19.Kunegis J, Luca EWD, Albayrak S. The link prediction problem in
bipartite networks. In: Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6178. LNAI, 2010, 380–9. Springer Nature,
LNAI, London, UK.

20.Newman ME. Clustering and preferential attachment in
growing networks. Phys Rev E Stat Nonlin Soft Matter Phys
2001;64(2 Pt 2):25102.

21. Jaccard P. Distribution de la flore alpine dans le bassin des
Dranses et dans quelques régions voisines. Bull Soc Vaudoise
Des Sci Nat 1901;37:241–272.

22.Easley D, Kleinberg J. Strong and weak ties. In: Networks,
Crowds, and Markets: Reasoning about a Highly Connected World.
Cambridge University Press, Cambridge, UK, 2010, 47–84.

23.Nacher JC, Akutsu T. Structural controllability of unidirec-
tional bipartite networks. Sci Rep 2013;3:1647.

24.Zhou T, Lü L, Zhang Y-C. Predicting missing links via local
information. Eur Phys J B 2009;71(4):623–630.

25.Latapy M, Magnien C, Del Vecchio N. Basic notions for the
analysis of large two-mode networks. Soc Netw
2008;30(1):31–48.

26.Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interac-
tions and drug repositioning via network-based inference.
PLoS Comput Biol 2012;8(5):e1002503.

27.Alaimo S, Pulvirenti A, Giugno R, et al. Drug-target interaction
prediction through domain-tuned network-based inference.
Bioinformatics 2013;29(16):2004–8.

28.Yildirim MA, Goh K-I, Cusick ME, et al. Drug-target network.
Nat Biotechnol 2007;25(10):1119–26.

29.Zhou T, Kuscsik Z, Liu J-G, et al. Solving the apparent
diversity-accuracy dilemma of recommender systems. Proc
Natl Acad Sci USA 2010;107(10):4511–5.

30.Daminelli S, Thomas JM, Dur�an C, et al. Common neigh-
bours and the local-community-paradigm for topological
link prediction in bipartite networks. N J Phys
2015;17(11):113037.

1200 | Duran et al.



31.Cannistraci CV, Alanis-Lobato G, Ravasi T. From link-
prediction in brain connectomes and protein interactomes to
the local-community-paradigm in complex networks. Sci Rep
2013;3:1–13.

32.Liu Z, He JL, Kapoor K, et al. Correlations between community
structure and link formation in complex networks. PLoS One
2013;8:9.
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