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A B S T R A C T   

Background: This study aims to capture the 3D shape of the human skull in a healthy paediatric population (0–4 
years old) and construct a generative statistical shape model. 
Methods: The skull bones of 178 healthy children (55% male, 20.8 ± 12.9 months) were reconstructed from 
computed tomography (CT) images. 29 anatomical landmarks were placed on the 3D skull reconstructions. 
Rotation, translation and size were removed, and all skull meshes were placed in dense correspondence using a 
dimensionless skull mesh template and a non-rigid iterative closest point algorithm. A 3D morphable model 
(3DMM) was created using principal component analysis, and intrinsically and geometrically validated with 
anthropometric measurements. Synthetic skull instances were generated exploiting the 3DMM and validated by 
comparison of the anthropometric measurements with the selected input population. 
Results: The 3DMM of the paediatric skull 0–4 years was successfully constructed. The model was reasonably 
compact - 90% of the model shape variance was captured within the first 10 principal components. The 
generalisation error, quantifying the ability of the 3DMM to represent shape instances not encountered during 
training, was 0.47 mm when all model components were used. The specificity value was <0.7 mm demonstrating 
that novel skull instances generated by the model are realistic. The 3DMM mean shape was representative of the 
selected population (differences <2%). Overall, good agreement was observed in the anthropometric measures 
extracted from the selected population, and compared to normative literature data (max difference in the 
intertemporal distance) and to the synthetic generated cases. 
Conclusion: This study presents a reliable statistical shape model of the paediatric skull 0–4 years that adheres to 
known skull morphometric measures, can accurately represent unseen skull samples not used during model 
construction and can generate novel realistic skull instances, thus presenting a solution to limited availability of 
normative data in this field.   

1. Introduction 

In silico medicine refers to the development and use of computa-
tional models that realistically mimic and simulate patients’ biology and 
medical interventions in a virtual environment (Pappalardo et al., 
2019). These models aim at explaining diseases, supporting diagnosis 
and prevention, and predicting treatment outcomes, with the advantage 
that several therapy options and approaches can be simulated in the 
same virtual patient to personalise and optimise results. In silico medical 

modelling can complement medical device/drug development by 
reducing, refining or partially replacing the three traditional sources of 
evidence - bench testing, animal testing and human clinical trials - to 
establish device/drug safety and effectiveness, at significantly lower 
costs (Viceconti et al., 2021). This can be of particular benefit for those 
medical fields that focus on rare diseases, such as craniofacial syn-
dromes, where availability of data is limited, relevant animal models are 
lacking, enrolling large cohorts of real patients is unfeasible and the 
market is overall too small for the medical device/pharma industry to 
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heavily invest in R&D. 
To be valid and effective, in silico clinical trials still relay on cohorts 

of real, clinical data (Badano, 2021). However, collecting and anno-
tating large quantities of data to train and test the computational models 
is expensive and time-consuming, thus restricting the choice of evalua-
tion and modelling algorithms that can be applied. Ethical consider-
ations further limit the purposes for which patient datasets can be used. 
Conversely, generated synthetic data are easy to manipulate, fully user 
controlled and carry limited ethical concerns. The ability to generate 
new samples means that cohort size is not a limiting factor, overcoming 
statistical power issues and the burden of enrolling large cohorts of real 
patients (Faris and Shuren, 2017). 

3D morphable models (3DMMs) use advanced statistical methods 
applicable to a population of computational shapes to study and 
describe the population’s complex 3D shape features. First proposed by 
Blanz and Vetter (Blanz and Vetter, 1999; Booth et al., 2016) in 1999, 
3DMMs have proven adept at modelling complex shape structures such 
as the human face, head, hand and ear (Blanz and Vetter, 1999; Booth 
et al., 2016; Dai et al., 2018; Ploumpis et al., 2019; Dai et al., 2017; 
Zolfaghari et al., 2016; Khamis et al., 2015) despite limited input data. 
Paediatric skull models have also been constructed using 3DMMs, 
although the ability of these models to generate synthetic data has not 
yet been tested (Li et al., 2015; Kuwahara et al., 2020; Libby et al., 
2017). 

In this study, we present a scale-normalised 3DMM of the normal 
paediatric skull, 0–4 years of age, that can be used to generate novel 
synthetic skull shapes. The 3DMM is validated using both intrinsic 
3DMM characteristics and extrinsic anthropometric measures. 

2. Materials and methods 

2.1. Data and image processing 

The study cohort included 178 children (55% male) aged between 
0 and 48 months at time of computerised tomography (CT) scanning 
(20.3 ± 12.9 months). All CT scans were acquired at Necker Enfants 
Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France 
between 2011 and 2018, with indications for headache, epilepsy, or 
trauma assessment. Scans were considered eligible with DICOM-slices of 
≤1 mm with a minimum 150 slices. Two independent reviewers retro-
spectively checked the scans to include only studies which presented no 
structural abnormalities – no brain and bone tumours, skull fractures, or 
craniofacial anomalies – and with sufficient quality – no movement ar-
tefacts or low number of slices. 

The skull anatomy was reconstructed from the CT scans using 
thresholding in Mimics InPrint 3.0 (Materialise NV, Leuven, Belgium) 
and the generated mesh exported for further processing. A dimension-
less mesh template of fixed topology was used to place all skulls in dense 
correspondence. The skull meshes were first rigidly aligned with the 
mesh template using Procrustes registration before dense 

correspondence was achieved using a non-rigid iterative closest point 
algorithm (Amberg et al., 2007). A set of 29 anatomical landmarks was 
used for the rigid alignment and to guide the non-rigid iterative closest 
point process (Supplementary Material Table 1 and Fig. 1). The dataset 
included many samples with an open anterior fontanelle and varying 
levels of suture closure, as expected at this age. Thus, a “stiffness” factor 
was added to the template mesh in the region of the opening to facilitate 
the registration process and prevent inwards collapse of the template 
mesh in this region (Supplementary Material Fig. 2). 

The anthropometric linear measures by Waitzman et al. (1992) listed 
in Table 1 were automatically extracted for all reconstructed skull ge-
ometries using a new set of landmarks on the 3D template, as shown in 
Fig. 1. The Euclidean distance between given landmarks were 
computed, the mean and standard deviation for the population were 
calculated and the population mean size was added back to the measures 
for comparison with Waitzman et al. Supplementary Material provides 
information on how the mean and standard deviation were collated from 
the work of Waitzman et al. 

The skull meshes, aligned with the template, were placed in a 
straight, forward-facing position, to extract automatically the following 
traditional 2D morphometric skull distances: cephalic length (CL), width 
(CW), height (CH) and asymmetric transcranial lengths (AS1 and AS2). 
These measures were used to calculate the skull cephalic index (CI) as 
100 * (CW/CL), height index (HI) as 100 * (CH/CL) and oblique cranial 
length ratio (OCLR) as the ratio of the longer to the shorter transcranial 
length. The mean and standard deviations of the defined lengths and 

Fig. 1. Template skull mesh. Landmarks and distance definitions for the calculation of anthropometric skull measurements (Waitzman et al., 1992) from the frontal, 
inferior, sagittal and top view. CH = cranial height; CW = cranial width; CL = cranial length; AS = transcranial length. 

Table 1 
Anthropometric measures and definitions (Waitzman et al., 1992), with 
numbers referring to Fig. 1. R = right side; L = left side.  

Landmark Anthropometric 
measure 

Description 

0–1 Lateral orbital distance Distance between the mid-lateral points of 
the lateral orbital walls. 

2–3 Anterior inter-orbital 
distance 

Distance between the anterior points of the 
medial orbital walls, measured from 2 
points that are on the same axial level as 
points 0–1. 

4–5 Inter-temporal 
distance 

Distance between the most concave point on 
each temporalis groove. The points are on 
the same axial level as points 0–3. 

6–7 Inter-zygomatic 
buttress distance 

Distance between the most anterolateral 
corners of each zygomatic buttress. 

6–8 (R) 
7–9 (L) 

Zygomatic arch length 
R/L 

Distance between the most anterolateral 
corner of the zygomatic buttress and the 
insertion of the zygomatic arch into the 
squamous part of the temporal bone of the 
skull, placed on the most inferior point. 

10–11 Inter-zygomatic arch 
distance 

Distance between the most convex points on 
each zygomatic arch. 

12–13 Inter-coronal distance Distance between the 2 most lateral points 
on the coronal suture.  
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ratios were computed for the population and compared with those re-
ported by Waitzman et al. 

2.2. 3D morphable model 

The 3D mean anatomical skull shape for the population was 
computed based on all the densely registered meshes. PCA was applied 
to build the 3DMM and detect key contributors to 3D shape variability in 
the population. The first 5 principal components, representing the key 
3D shape features of the input population, were visualised as − 3SD to 
+3SD deformations from the mean shape. 

The 3DMM mean shape was validated via a 10-fold cross validation 
approach – to assure that the final mean shape was not overly influenced 
by adding or leaving out a specific subject – and using a geometric 
approach – to demonstrate that the 3D mean shape was representative of 
the study cohort (Bruse et al., 2017). For the 10-fold cross validation, the 
study population was divided randomly into 10 subsets or folds. The 
mean shape was then computed using 9 of the folds, until each fold had 
been omitted once. The mean and standard deviation vertex difference 
between the original 3D mean shape and cross validated shapes was then 
calculated. For the geometrical approach, the distances from Waitzman 
et al. (Table 1) and the additional 2D morphometric lengths and ratios 
measured from the 3DMM mean shape were compared to the mean 
values calculated from the input population; deviations <5% were 
considered acceptable for the mean shape to represent the population 
with a good approximation. 

The intrinsic characteristics of 3DMMs were evaluated with 
compactness, generalisation and specificity, as done in the literature 
(Blanz and Vetter, 1999; Booth et al., 2016). For compactness, the 
percentage of shape variation explained by the model was plotted versus 
the respective number of retained principal components. For general-
isation – a measure of the model ability to represent novel shape in-
stances not encountered during training – given the relatively small 
sample size, a leave-one-out strategy was adopted. To calculate the 
generalisation error for a sample in the test set at a given number of 
model principal components, the average Euclidean distance (AED) 
between the sample and its corresponding model projection was 
computed on a per-vertex basis: 

AED =

∑n
i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xi,A − xi,B

)
2 +

(
yi,A − yi,B

)
2 +

(
zi,A − zi,B

)
2

√

n  

with n = number of mesh vertices, and x, y, and z = Cartesian co-
ordinates of meshes A and B. The overall generalisation error at each 
principal component was then calculated as the mean per-vertex error 
over all meshes. For model specificity, which evaluates the validity of 
novel instances generated by the 3DMM, a leave-one-out system was 
also adopted. To measure the model specificity, 1000 synthetic skulls 
were randomly generated for each of the model principal components. 
The distance between each synthetic skull and its nearest neighbour in 
the test set was then calculated as the average Euclidean distance over 
all mesh vertices. 

Using the 3DMM, additional 1000 skull samples were randomly 
generated using all principal components. Meshes were synthesised by 
drawing shape vectors at random from a multivariate Gaussian distri-
bution about the model principal components. Traditional anthropo-
metric linear measures (Table 1 and additional lengths and rations) were 
extracted automatically as explained before for each of the synthesised 
skull samples, and mean and standard deviation of each of this metrics 
from the synthetic population were compared to those from the input 
population for validation purposes, using a two-tailed t-test. A value of 
0.05 was considered for statistical significance. 

2.3. Age and gender based shape changes 

For each of the registered skull meshes, the corresponding shape 

parameters were determined by projecting the skull instance into the 
latent shape space of the PCA model. This yielded a set of shape vectors, 
α = [α1, α2, …, αn], where n is the number of meshes and each αi is a 
representation of the corresponding mesh instance in the high- 
dimensional latent space of the PCA model. These shape vectors were 
then used to assess how age and gender influence the skull shape in the 
study cohort. A ten-fold cross validation schema was used in both cases. 

When the shape vectors were used for linear age regression, a root 
mean square error (RMSE) of 6.1 months and an R2 score of 0.77 were 
observed (Fig. 2). These results indicate that age can be inferred from 
skull shape with a reasonable degree of accuracy. Shape proved to be a 
poor predictor of gender, however, and a support vector machine 
trained to classify instances as either male of female achieved an accu-
racy of 60.1% (Fig. 2). Due to the uneven gender distribution, this is only 
slightly better than the maximum chance accuracy of 54.5%, and it is 
unlikely that this can be attributed to differences in skull shape. 

3. Results 

The mean and standard deviation of the selected population for the 
extracted anthropometric measures are shown in Table 2 where they are 
compared with the data from Waitzman et al. (1992), showing similar 
values and thus validating the selected cohort as representative of the 
0–4-year normative population. The greatest difference between the two 
datasets was observed for the intertemporal distance: as growth in the 
skull region is rapid for children in the assessed age range, some of the 
measurement differences may be attributed to the different age distri-
butions of the two study populations (Supplementary Materials). 

The mean shape and the first five principal modes of shape variation 
are shown in Fig. 3 from three different viewpoints: aerial, front, and 
side. The first principal component, accounting for 37.58% of the shape 
variation in the population (Fig. 4a), captures clear differences in overall 
skull length, width and height, from a globally rounded shape to a more 
elongated in the antero-posterior direction, narrower and less tall in the 
posterior portion skull. The second component highlights shape varia-
tions localised mainly in the frontal portion of the skull, with differences 
in midfacial width compared to forehead height proportion, and orbital 
size, albeit changes in skull length are also still visible. The third and 
fourth components show asymmetrical shape differences in the posterior 
portion of the skull. The fifth component highlights more subtle differ-
ences in the skull height anterior/posterior proportions, orbital size and 
shape, and protrusion of the mid-face. 

The 10-fold cross-validation confirmed that removing arbitrary 
subjects from the study population did not significantly impact the 
computed mean shape: the mean vertex distance between original mean 
shape and cross validated shapes was 0.13 ± 0.10 mm. The computed 
3DMM mean shape showed good agreement with the mean of the study 
population across all parameters (Table 2). The only percentage differ-
ence between the cohort mean and the computed mean shape >1% was 
observed for OCLR (2.0%), indicating that the computed mean shape is 
slightly more symmetric in shape that the population average. Thus, the 
3DMM mean shape was considered validated and representative for the 
study cohort. 

Intrinsic model characteristics are shown in Fig. 4. With 90% of the 
model shape variance captured within the first 10 principal components, 
and 95% of the variance captured within the first 20 principal compo-
nents (Fig. 4a), the model was considered reasonably compact. The 
generalisation error was 1 mm when 15 principal components were 
included, and 0.47 mm when all model components were utilised 
(Fig. 4b), indicating that the model generalised well to unseen skull 
instances. Specificity values of less than 0.7 mm (Fig. 4c) demonstrated 
that novel skull instances generated by the model are realistic. 

The measures from the synthetic cohort (n = 1000) generated using 
all 3DMM components show good agreement with the corresponding 
values for the study cohort. The two-tailed t-test indicates that the null 
hypothesis of equal means can be accepted for all parameters, apart from 
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the lateral orbital distance and the anterior inter orbital distance 
(Table 2). The mean values for both real and synthetic data were very 
close, however, and differences between the real and synthetic pop-
ulations can likely be attributed to the difficulty of accurately and 
consistently localising these landmarks. Smaller standard deviations 
were observed for the generated samples; this can likely be attributed to 
the omission of size effects from the model. 

4. Discussion 

This study presents a 3DMM of the paediatric skull (0–4 years), 
constructed from 178 normal CT scans. The model is a 3D reference of 
the normative skull shape for this age population and can be used to 
generate valid paediatric skull instances, as an alternative to the limited 
availability of CT images from healthy children, thus opening doors for 
many applications where access to data is currently a hurdle. 

Human head size and shape are constantly developing throughout 
lifetime due to numerous anatomical and functional factors including 
skeletal growth, brain and sinus development, and airway volume in-
crease, particularly pronounced during early childhood. The pace of 
these skeletal changes, coupled with the difficulties of CT scanning 
healthy children due to the risks associated to ionizing radiations, makes 
collection of normative 3D skull data challenging for this group of young 
age individuals. Current craniomaxillofacial clinical practice leverages 
normative 2D facial anthropometric and cephalometric measurements 
and growth curves from literature, such as those presented in the sem-
inal work by Waitzman et al. - the most comprehensive literature 
available on craniofacial skeletal measures in a paediatric healthy 
population - to assess deviation from normal, diagnose craniofacial 
diseases, and plan and evaluate treatment outcomes. However, these 
approaches remain limited as based on 2D and linear measurements 
between spare anatomical landmarks that cannot capture the full 
complexity of the head shape in 3D. Conversely, 3DMMs such as that 
presented in this study, can automatically transfer hundreds of corre-
sponding landmarks from a generic template onto each 3D subject- 
specific skull reconstruction, thus rapidly extracting full 3D informa-
tion on the individual patient skull shape, and fostering advanced 3D 
analysis and in silico medicine. 

To validate the proposed 3DDM, the healthy cohort selected was 
compared to the normative population presented by Waitzman et al. 
(1992). Traditional anthropometric linear measures extracted from the 
selected population compared well with those published by Waitzman 
et al., showing that the selected group was a good representation of the 
1–4-year-old healthy population. The 3DMM principal components, in-
dependent of the overall head growth, described the main shape varia-
tions encountered in the population, capturing overall vault shape 
changes, but also more subtle differences in the skeletal structure of the 
face. The 3DMM and the ability to generate synthetic skull instances 
were validated both methodologically (compactness, generalisation, 
and specificity) and by comparison of the results (3DMM mean shape 
and synthetised shapes) with the anthropometric measures of the input 
population. A strong agreement on all assessed skull measures was 
observed in both cases, thus confirming that the constructed 3DMM is 
robust, captures average ‘expected’ skull shapes and statistical varia-
tions in the given population, and can be useful to generate valid 

Fig. 2. a) Correlation between predicted age in months and age at time of scan when all 10 PLS modes were used for regression during a 10-fold cross-validation. The 
green line indicates the line of best fit between the ground truth data and the prediction. The red line is the line of equality. b) Confusion matrix for gender prediction 
during a 10-fold cross-validation. 

Table 2 
Skull anthropometric measures reported by Waitzman et al. (1992), and 
extracted from the selected population, from the 3DMM mean shape and from 
the generated synthetic cases.  

Anthropometric 
measure 

Waitzman 
et al. [n =
166] 

Population 
[n = 178] 

Mean shape 
(% deviation 
from 
population 
mean) 

Synthetic 
samples 
(population 
vs. synthetic p 
values) [n =
1000] 

Lateral orbital 
distance 

74.18 ±
5.71 

78.12 ±
5.33 

78.77 
(− 0.83) 

78.96 ± 3.54 
(0.044) 

Anterior inter 
orbital 
distance 

18.30 ±
1.93 

15.91 ±
1.52 

16.06 
(− 0.92) 

16.16 ± 1.52 
(0.046) 

Intertemporal 
distance 

64.80 ±
5.21 

75.97 ±
5.24 

76.61 
(− 0.84) 

76.77 ± 3.80 
(0.054) 

Inter-zygomatic 
buttress 
distance 

70.20 ±
6.35 

71.73 ±
6.58 

72.14 
(− 0.57) 

72.25 ± 2.25 
(0.296) 

Zygomatic arch 
length 

42.64 ±
4.78 

38.04 ±
4.76 

38.05 
(− 0.03) 

38.05 ± 1.88 
(0.982) 

Inter-zygomatic 
arch distance 

86.86 ±
8.07 

92.75 ±
8.82 

93.24 
(− 0.53) 

93.34 ± 2.64 
(0.379) 

Inter-coronal 
distance 

101.11 ±
8.87 

104.53 ±
8.42 

105.31 
(− 0.74) 

105.49 ± 5.09 
(0.143) 

CL 157.79 ±
14.82 

151.77 ±
15.73 

152.01 
(− 0.15) 

152.35 ± 6.51 
(0.631) 

CW 121.93 ±
10.09 

128.43 ±
10.60 

128.38 
(0.04) 

129.79 ± 6.71 
(0.102) 

CH – 131.05 ±
11.24 

130.56 
(0.37) 

132.18 ± 5.03 
(0.187) 

AS1 – 143.24 + −

12.41 
143.889 
(− 0.453) 

144.36 ± 5.60 
(0.239) 

AS2 – 141.85 + −

12.53 
142.232 
(− 1.437) 

142.75 ± 5.60 
(0.346) 

CI – 85.04 ±
6.34 

84.46 (0.68) 85.38 ± 6.25 
(0.500) 

HI – 86.60 ±
4.25 

85.89 (0.82) 86.88 ± 4.16 
(0.422) 

OCLR – 1.03 ± 0.03 1.01 (2.00) 1.03 ± 0.03 
(0.503)  

E. O’ Sullivan et al.                                                                                                                                                                                                                            



Bone Reports 15 (2021) 101154

5

synthetic cases. 
Using this normative 3D model, the skull CT data from new patients 

could be automatically compared to evaluate normal and abnormal skull 

shape features, for diagnostic purposes and to potentially plan person-
alised surgical treatments of craniomaxillofacial syndromes when 
needed (Farkas et al., 1992; Mauler et al., 2017; Knoops et al., 2019; 

Fig. 3. Visualisation of the paediatric skull model: mean shape, μ, and first five principal components, visualised as either an addition or a subtraction from the mean 
shape with a weight of ±3σ, where σi is the standard deviation of the i-th principal component. Each model instance is shown from the top, frontal and sagittal view. 

Fig. 4. a) Compactness; b) generalisation; and c) specificity of the paediatric skull model.  
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Staal et al., 2015; Fuessinger et al., 2018). Craniofacial injuries due to 
falls, common among young children, and various craniofacial defects 
could be treated using automatically designed implants, by leveraging 
synthetic skull data to train the design algorithm, thus making the 
process less operator dependent and time consuming (Li et al., 2021). To 
facilitate the development of new model analysis techniques and clinical 
treatments by research groups without direct access to medical data, the 
normative 3DMM and synthetically generated new instances could 
support in silico medicine and clinical trials for the design of surgical 
devices and implants. Non-medical industries could also benefit from 
the normative paediatric skull 3DMM, for example for smart develop-
ment of more protective safety helmets and for building more relevant 
dummies to facilitate accurate simulation and testing of car accidents. 

With an eye on future use and model improvement, the authors 
initiated the construction of a mandible model and aim to combine the 
proposed skull model with soft tissue 3DMMs of the face. This may 
contribute to refining surgical planning tools, more powerful craniofa-
cial diagnosis algorithms and postoperative outcome assessment. 

5. Conclusions 

A paediatric 3D skull model based on normative data was presented 
and holds future applications for the synthesis of novel skull instances 
which may have value for in silico medical applications. In medical 
studies where limited patient data is available, this model has the po-
tential to help achieve statistical power by providing an unlimited data 
source that is free of ethical requirements, flexible, and easy to manip-
ulate. It can assist in the development and support the design of surgical 
instruments and medical devices, such as helmet shapes for those with a 
distorted head shape. 
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