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Abstract
Oxidant production from DUOX1 has been proposed to lead to neutrophil recruitment into

the airways when lung homeostasis is compromised. The objective of this study was to

determine whether DUOX-derived hydrogen peroxide is required for LPS-induced neutro-

phil recruitment, using a functional DUOX knock out mouse model. We found that LPS

induced profound neutrophilic lung inflammation in both Duoxa+/+ and Duoxa-/- mice

between 3h and 24h. Duoxa-/- mice had significantly higher neutrophil influx 24h after LPS

instillation despite similar cytokine levels (KC, MIP-2, or TGF-α) between the two groups.

These findings suggest that LPS-TLR-4-induced KC or MIP-2 cytokine induction and subse-

quent neutrophil recruitment in the airway does not require DUOX-derived hydrogen perox-

ide from airway epithelium.

Introduction
Dual oxidases (DUOX1 and DUOX2) are NADPH oxidases located at the epithelial surface of
airway cells, and locally produce hydrogen peroxide (H2O2)[1]. The function of DUOX-medi-
ated hydrogen peroxide production in the airway has been shown to provide direct lung host
defense functions against Gram-negative[2] or Gram positive bacteria[3]. Additionally,
increasing data suggest that DUOX-mediated H2O2 is responsible for oxidant-mediated signal-
ing important for airway host defense.

Previously, several model systems have shown that H2O2 directly causes neutrophil chemo-
taxis[4–8] and several recent reports suggest that DUOX plays an important role in neutrophil
chemotaxis in the airway in response to a variety of stimuli[9–11]. In vitro studies suggest that
DUOX-derived H2O2 is essential for TGF-α signaling that subsequently leads to increased pro-
duction of the neutrophil chemokine IL-8[10,11]. An in vivomurine model demonstrated that
secretion of a mouse homolog of IL-8, MIP-2, is dependent upon DUOX2 activity[12]. And,
we recently reported that DUOX is required for neutrophil recruitment in a mouse model of
allergic asthma[9].
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Collectively, these studies strongly implicate that DUOX regulates neutrophil chemotaxis
through the canonical lipopolysaccharide-induced TLR4 signaling pathway, subsequently
upregulating IL-8. Lipopolysaccharide (LPS) found on gram negative bacteria such as Pseudo-
monas aeruginosa was effective in stimulating DUOX activity, which potentially leads to neu-
trophil chemotaxis and wound repair[2,10,11,13]. Recently, an in vivo study by Li et al. found
that diphenyleneiodonium chloride (DPI), a nonspecific NADPH oxidase inhibitor, sup-
pressed neutrophil localization in bronchoalveolar lavage fluid after LPS exposure implicating
DUOX as the key regulator of this recruitment[14].

It is firmly established that TLR4 is expressed on airway epithelium. However, the relative
contribution of the airway epithelium versus hematopoietic cells in recruiting neutrophils after
LPS challenge is less clear[15]. To better characterize the role of the airway epithelium, through
DUOX-derived H2O2, to activate LPS-mediated neutrophil chemotaxis, we utilized a Duoxa-/-

knockout mouse model that does not express functional DUOX1 or DUOX2[9,16]. DUOX1
and DUOX2 have both been implicated as having active roles in LPS-generated inflammatory
signaling, thus a model system that is deficient in both DUOX isoforms was an important first
step to determine the specific isoform mediating LPS-dependent signaling. Because DUOX iso-
forms are not expressed in hematopoietic cells, this model allowed us to specifically character-
ize the role of DUOX expressed in airway epithelial cells. In addition, this model excludes the
possibility of one DUOX isoform compensating for the loss of the other.

We hypothesized that DUOX-derived hydrogen peroxide is necessary to signal neutrophil
migration into the lungs following LPS exposure, and that lack of functional DUOX will result
in reduced neutrophil chemotaxis into the lung.

Materials and Methods

Knockout mouse model
Duoxa-/- knockout mice were generated as described previously[16] and mice were obtained as
a generous gift from Dr. Helmut Grasberger. All in vivo experiments were performed in accor-
dance with the University of California at Davis Institutional Animal Care and Use Committee
(IACUC). Mice utilized for our experiments were acquired through subsequent breeding of
these breeding pairs at the UC Davis facility. Male mice, of 129Sv6 background, were main-
tained in HEPA-filtered laminar flow cage racks with a 12-hour light/dark cycle and allowed
free access to food (Purina Rodent Chow) and water. Mice were housed and cared for by the
veterinary staff of the UC Davis Animal Resource in AALAC-accredited facilities. Because
Duoxa-/- mice are severely hypothyroid without hormone replacement[16], we supplemented
mice with L-T4 hormone replacement as described previously[9]. Anesthesia and euthanasia
procedures were performed according to UC Davis IACUC-approved protocols. All in vivo
experiments were performed in accordance with the University of California at Davis Institu-
tional Animal Care and Use Committee (IACUC) and specifically approved this study.

LPS Exposure
LPS from Pseudomonas aeruginosa 10, source strain ATCC 27316 (Sigma-Aldrich L8643) was
diluted with phosphate-buffered saline (PBS). Mice were anesthetized with isoflurane and
40uL of either PBS (control), or 1μg or 10μg LPS dissolved in PBS was administered via intra-
tracheal instillation. LPS-exposed animals and PBS controls were necropsied at 3h, 6h, 12h,
24h, and 7 days after instillation.
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Bronchoalveolar lavage sample collection and processing
Mice were euthanized at specified timepoints with an intraperitioneal (IP) overdose of pento-
barbital. The lungs were then lavaged two times with 1mL sterile PBS (pH = 7.4) to collect
bronchoalveolar lavage fluid (BALF). BALF was centrifuged at 2000 rpm for 10 minutes and
supernatant was collected and stored at -80°C. The resulting BALF cell pellet was resuspended
in ACK/RBC lysis buffer and the pellet was resuspended in PBS. Live cell concentrations were
estimated by counting trypan-blue-excluding cells on a hemacytometer. To determine BALF
cell differentials, cytocentrifuge preparations were stained with a Hema3 kit as described in the
manufacturer's instructions (Fisher Scientific, Kalamazoo, MI), and sealed using Cytoseal 60
(Richard-Allen Scientific, Kalamazoo, MI). Cell percent differentials were calculated by count-
ing 10 fields at 400× magnification and classifying cell types as alveolar macrophage, neutro-
phil, eosinophil, lymphocyte, or “other” based upon standard morphological characteristics
and staining profiles. Absolute cell counts were calculated by multiplying live cell counts by the
cell type percent.

Enzyme-Linked Immunosorbant Assay (ELISA) analyses
The supernatant fraction of the BALF was thawed on ice and used in enzyme-linked immuno-
sorbant assays (ELISA). The mouse homologs of human interleukin (IL)-8, Keratinocyte-
Derived Cytokine (KC) and Macrophage Inflammatory Protein (MIP)-2, were detected using
ELISA (R&D Systems, Product Number MKC00B and MM200, respectively). TGF-α was also
analyzed similarly (R&D Systems, Product number DTGA00). BALF cytokine concentrations
were determined by comparison to standard curves for each cytokine provided by the supplier.

Statistics
All data was processed using Prism 5 software (GraphPad Software, Inc., San Diego, Califor-
nia). Data was analyzed using 2-Way ANOVA followed by Bonferroni correction when appro-
priate. Data was deemed statistically significant at p�0.05.

Results

LPS Dose Response and Time Course
We evaluated live cell count dose responses to 1μg or 10μg LPS between Duoxa-/- andDuoxa+/+

mice (Fig 1). Both Duoxa-/- andDuoxa+/+mice had robust increases in live cell counts after LPS
instillation compared to PBS control. However, there appeared to be no dose response between
the two doses of LPS we utilized. Given the lack of statistical significance in cell counts between
the two doses, we utilized the 1μg dose of LPS for the remainder of our experiments.

To evaluate the LPS-induced influx of inflammatory cells in the lung over time, total live
cell counts were analyzed and compared between Duoxa-/- and Duoxa+/+ mice at 3h, 6h, 24h,
and 7 days (Fig 2). Both Duoxa-/- and Duoxa+/+ mice demonstrated increasing live cell counts
at each timepoint up to 24h which subsided at 7 days. While Duoxa-/- and Duoxa+/+ mice had
similar trends in live cell counts for all timepoints, Duoxa-/- mice had significantly increased
live cell counts at 24h when compared to Duoxa+/+ mice (p�0.05).

LPS-induced Neutrophil Influx
We analyzed the BALF for macrophages, neutrophils, eosinophils and lymphocytes at 3h, 6h,
and 24h after LPS exposure to determine the cell populations recruited by LPS in Duoxa-/- and
Duoxa+/+mice. As expected, we observed predominant neutrophilic inflammation in LPS
-exposed Duoxa+/+mice (Fig 3A). Surprisingly, Duoxa-/- mice had similar levels of neutrophilic

LPS-Induced Airway Neutrophilia Is Independent from DUOX

PLOSONE | DOI:10.1371/journal.pone.0131810 July 6, 2015 3 / 11



inflammation after LPS exposure (Fig 3A), which conflicts previous reports. Similar to the live
cell counts, both Duoxa-/- and Duoxa+/+ mice demonstrated steadily increasing absolute neu-
trophils counts that peaked at 24h and subsided at 7 days. However, counter to what we would
predict a priori, Duoxa-/- mice had a statistically significant increase in neutrophils at the 24h
timepoint (Fig 3B).

Analysis of BALF seven days after LPS exposure demonstrated a return to a macrophage-
predominant cell profile with a slightly elevated lymphocyte population in both Duoxa-/- and
Duoxa+/+mice with no significant differences between the two groups of animals (data not
shown).

LPS-induced Cytokine Production
Typically, the binding of LPS to the TLR-4 receptor activates a signaling cascade that leads to
increased IL-8 production and subsequent neutrophil recruitment[17], and DUOX-derived
hydrogen peroxide has been shown to play a role in LPS-induced IL-8 production[10,11,13].

Fig 1. Dose response to LPS inDuoxa+/+ andDuoxa-/- mice. Leukocytes were collected from the airway
compartment by BAL 24 hours after intratrachael instillation of LPS (1μg or 10μg). The number of live cells
was determined by trypan blue exclusion. Live cell counts are displayed for PBS control (open box), 1μg LPS
(gray box), or 10μg LPS for both Duoxa-/- (-/-) and Duoxa+/+ (+/+) mice. Data represent mean ± SEM from six
animals in each group; * = p<0.05 compared to PBS control.

doi:10.1371/journal.pone.0131810.g001

Fig 2. Time course of LPS-induced airway inflammation. Leukocytes were collected from the airway
compartment by BAL at various timepoints up to 7 days (168h) after intratracheal instillation of 1μg LPS. The
number of live cells was determined by trypan blue exclusion. Live cell counts are displayed for PBS control
and LPS-exposed Duoxa-/- (-/-) and Duoxa+/+ (+/+) mice as indicated. Data are shown as mean ± SEM for six
mice in each group; * = p< 0.05 between LPS-treated and PBS-treated controls, # = p<0.05 between LPS-
treated Duoxa+/+ and Duoxa-/- mice.

doi:10.1371/journal.pone.0131810.g002
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Fig 3. LPS induces predominantly neutrophilic inflammation in bothDuoxa-/- andDuoxa+/+ mice. Leukocytes were collected from the airway
compartment by BAL at various timepoints up to 7 days (168h) after intratracheal instillation of 1μg LPS. Cell differentials were determined visually based on
cell morphology and the percent of neutrophils (A) was compared betweenDuoxa-/- (-/-) and Duoxa+/+ (+/+) mice. Absolute neutrophil counts (B) were
calculated by multiplying neutrophil percentage with total cell number. Data are shown as mean±SEM from six mice in each group; * = p< 0.05 between
LPS-treated and PBS-treated controls, # = p<0.05 between LPS-treated Duoxa+/+ and Duoxa-/- mice.

doi:10.1371/journal.pone.0131810.g003
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Therefore, we measured changes in the IL-8 mouse homologs KC and MIP-2[18] in BALF
from Duoxa-/- and Duoxa+/+ mice after LPS instillation to evaluate the impact of DUOX
-derived hydrogen peroxide in neutrophil chemotaxis. Both KC and MIP-2 levels peaked at 3h
consistent with the canonical LPS-TLR4-IL-8 signaling pathway. Surprisingly, LPS induced
similar levels of IL-8 homologues in the Duoxa-/- mice compared with the Duoxa+/+ mice (Fig
4). Alternatively, previous studies suggested LPS initiates DUOX-dependent upregulation of
TGF-α signaling in airway epithelium, which may be primarily responsible for neutrophil
influx into the airway[10,11,13,14]. To evaluate this possibility, we compared TGF-α levels in
BALF from Duoxa-/- and Duoxa+/+ mice and found no induction of TGF-α in Duoxa-/- or
Duoxa+/+ mice (data not shown). This supported our observation that LPS-induced neutrophil
recruitment occurred through modulated expression of KC and MIP-2 independent of TGF-α
signaling.

Discussion
Intratracheal LPS administration is known to recruit neutrophils into the lungs of mice
[17,19,20]. This occurs through LPS serving as a ligand for TLR-4, subsequently activating
transcription of the major neutrophil chemokine IL-8[21] in humans, or KC and MIP-2,
mouse homologs of IL-8, in mice[18,22]. We previously identified DUOX as a major source of
epithelial-derived H2O2 in isolated murine epithelium, and an important enzyme for neutro-
phil recruitment in a mouse model of allergic asthma. [9]. Based on these results and the exist-
ing literature, we hypothesized that DUOX-derived hydrogen peroxide would act as an
important signaling molecule for neutrophil migration into the lungs following LPS exposure.
Surprisingly, our data suggest that LPS-mediated neutrophil recruitment in the mouse lung
does not require DUOX-dependent H2O2 signaling.

H2O2, the primary product of DUOX enzymatic activity, is known to be a critical factor for
multiple intracellular signaling pathways[23,24]. In this report, we investigated the role of
DUOX-generated H2O2 in LPS-mediated neutrophil recruitment to the lung. Previously, other
groups have demonstrated associative correlations between DUOX and LPS-mediated neutro-
phil signaling through either IL-8 or TGF-α[10,11,14], and we investigated both possibilities in
our model.

Nakanaga et al. characterized DUOX-dependent LPS signaling in NCI-H292 cells, a human
pulmonary mucoepidermoid carcinoma cell line. They demonstrated that DUOX-derived
hydrogen peroxide activated TGF-α converting enzyme (TACE), followed by TGF-α release,
binding to epidermal growth factor receptor (EGFR), and subsequent increases in IL-8 produc-
tion in vitro[10]. Similarly, Boots et al., utilizing HBE1 cells, an immortalized human bronchial
epithelial cell line, found that DUOX-generated H2O2 was necessary for TGF-α-mediated con-
stitutive EGFR activity and increased IL-8 production[11]. In contrast, we did not observe any
differences in TGF-α, KC, or MIP-2 between Duoxa-/- or Duoxa+/+ mice after LPS exposure
(Fig 4 and data not shown). Our data suggest that LPS is able to signal neutrophils through
increased KC or MIP-2 independent of either DUOX isoform. Additionally, TGF-α had no
apparent role in LPS-induced neutrophil recruitment.

Because these previous studies were done in cell culture models, it is possible that our con-
flicting findings are due to compensatory mechanisms available in the in vivo system that do
not occur during short-term DUOX inhibition in cell culture systems, the use of alternative
NOX isoforms in vivo, or both [25,26]. We did not observe compensatory increases in NOX4,
the most likely alternative NOX to be expressed in the absence of DUOX expression[26], in the
airway epithelium of these mice (data not shown), but we cannot exclude an unusual upregula-
tion of other NOX isoforms.
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Fig 4. Cytokine levels are similar between LPS-exposedDuoxa+/+ andDuoxa-/- mice. BALF was collected at various timepoints from Duoxa+/+ (+/+) and
Duoxa-/- (-/-) mice followed by measurement of KC (A) or MIP-2 (B) cytokine levels in the supernatant by ELISA. Cytokine concentration was determined by
comparison to standard controls for each cytokine. Data from six animals in each group are shown. Mean cytokine values from Duoxa+/+ (+/+) and Duoxa-/-

(-/-) mice are shown as a vertical line. Cytokine levels for LPS treatment differed significantly than PBS controls at three hours in both groups of mice (data not
shown).

doi:10.1371/journal.pone.0131810.g004
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Alternatively, the specific stimulus may be the primary difference. Although there is clear
evidence that DUOX is required for neutrophil recruitment in multiple model systems
[7,9,14,27], in vivomodels that evaluate mechanisms of DUOX-mediated neutrophil recruit-
ment in the airway are limited. Li et al. reported that LPS-induced neutrophil chemotaxis into
the lung of mice was reduced with the general NADPH oxidase inhibitor DPI[28,29]. Because
DPI is relatively non-specific for all flavin proteins, these results may not account for potential
alternative NOX(s) that are functioning in lieu of DUOX[30,31]. Similarly, Ryu et al. demon-
strated that TLR-4 signaling induced features of allergic asthma that were dependent upon
murine DUOX2-generated reactive oxygen species[32], but their studies did not exclude TLR-
4-independent pathways that may be primarily responsible for DUOX-dependent neutrophil
recruitment. Here, we specifically evaluated how LPS signals through DUOX in vivo, but
directly demonstrated that neither DUOX isoform is required for LPS-mediated neutrophil
recruitment. Together, our data suggest that DUOX is not required for LPS-TLR-4-dependent
neutrophil recruitment, but is required for allergy-induced neutrophil recruitment.

We speculate that our observations are due to differences in the primary source of neutro-
phil recruitment. A primary mechanism for LPS-induced neutrophil recruitment in the lung
involves interactions between neutrophils, vascular endothelial cells, and alveolar macrophages
[33,34], which predominantly express Nox1 or Nox2. Mechanisms for ovalbumin-induced
neutrophilic inflammation are not as well characterized, but potentially rely on airway specific
proteins such as TNF-related apoptosis inducing ligand (TRAIL) [35–37]. Nonspecific inhibi-
tion of Nox proteins subsequently will inhibit both LPS- and OVA-induced neutrophil recruit-
ment, whereas selective inhibition of DUOX proteins will only effect OVA-induced, or airway
epithelium-dependent, mechanisms of neutrophilic inflammation. Further investigation of
these differences potentially will reveal important novel pathways of neutrophil recruitment.

Surprisingly, we observed significantly more neutrophils recruited into the airway in
Duoxa-/- mice compared to Duoxa+/+ mice. These results suggest that LPS-induced neutrophil
influx is enhanced in the absence of functional DUOX, in contrast to ova-induced neutrophil
influx, where DUOX is required for neutrophil recruitment[9]. Because ROS are known regula-
tors of cell differentiation[38], and DUOX expression has been found to increase with age in
the developing lung[39,40], it is possible that the Duoxa-/- mice have impaired epithelial struc-
tural integrity or repair mechanisms, skewed epithelial cell populations, or altered cell-cell
junctions to explain this observation. For example, neutrophils are known to cause lung epithe-
lial damage during extravasation into the airway[41,42] and DUOX-derived hydrogen perox-
ide is crucial in lung epithelial repair and wound closure[13,43–46]. Without an intact DUOX-
mediated repair mechanism, this “leaky” epithelium may allow an increased number of neutro-
phils to migrate from the blood vessels to the airways after LPS-triggered signaling.

Conclusion
In contrast to previous studies, we have demonstrated that DUOX does not contribute specifi-
cally to LPS-mediated neutrophil recruitment. These differences may be due to compensatory
mechanisms that occur in the long-term absence of both DUOX isoforms. Importantly, there
is strong evidence that DUOX is important in allergy-induced neutrophilic inflammation[9,32]
and future studies exploring these contrasting findings will likely reveal novel mechanisms of
allergy-induced neutrophil influx.
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