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GWAS findings improved genomic 
prediction accuracy of lipid profile 
traits: Tehran Cardiometabolic 
Genetic Study
Mahdi Akbarzadeh1, Saeid Rasekhi Dehkordi1, Mahmoud Amiri Roudbar2, 
Mehdi Sargolzaei3,4, Kamran Guity1, Bahareh Sedaghati‑khayat1, Parisa Riahi1, 
Fereidoun Azizi5 & Maryam S. Daneshpour1*

In recent decades, ongoing GWAS findings discovered novel therapeutic modifications such as 
whole‑genome risk prediction in particular. Here, we proposed a method based on integrating the 
traditional genomic best linear unbiased prediction (gBLUP) approach with GWAS information to 
boost genetic prediction accuracy and gene‑based heritability estimation. This study was conducted 
in the framework of the Tehran Cardio‑metabolic Genetic study (TCGS) containing 14,827 individuals 
and 649,932 SNP markers. Five SNP subsets were selected based on GWAS results: top 1%, 5%, 10%, 
50% significant SNPs, and reported associated SNPs in previous studies. Furthermore, we randomly 
selected subsets as large as every five subsets. Prediction accuracy has been investigated on lipid 
profile traits with a tenfold and 10‑repeat cross‑validation algorithm by the gBLUP method. Our 
results revealed that genetic prediction based on selected subsets of SNPs obtained from the dataset 
outperformed the subsets from previously reported SNPs. Selected SNPs’ subsets acquired a more 
precise prediction than whole SNPs and much higher than randomly selected SNPs. Also, common 
SNPs with the most captured prediction accuracy in the selected sets caught the highest gene‑based 
heritability. However, it is better to be mindful of the fact that a small number of SNPs obtained from 
GWAS results could capture a highly notable proportion of variance and prediction accuracy.

It raised an enormous possibility of predicting complex phenotypes from genotypes as the initial results of the 
human genome project’s sequence were publicly  available1. Our understanding of the human genome can be 
applied to improve personal medicine to prevent diseases, diagnosis, and treatment. Hence, it has enriched 
health care from birth through  life2,3. We can also classify individuals into various susceptibility levels of complex 
disease by utilizing genetic testing and have earmark resources for public health research that results in targeted 
treatment through pharmacogenomics. Recent promising discoveries from Genome-Wide Association Studies 
(GWASs) have provided insight into clinical  applications4. GWASs have mainly discovered and reported several 
significant Single Nucleotide Polymorphisms (SNPs) associated with various types of human complex traits and 
diseases (e.g., GWAS  Catalog5). However, even in highly heritable phenotypes, the combination of significantly 
associated SNPs’ effects explains a small proportion of phenotypic  variation4,6 and may not be sufficient to pre-
dict complex traits. To solve this problem, the idea of applying whole-genome Regression models (WGR) was 
presented to improve the accuracy of Genomic  Prediction7 to capture the possible portion of phenotypic vari-
ation explained by the  genome8. The Genomic Best Linear Unbiased Prediction (gBLUP) approach introduced 
by VanRaden and  Habier9,10, is designed to estimate genetic values. This method employs Genomic Relation-
ship Matrix (GRM) that improves genomic similarities between  individuals8,10,11. Although the accuracy of the 
genetic prediction increases by using whole-genome information, there are still variants in the genome with 
small contributions to prediction. Thus, removing them would have no significant implication. Indeed, they are 
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neither strong enough to have significant associations individually nor have their aggregation effect significantly 
impacted genetic prediction accuracy. It has been shown that although variable selection or shrinkage estimation 
procedure can handle the problem of the small contribution of SNPs, choosing an appropriate method for the 
preselection of SNPs can improve prediction  ability12.

In this study, we aimed to incorporate the strength of both WGR and GWAS to find the optimized number 
of SNPs that have the most contribution to the explanation of genomic phenotypic variation and make GRM 
perform computationally efficient in gBLUP, using GCTA  software13. Finally, the strategies are tested on lipid 
profile traits, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-
C), triglycerides (TG), and cholesterol (CHOL) extracted from Tehran Lipid and Glucose Study (TLGS) and 
Tehran Cardiometabolic Genetic Study (TCGS)  projects14. Furthermore, we evaluated the strength of selected 
subsets of SNPs to explain the genotypic variance of lipid profile traits. We estimated gene-based heritability, 
which we declare this is the first report of gene-based heritability of lipid profile traits in the Iranian population.

Method and materials
Study population. Tehran Lipid and Glucose Study (TLGS), the first ongoing periodic cohort study of 
the Iranian population project, includes pedigrees of 1 to 38 members with an average number of 4.23 ± 4.11 
individuals, age ranged from 3 to 80 years. For over 25 years, TLGS has provided a wide variety of epidemio-
logical data. Non-communicable disorders’ (NCDs) risk factors of 15,000 participants have been recorded every 
three years. We have extracted the fourth phase’s information of participants due to the availability of the most 
recorded information on lipid profile traits. The Tehran Cardiometabolic Genetic Study (TCGS) project was 
derived from TLGS, which provided most of the primitive study participants, 14,827 individuals, with more than 
649,932 genetic variants.

All participants were requested to sign an informed written consent. The ethical committee of the Research 
Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, approved the design of the 
TLGS.

Phenotype measurement. The TCGS participants with recorded lipid profile traits, including 10,301 
people with HDL-C, 10,586 people with LDL-C, 10,303 people with TC, and 10,303 people with TG data, have 
been extracted (where the LDL-C was measured as LDL-C = TC − HDL −  (TG/5)). It should be noted that TG 
was in its log-transformed form to adjust for its highly skewed distribution. Based on the previous studies, we 
extract body mass index (BMI), age, and sex as covariates.

Genotyping, quality control, and missing imputation. Blood samples of TCGS participants were 
genotyped using humanOmniExpress-24-v1 bead chips, which have provided us with 649,932 single nucleotide 
polymorphism loci with an average mean distance of 4 kilobases for each individual at deCODE genetic com-
pany as described comprehensively  in14. At the beginning of our analysis of the genomic dataset, we needed to 
perform quality control (QC) based on both individuals and markers using plink  software15. The steps are sum-
marized in Supplementary Fig. 1. Before taking regular QC steps, we have implemented pedigree and parentage 
checks. We used S.A.G.E (Statistical Analysis for Genetic Epidemiology) software version 6.416, the ped-info 
command, for the pedigree check to find any problem with recorded parental information. Next, we applied 
snp1101 software for checking contradictory information based on recorded parental and genotype platforms’ 
 information17,18. 132 individuals had inconsistencies in their parental information, and we decided to consider 
them as a founder instead of being in a family structure.

Then we started individuals’ and markers’ QC using Plink software. First, we filtered SNPs and individu-
als with more than 0.2 missing rates (for both individuals and SNPs). This non-strict threshold was adopted 
to remove any low-quality SNPs and individuals in the dataset (770 SNPs and 11 individuals were removed at 
this step). Second, we made our filtering tighter. We applied the 0.02 threshold to exclude SNPs and individuals 
with less than 0.02 call rates (17,636 SNPs and no one was removed). Third, individuals with discrepancies in 
their recorded sex and gender determination were eliminated based on the X chromosome (no sex discrepancy 
was observed). Fourth, to maintain the study’s power, it is recommended to ignore SNPs with low minor allele 
frequency (MAF), e.g., rare variants. The SNPs with MAFs lower than 0.05 were removed (72,500 SNPs were 
excluded). Next, markers that deviated from the Hardy–Weinberg equilibrium (HWE) assumption were excluded 
by the p-value of 1e−6 (1125 SNP markers were removed). Next, individuals who deviated from ± 3SD samples’ 
heterozygosity rate mean were removed (317 individuals were removed). Finally, we checked for population 
stratification using principal component analysis (PCA) via R software’s SNPRelate  package19. After pruning for 
the (first/second) principal components via the multi-dimensional scaling method, the PCA plots are shown in 
Supplementary Fig. 2. The PCA plot reveals that subjects in a group are genetically similar to each other than 
another group. We captured the population stratification by entering 20 PCAs into the GWAS models. After all 
QC steps procedure, we used beagle 5.1 (version: 18May20.d20) software to impute missing  genotypes20. Ulti-
mately, the analysis was implemented on 13,785 individuals with 546,339 genetic markers.

Statistical analysis. Model selection. We have applied multiple linear regression model, including age, 
sex, and BMI, as fixed factors for lipid profile traits. The stepwise approach, which is a combination of the 
forward and backward selection, considered all three above covariates to be included in the predictor model 
for HDL-C, LDL-C, TC, and log transformation of TG (to control high skewness). Therefore, the phenotype 
prediction study has been done with SNP markers as random effects and age, sex, BMI, and the first 20 principal 
components as fixed effects.
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GBLUP. A mixed model was used as:

where y is defined as the vector of observed phenotypes, yi , with i = 1, . . . , n ( n = number of subjects), β indi-
cates the vector of fixed effects (age, sex, and BMI), X is a design matrix relating the fixed effects to each indi-
vidual, u ∼ N(0, Iσ 2

u ) indicates a vector of SNP effects with a variance of σ 2
u , I is a square n× n identity matrix. 

ε ∼ N(0, σ 2
ε ) is the residual vector where σ 2

ε  indicates the variance of residuals. Z is a matrix of genotypes that 
indicates the number of reference allele copies (coded as 0,1and 2). If we transform the matrix Z to its standard-
ized form, noted by W, we would have the following equation:

with the variance of

in which W is a matrix that its ijth(ith individual and jth SNP) element is wij = (zij − 2pj)/
√

2pj(1− pj) , that 
pj shows the frequency of jth SNP (j = 1, …, k). Regarding our objectives, which is the aggregation of SNPs’ effects 
on the phenotype, if we define n × 1 vector of g total genetic effects of the individuals, we have the Eq. (2) math-
ematically equal to:

With the variance of.

Note that A = WW
′

/K  can be defined as the Genomic Relationship Matrix (GRM) between individuals. 
Based on the estimated GRM from entire SNPs, we can estimate the phenotypic variance explained by all the 
SNPs ( σ 2

g  ) as well as residual variance (σ 2
ε) by the restricted maximum likelihood (REML) method using GCTA 

software, which is applying the average information (AI) method to initiate its iterations.
Therefore, we can have the best linear unbiased prediction (BLUP) of the whole SNPs’ effects for all individu-

als [ ̂g  in Eq. (3)]. Straightforwardly, we can have the estimation of each SNPs’ effect based on Eqs. (2) and (3). 
In fact, having ĝ  , the BLUP of u ( ̂u) can be found with the following equation:

We know that ûj is the coefficient of wij . So to have an estimation of SNP effect corresponded to zij it is enough 
to transform it by û∗j = ûj/

√
2pj(1− pj) . The BLUP effects that are achieved by GCTA can be used to gain the 

genetic value of the individuals for a given phenotype in a matched validation or test set, which means 
ĝtest = wtest û . This feature provides us with the prediction of genetic value or an individual’s risk to disease 
(polygenic risk score) in complex traits by using the PLINK version 1.9 scoring approach in a test  dataset15.

GRM calculation. Among various approaches that calculate GRM, in this study, we applied the method pre-
sented by  Yang8. Genomic similarities between ith and i′th individuals with entire SNPs can be defined as below. 
In the following formula Aii

′ indicates the similarity between ith and i′th individuals in the jth SNP, so with 
summation on j we can capture the entire genomic resemblance between every two cases. Thus, when i  = i′:

Similarly, when i = i′:

where zij indicates the observed genotype of jth SNP for ith cases (coded as 0, 1, and 2 according to the number 
of copies of reference allele), and pj is the frequency of jth SNP.

Proposed SNP selection strategy. SNPs have been subsetted to calculate the GRM and have been applied 
for the subsequent prediction procedure based on GWAS results (considering 20 PCs) based on two viewpoints: 
First, the extraction of previously reported SNPs in association studies for the desired traits; Second, the most 
significant SNPs were extracted, which were identified by GWAS’s construction on our dataset for each trait.

SNP selection based on previous findings. We have extracted associated recorded genes for HDL-C, LDL-C, 
TC, and TG, accessible on the GWAS Catalog database ( https ://www.ebi.ac.uk/gwas)5. The entire SNPs were 
extracted within the identified genes and ± 10 kbp extended at both sides of the genes to control regulatory 
regions. Our findings comprised subsets of 15,910, 8796, 8935, and 14,158 SNPs within genes and 17,929, 10,299, 

(1)y = Xβ + Zu+ ε,

(2)y = Xβ +Wu+ ε,

var(y) = WW
′

σ 2
u + Iσ 2

ε ,

(3)y = Xβ + g + ε

var(y) = Aσ 2
g + Iσ 2

ε
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10,549, and 16,192 SNPs when extended ± 10 kbp at both sides of the genes included for HDL-C, LDL-C, TC, 
and TG, respectively. The detailed information for each trait is available in Supplementary File 1.xlsx.

SNP selection based on performing GWAS. According to this approach, after performing an association analy-
sis, the SNPs were ranked based on their p-values. The SNPs were extracted from subsets of the top 1%, 5%, 
10%, and 50%. These subsets contain 1%, 5%, 10%, 50% of the entire SNPs with the lowest p-value, respectively. 
Subsets of the top 1%, 5%, 10%, and 50% included 5464, 27,327, 54,641, and 273,213 SNPs, respectively. The 
procedure was carried out for HDL-C, LDL-C, TC, and TG.

Checking accuracy. 10-repeated tenfold Cross-validation (CV) was conducted to evaluate the performance of 
the proposed approaches. In each repeat, we randomly divided individuals into ten subsamples. Each subsample 
was considered as the validation set and others as a discovery set. The process followed until every ten subsets 
were placed in the validation set for exactly one time. The SNPs’ effect sizes, which were estimated based on the 
discovery set, were used to calculate individuals’ whole-genome risk prediction in the validation set, which were 
not involved in estimating SNPs’ effect sizes. The entire process was repeated ten times to reduce the variance 
of prediction accuracy. The evaluation was based on the correlation between genetic values and adjusted phe-
notypes (sex, age, and BMI). The average CV-correlation is the index to compare the performance of different 
subset selection strategies and the model with entire SNPs included. In addition, we have randomly selected an 
equal number of SNPs to form subsets in order to evaluate the performance of the corresponding selected sub-
sets. The schematic workflow for the analysis step is summarized in Supplementary Fig. 3.

Ethics approval and consent to participate. The local ethics committee approved this study at 
Research Institute for Endocrine Sciences; Shahid Beheshti University of Medical Sciences (Research Approval 
Code: 98104 & Research Ethical Code: IR.SBMU.Endocrine.REC.1398.121). In this study, all participants pro-
vided written informed consent for participating in the study. The research has been performed in accordance 
with the Declaration of Helsinki.

Results
Basic phenotypes information. Supplementary Table 1 contains the basic characteristics of participants 
for lipid profile traits. The number of observed phenotypes is slightly different, and the mean difference between 
men and women for BMI and phenotypes (HDL-C, LDL-C, TC, and TG) is significant (p < 0.001). Supplemen-
tary Table 2 represents the linear regression models’ results for the selected fixed covariates for HDL-C, LDL-C, 
TC, and TG. As it shows, it can be observed that all considered covariates (Age, BMI, and Sex) are significantly 
associated with traits.

Prediction accuracy. The prediction accuracy for each lipid profile trait obtained from the gBLUP model 
using the entire SNPs and subsets of the top SNPs achieved from GWAS on our dataset (SNPs extracted to 
form subsets of the top 1%, 5%, 10%, and 50%) and subsets of SNPs based on the previous GWAS are visual-
ized in Fig. 1. Here, the average CV-correlation result based on tenfold 10-repeat between genetic prediction 
and adjusted phenotype (for age, sex, and BMI) is reported as the accuracy index. All correlation coefficients 
in the two groups (selected and random groups for all six subsets) were highly significant (< 0.000001). The 
highest prediction accuracy (dashed lines) was achieved when the entire SNPs were included for each trait; 
HDL-C (r = 0.325), LDL-C (r = 4.16), TC (r = 0.260), and TG (r = 0.290). The lowest prediction accuracy was also 
achieved for each trait, HDL-C (r = 0.237), LDL-C (r = 0.162), TC (r = 0.175), and TG (r = 0.218) when subsets of 
associated SNPs from previous GWAS were used.

As Fig. 1 shows, selected subsets’ accuracy is compared with randomly selected SNPs with an equal SNP 
number. The surprising result is that, in all traits, for the first two subsets (1% and 5%), selected SNPs’ accuracy 
is substantially more than randomly selected SNPs. It demonstrates that the small number of large-effect SNPs’ 
prediction accuracy is at least the same as all SNPs.

However, the accuracy of prediction increased as the number of SNPs in the subsets increased. Although the 
entire SNPs in each trait had the highest prediction accuracy, the differences between selected SNP subsets (the 
top 5%, 10%, 50% subsets) were comparatively small. Comparing the prediction in HDL-C, LDL-C, TC, and TG 
based on the GWAS subsets, the top 50% GWAS SNPs showed the highest prediction accuracy.

As is shown, roughly all selected SNPs based on GWAS subsets indicate more accuracy than randomly selected 
subsets except for the prediction accuracy difference on top 50% GWAS SNPs. At this point, randomly selected 
SNPs have better prediction accuracy than selected SNPs, but the difference is not significant. In roughly all 
traits, subsets with SNPs based on conducted GWAS showed significantly more prediction accuracy than subsets 
with SNPs based on previous GWAS. However, it may be due to the fact that previous GWAS subsets were less 
accurate than the conducted GWAS subset. For this reason, we compared the performance of conducted GWAS 
with an equal number of SNPs for each subset. On the other hand, the relatively high accuracy could be mainly 
due to using related individuals and existing patterns of overall relatedness and, consequently, existing relative 
patterns of linkage disequilibrium. It has been shown that genomic prediction models make better predictions 
using populations of related individuals with high linkage  disequilibrium9.

Annotation and genes. Of 546,339 SNPs, 56.94% were in the intronic region, 23.89% were in the inter-
genic region, and the other SNPs were in the rest of the annotated categories (downstream, exonic, non-coding, 
upstream, and UTR). In the Supplementary Table 3, we demonstrated the annotation of shared SNPs between 
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each repeated fold (10-repeated tenfold) for different subset selections. It showed that almost half of the shared 
SNPs are in the intronic region of genes for each of the lipid profile traits, HDL-C (55.65% for top 1% SNPs, and 
56.89% for top 50% of the SNPs), LDL-C (51.34% for top1% and 57.44% for top 50% of SNPs), TC (54.76% for 
top 1% of SNPs and 57.31% for top 50% of SNPs), and TG (54.74% for top 1% of SNPs and 57.48% for top 50% 
of SNPs). The second-highest number of the shared SNPs are in intergenic regions, as the annotation in the case 
of the top 1% of SNPs, is 18.34% for HDL-C, 22.63% for LDL-D, 18.33% for TC, and 18.95% for TG. However, 
the lowest number of SNPs are for the non-coding regions, as in HDL-C, the number of shared SNPs is 1.92% 
for the first subset (top 1%), 1.22% for LDL-C, 0.7% for TC, and 1.47% for TG.

For each trait, we selected the 100 most significant SNPs with a p-value from 1.45e−110 to 5.12e−06, in which 
some SNPs are common between traits. These variants for four traits included 306 unique SNPs and 81 related 
genes. Readers can find out more detailed information about these genes in Supplementary File 2.xlsx. Based 
on the GWAS catalog  database5, they were associated with 2387 traits, and more than 50% of them (1244 traits) 
are reported to be associated with lipid profile traits.

Heritability. Figure 2 shows the heritability obtained from shared SNPs between different repeated folds of 
selected SNPs in each approach (the number of shared SNPs are displayed for each approach in Supplementary 
Table  3). We found that the heritability achieved by the shared top 50% approach (
h2HDL−C(50%) = 0.602, h2LDL−C(50%) = 0.544, h2TC(50%) = 0.542, h2TG(50%) = 0.544

)
 has higher heritability not 

only compared to other subset selections (top 1%, 5%, and 10%) but also compared to the total SNPs included 
(h2HDL−C(total) = 0.495, h2LDL−C(total) = 0.388, h2TC(total) = 0.390, h2TG(total) = 0.431) . Findings indicated that 
even though the number of SNPs used for heritability analysis was considerably low, heritability measures were 
relatively high.

Figure 1.  Distribution of CV-correlation between genetic prediction and adjusted phenotypes for HDL-C, 
LDL-C, TC, and TG. The average CV-correlation result based on tenfold 10-repeat between genetic prediction 
and adjusted phenotype (for age, sex, and BMI) is reported as the accuracy index. The dashed lines show the 
Prediction Accuracy obtained from the entire SNPs’ inclusion, which is almost the highest accuracy in most 
cases. The black boxes show the distribution of the tenfold 10-repeat cross-validation accuracy of selected SNPs 
based on proposed approaches. The gray boxes show the distribution of accuracy of the same cross-validation 
setting for the subsets of corresponding equally randomly selected SNPs. Subsets of the top 1%: 1% of the entire 
SNPs with the lowest p-value; Subsets of the top 5%: 5% of the entire SNPs with the lowest p-value; Subsets 
of the top 10%: 10% of the entire SNPs with the lowest p-value; Subsets of the top 50%: 50% of the entire 
SNPs with the lowest p-value; preGWAS: reported associated SNPs extracted from GWAS Catalog database; 
preGWAS_10kbp: within the identified genes and ± 10 kbp extended at both sides of the genes to control 
regulatory regions. All correlation coefficients were significant (< 0.000001). The highest prediction accuracy 
(dashed lines) was achieved when the entire SNPs were included for each trait. The lowest prediction accuracy 
was also achieved for each trait when subsets of associated SNPs from previous GWAS were used. For the first 
two subsets (1% and 5%), selected SNPs’ accuracy is substantially more than random SNPs selected. Comparing 
the prediction in HDL-C, LDL-C, TC, and TG based on the GWAS subsets, the top 50% GWAS SNPs show the 
highest prediction accuracy.
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Discussion
This study investigated GWAS’s incorporation in genomic prediction, applying the gBLUP method and gene-
based heritability analysis on lipid profile traits (LDL-C, HDL-C, TC, and TG) using the genomic dataset of the 
Iranian population, TCGS  project14. Recent studies have determined factors that affect the prediction accuracy 
of WGR, including (i) relatedness; the existence of relatives in testing and training data increases prediction 
 accuracy21, (ii) traits’ features; the more heritable the traits are, the better performance prediction  is22,23, (iii) 
the genetic architecture of complex traits, e.g., the number of QTLs and their  distributions24,25, (iv) LD between 
markers and QTLs; under perfect LD between markers and QTLs we can expect to approximately predict the 
full heritability of under-study  traits26, (v) sample size; increasing the sample size can, possibly, close the gap 
between common SNP’s heritability and the prediction  R227,28. However, the ability to catch more proportion of 
genetic variance explained by molecular markers is not necessarily translated into high prediction accuracy. For 
instance, a poor predictive ability for human height, as a trait with relatively high  heritability8 achieved using 
genomic  information25.

Many studies have compared various methods with different assumptions and different shrinkage approaches. 
Furthermore, Roudbar et al. showed that applying multi-omics data (integration of SNP markers and methyla-
tion sites) can increase the accuracy of the genomic prediction by comparing various  methods12. We believe 
that controlling the factors mentioned above, which affect genetic prediction and are previously proven through 
previous studies, is very difficult. This is mainly due to the limitations and complex traits we are facing in human 
studies in practice. For these reasons, we tried to introduce a method to capture the most predictive SNPs, which 
is practical in most populations.

The high potential of GWAS findings in the clinical application, such as reported risk prediction, disease 
subtyping or classification, drug development, and drug  toxicity4, encouraged scholars to apply association 
studies in prediction models, which is known as genetic risk score (GRS). GRS has shown promising results 
in the identification of high-risk individuals and families of CVD and  dyslipidemia29,30, which variously forms 
from simplest versions, like allele count scores and weighted scores, to more sophisticated versions, including 
 imputation31,32 and combining environmental and genetic  effects33. Recently, researchers went further and tried 
to find predictive associated SNPs more meaningfully. For example, a conducted study on the Korean population 
selected the significant SNPs throughout the entire tenfold cross-validation sets to calculate weighted GRS on a 
discovery  set34. Although their results on cholesterol ratios showed a good prediction accuracy, missing herit-
ability is still an  issue6,8,35,36, resulting in dismissing strong but not significantly associated SNPs. Motivated by 
this, we tried to introduce a method that benefits from the promising results of association studies and captures 
the possible genetic variation.

In this study, we used top SNPs based on the constructed GWAS results on our data set and previous stud-
ies. We showed that the conducted GWAS results on our dataset outperform the extracted associated SNP in 
previous studies. We assumed that this might be due to the different traits’ genomic architecture; we can extract 
truly influential markers by performing GWAS on our dataset. The comparison of achieved results in predic-
tion accuracy of the top SNPs ( 1, 5, 10, and 50 percent top SNPs) conveyed comparable prediction accuracy 
between the inclusion of subsets of the SNPs model and the inclusion of the entire, still statistically significant, 
SNPs model. Among subsets, selected top 50 percent SNPs in all traits showed the nearest prediction accuracy 
to the full models, which is due to the inclusion of a larger number of trait-related SNPs in the model. The 
importance of the number of SNP markers has already been investigated on HDL-C and LDL-C by comparing 
genetic prediction methods (from simple genetic risk score to different, more complex models) on a cohort 
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Figure 2.  Heritability of lipid profile traits using the shared SNPs in the different repeated fold for different 
subset selection approaches. Heritability achieved by the shared top 50% approach has higher heritability than 
other subset selections (top 1%, 5%, and 10%) and than the total SNPs included.
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 study37. Helen Warren et al. concluded that the essential factor for the prediction model is the number of SNP 
markers included in the prediction model.

We found what we called “truly influential SNPs” by extracting shared SNPs in each repetition of performing 
GWAS, most of which were from the intronic region. The heritability of these subsets of SNPs showed interesting 
results. The relatively small number of SNPs in each strategy could capture marked genotypic variance. While 
including entire SNPs achieved gene-base heritability of 0.49, 0.388, 0.39, and 0.43 for HDL-C, LDL-C, TC, and 
TG, respectively, including the top 50 percent of SNPs achieved gene-based heritability of 0.602, 0.544, 0.542, 
and 0.544 for HDL-C, LDL-C, TC, and TG. These heritability improvements were not due to capturing the 
more genotypic variance, which increases inevitably by elevating the number of associated SNPs, but due to the 
reduction of the phenotypic error variance. In other words, reducing SNP markers to the most significant SNPs 
brings about capturing much of the genotypic phenotype variance and reducing the phenotypic error variance.

In summary, we cannot overlook the association studies’ promising accomplishments in recent research 
regarding genomic prediction. However, including only, the statistically significant SNPs results in missing a 
great deal of information in genomic prediction and estimation of the gene-based heritability. We cannot expect 
to achieve much prediction accuracy by including significant SNPs based on previous studies. Investigating 
gBLUP accuracy on lipid profile traits showed that the top 1, 5, 10, and 50% SNPs based on constructed GWAS 
on our dataset achieved relatively accurate predictions. The highest prediction accuracy was achieved when 
comparatively more SNPs were involved. Analysis of gene-based heritability of lipid profile traits showed that we 
can capture almost all of the genotypic phenotype variance and reduce its error variance by including a subset 
of the mostly true trait-related SNPs.

This study only tested a single additive genetic variant method to find the most informative SNPs. In contrast, 
quantitative trait variability is commonly affected by multiple additive and non-additive sources such as epistatic 
interactions and dominant  effects38,39. The utilization of statistical approaches that includes two-way interaction 
and dominant effects could lead to finding more informative SNPs to increase prediction accuracy, which can 
be found as a study topic for future research. Also, we suggest that other risk prediction methods can be used 
as a substitute for the gBLUP method, re-analyze our strategy, and compare their results with each  other40–44.

Data availability
The datasets used and analysed during the current study are available from the corresponding author on reason-
able request.
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