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Abstract

The accumulation of protein damage is one of the major drivers of replicative ageing,

describing a cell’s reduced ability to reproduce over time even under optimal conditions.

Reactive oxygen and nitrogen species are precursors of protein damage and therefore

tightly linked to ageing. At the same time, they are an inevitable by-product of the cell’s

metabolism. Cells are able to sense high levels of reactive oxygen and nitrogen species and

can subsequently adapt their metabolism through gene regulation to slow down damage

accumulation. However, the older or damaged a cell is the less flexibility it has to allocate

enzymes across the metabolic network, forcing further adaptions in the metabolism. To

investigate changes in the metabolism during replicative ageing, we developed an multi-

scale mathematical model using budding yeast as a model organism. The model consists of

three interconnected modules: a Boolean model of the signalling network, an enzyme-con-

strained flux balance model of the central carbon metabolism and a dynamic model of

growth and protein damage accumulation with discrete cell divisions. The model can explain

known features of replicative ageing, like average lifespan and increase in generation time

during successive division, in yeast wildtype cells by a decreasing pool of functional

enzymes and an increasing energy demand for maintenance. We further used the model to

identify three consecutive metabolic phases, that a cell can undergo during its life, and their

influence on the replicative potential, and proposed an intervention span for lifespan control.

Author summary

Understanding the complex and multi-scale nature of ageing requires the integration of

key biological process and ageing hallmarks occurring on different scales. Hallmarks of

ageing are conserved across all kingdoms of life and to elucidate the mechanisms of ageing

we turn to unicellular organisms like yeast Saccharomyces cerevisiae. In this work, we
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present a comprehensive, multi-scale model of yeast replicative ageing integrating metab-

olism, nutrient signalling and damage accumulation. The proposed model demonstrates

the relevance of the regulatory layer for achieving average lifespans and generation times

of yeast-wild type cells. Further, we show that metabolic phases are tightly linked to the

replicative lifespan and we propose that enzyme perturbation in the specific phase can

result in prolonged or shorten lifespan.

1 Introduction

Cellular ageing is a complex multifactorial process affected by an intertwined network of effec-

tors such as protein translation, protein quality control, mitochondrial dysfunction, and

metabolism. Due to the conserved nature of hallmarks of ageing [1] unicellular organisms,

such as the yeast Saccharomyces cerevisiae, have served as model organisms to gain deeper

understanding of their synergistic effects and consequently mechanisms of ageing on a cellular

level [2–6].

Loss of proteostasis is recognised as one of the hallmarks of replicative ageing [1, 7, 8], and

is linked to the accumulation of damaged proteins over time [9, 10]. In yeast, a driving mecha-

nism for the growing damage burden is the asymmetric distribution of damaged components

between mother and daughter cell [10, 11]. An important precursor of protein damage is oxi-

dative stress that is shown to increase with age [12–14] and is a byproduct of metabolic activity

in the cells’ mitochondria [14–17]. Reactive oxygen and nitrogen species (ROS/RNS) are one

of the most well-studied byproducts to which cells are constantly exposed even under normal

conditions [18, 19]. The ability of cells to maintain protein homeostasis in response to intrinsic

cellular and environmental factors, which accumulate over time, is one of the main determi-

nants of lifespan [20]. Nutrient-sensing pathways are main contributors to the maintenance of

the proteome during ageing. When inactivated, they affect a multitude of downstream pro-

cesses, resulting in the cellular loss of proteostasis. Thus, they are one of the earliest events dic-

tating ageing progression. To combat the loss of proteostasis associated with cellular ageing,

cells have multiple stress-responsive mechanisms. For instance, Msn2 and Msn4, as general

stress response proteins, as well as Yap1 and Skn7, as specific oxidative stress response pro-

teins, are able to react to high levels of oxidative stress and can enhance the removal of ROS/

RNS via adaption of gene expression [21, 22]. Nevertheless, the accumulation of protein dam-

age during replicative ageing cannot be prevented and in turn, affects the metabolism and its

activity. It has been shown that cells to undergo distinct metabolic phases during their replica-

tive life [23, 24], exhibiting a switch from energy production via fermentation to cellular

respiration.

Hitherto, many mathematical models describing protein damage accumulation (reviewed

in [25, 26]), signalling pathways (reviewed in [27, 28]) and metabolism [29] have been devel-

oped. Flux balance analysis (FBA) models have been extensively applied to predict fluxes

through genome-scale reconstructions of metabolic networks of many different organisms

and conditions [29–32]. In order to improve their predictive power, they have been extended

by additional constraints, such as enzymatic and regulatory constraints [33–37] and lately pro-

teome constraints [38]. Extensive and condition-specific regulatory constraints can be

obtained by reconstructions of signalling pathways. Due to their size and availability of vast

qualitative data, they are typically represented and simulated using logic or Boolean modelling

[39–42]. Recent studies aimed at combining those two approaches into so-called hybrid

modes, to understand the connection between signalling and the metabolism [37, 43].
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However, most existing models are answering isolated questions regarding the cellular metab-

olism and its regulation with focus on short time scales compared to the lifespan of a cell. Fur-

ther, they have not been used to understand damage accumulation over long time scales, i.e.

ageing, despite the tight connection between the metabolism, ROS/RNS and damage accumu-

lation. Recently, an FBA-based model was used to rationalise metabolic data at distinct time

points during the replicative life of yeast cells [23]. While the study is based on the qualitative

interpretation of the acquired data, mechanistic insights and dynamics are missing. On the

other hand, dynamic models of protein damage accumulation have been applied to investigate

replicative ageing on a single-cell level and the effect on the population level, however disre-

garding metabolic effects [44–48].

Taken together, while existing models have greatly improved our understanding of these

key processes, they have also revealed gaps in the understanding of the complex interactions

between them, as they are mainly studied individually and, in addition, lack both the complex-

ity of the dynamics and the effects of the crosstalk between multiple components.

To overcome this gap, and to study the complex interplay and feedback between the metab-

olism and replicative ageing, in the context of damage accumulation and reactive oxygen spe-

cies, we built a multi-scale model of yeast replicative ageing, that includes an enzyme-

constrained FBA model, a Boolean model of nutrient signalling pathways and dynamic model

of protein damage accumulation and cell growth. The model can simulate the lifespan of a cell

being controlled by the metabolism, allowing to explore metabolic changes as the cell ages and

becomes exposed to oxidative stress and protein damage.

2 Results

Construction of a multi-scale yeast replicative ageing model

To elucidate how nutrient and stress signalling, metabolism and protein damage accumulation

influence and regulate each other during the life of a cell, we developed a multi-scale model of

yeast replicative ageing (yMSA). The model consists of three interconnected modules: a Bool-

ean model of the signalling network, an enzyme-constrained flux balance model of the central

carbon metabolism and a dynamic model of growth and protein damage accumulation with

discrete cell divisions (Fig 1 and Table 1).

The first step in the construction was to extend a hybrid model of the central carbon metab-

olism and nutrient signalling in budding yeast [37] by reactions and components attributed to

the production and removal of ROS and RNS, as well as the signalling response to it. In partic-

ular, we built a Boolean model of the Yap1 and Sln1 pathways (Fig 1A) and incorporated it in

the already existing Boolean model of the nutrient sensing pathways PKA, Snf1 and TOR [37].

While Msn2 and Msn4 are part of the PKA pathway, we also included the crosstalk to the

Yap1 pathway. In addition, we summarised reactions that create and remove ROS/RNS (Fig

1B) and added them to the existing model of the central carbon metabolism [37]. The modules

of signalling and metabolism are connected by a transcriptional layer, that modifies the

enzyme consumption in the metabolic model depending on the binary activities of transcrip-

tion factors in the Boolean model by imposing regulatory constraints. In turn, the optimal

fluxes of the enzyme constrained FBA (ecFBA) model determine the states of input compo-

nents in the Boolean model.

To validate the extensions, we demonstrated that the steady-state activity of the transcrip-

tion factors in the Boolean model is consistent with the presence or absence of oxidative stress

(S1 Fig). In addition, we confirmed that the included production, sensing and removal of oxi-

dative stress in the metabolic and signalling network does not affect the exchange fluxes
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Fig 1. Multi-scale model construction. (A) Yap1 and Sln1 signalling in response to oxidative stress via H2O2. The two pathways were added to

Boolean signalling network. Trx1/2 exhibits cross-talk to Msn2/4, a component that is also part of the nutrient sensing pathway PKA. The figure is

made with Cell Designer [72]. (B) ROS/RNS reactions that were added to the enzyme-constrained FBA model. The cell is exposed to oxidative stress as

a consequence of electron leakage in the electron transport chain (ETC). (C) Schematic view of one time step in the multi-scale model. The enzyme-

constrained FBA fluxes based on the current fraction of intact and damaged proteins determine the input states of the Boolean signalling layer. A set of

Boolean rules alter the states of the signalling proteins, that eventually induce gene ex-/repression via a transcriptional layer, leading to constraints in

individual enzyme usages. Solving the regulated enzyme-constrained FBA gives rise to a growth rate as well as a metabolic damage formation rate, that

feed into the ODE model of growth and damage accumulation that is then solved for one time step. If the cell has accumulated enough biomass, the

cell divides in an instantaneous event. Iterating the model over time-steps until the model becomes infeasible corresponds to a lifespan simulation.

https://doi.org/10.1371/journal.pcbi.1010261.g001
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measured in a chemostat experiment [73], a widely used experiment to validate metabolic

models (S2 Fig).

In the second step, we connected the described regulated ecFBA model to an ordinary dif-

ferential equations (ODE) model of cell growth and protein damage accumulation with dis-

crete cell divisions (Fig 1C). Here, the parameters of the ODE model depend on the optimal

fluxes through the regulated ecFBA model. After solving the ODE for one time step given

those parameters, the resulting fraction of intact and damaged proteins constrain the regulated

ecFBA model for the next time step.

To simulate the whole lifespan of a cell, the model was iterated over time steps. Cell death

automatically occurs when the ecFBA becomes infeasible, caused by a too high protein damage

burden such that the cell is not able to generate enough energy for maintenance and growth

anymore. Each time step is based on the assumption that the signalling and metabolic adap-

tions happen on a much faster time scale than damage accumulation and ageing. We further-

more accounted for a delay between an actual signalling event and its effect on the metabolism

through gene expression by applying the regulation step only after ndelay time steps.

All mathematical and computational details of each individual module as well as the crucial

interfaces can be found in the Methods section and in S1 and S2 Texts.

The model predicts features of replicative ageing with distinct metabolic

phases

To validate our multi-scale model, we tested if it can reproduce features of replicative ageing in

yeast cells. We focused firstly on the number of divisions (replicative lifespan) and the time

between divisions (generation time), and secondly on metabolic paths cells use to gain energy

in the course of damage accumulation.

In each simulation, we started with a damage-free cell and let the model evolve over time

until cell death occurs. The objective of the metabolic model is always maximal growth. Given

the signalling and metabolic networks, we tested the effect of the ODE model parameters

(non-metabolic damage formation f0 and damage repair r0) on the lifespan. Our model pre-

dicts replicative lifespans between 17–32 cell divisions in the tested parameter regime (Fig 2A),

in accordance with measured yeast wildtype lifespans of on average around 23 divisions [74–

76]. The slower damage forms, the higher is the replicative potential of the cell. An increase in

the repair rate has a positive effect on the lifespan, however it cannot counteract the large

increase of dysfunctional proteins in mother cells caused by the asymmetric damage segrega-

tion at cell division, being a major driver of replicative ageing [10, 11, 77, 78]. Only if repair

rates are more than approximately one order of magnitude higher than non-metabolic forma-

tion rates the damage burden of retention can be overcome (S3D Fig).

Table 1. The size of the yeast multi-scale model of ageing (yMSA) and how it is composed of three modules.

Yeast multi-scale model of ageing (yMSA)

Type Total number Composition and Description Module

Components 226 86 signalling proteins and input metabolites Boolean

137 metabolites and pseudo metabolites ecFBA

3 states: biomass, intact and damaged protein fraction ODE

Enzymes 141 140 catalysing enzymes and the enzyme pool ecFBA

Rules 122 interactions between signalling proteins Boolean

Fluxes 375 chemical reactions and pseudo reactions ecFBA

https://doi.org/10.1371/journal.pcbi.1010261.t001
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To illustrate the dynamics of the model’s components, we selected a representative wildtype

cell with 23 divisions and an average generation time of around 1.5 hours and followed the

optimal fluxes through the metabolic network, the signals that the cell senses and its protein

composition over time (Fig 2B). A typical in silico cell starts with a fully functional protein

Fig 2. Lifespan simulations of yeast wildtype cells. (A) Replicative lifespans for typical yeast wildtype cells with varying damage repair r0 and non-

metabolic damage formation rates f0. The model reproduces 17–32 divisions. (B) Zoom into variables of all three model parts over time for a specific

exemplary parameter set (f0 = 0.0001, r0 = 0.0005): cell mass, fraction of intact and damaged proteins, growth rate, exchange fluxes normalised by the

glucose uptake rate in the metabolic model (> 0: production rates,< 0: uptake rates), functional enzyme pool and input signals received by the

signalling network (green: present, grey: not present). As cells age they accumulate damage, the growth rate drops and the metabolism needs to adapt.

(C) Zoom out for varying damage repair r0 and non-metabolic damage formation rates f0 and regulation factors �. If the tile is not filled (f0 = 0.0 and � =

0.04), the simulated cell did not stop dividing in the simulation time. Stronger regulation increases the replicative lifespan and wildtype cells with more

than 22 divisions cannot be achieved in this resolution if the regulation factor � < 0.04. (D) Schematic view of the metabolic phases a cells undergoes

during its replicative life: from maximal growth and fermentation (I) it slowly switches to respiration when the growth rate drops (II) until it eventually

can also take up ethanol to produce energy close to cell death (III).

https://doi.org/10.1371/journal.pcbi.1010261.g002
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pool that mediates chemical reactions in the metabolic network. The resources can be fully

exploited and allow for high growth and cell division rates. Over time, as damage accumulates,

the functional pool shrinks continuously, passing a point when the cell needs to decrease the

glucose uptake and growth rates, and metabolic fluxes have to be redistributed. Along with an

increasing demand of ATP for repairing damage, the cell needs to become more efficient in

the ATP production. While most energy during the maximal growth phase is produced via fer-

mentation (high production of ethanol), respiration gets more and more prominent when the

growth rate drops (increase in oxygen O2 uptake and acetate and carbon dioxide CO2 produc-

tion). Consequently, damage is increasingly produced by ROS/RNS and the cell signals oxida-

tive stress, followed by an increased use of enzymes that are needed to remove those again.

Older cells with low growth rates produce less damage, and stress signalling is not active any-

more. Instead, cells take in less nutrients and eventually signal glucose limiting conditions.

That old cells show signatures of starved cells was recently confirmed experimentally [79].

Close to death, cells also take in ethanol to produce energy and prolong lifespan. However,

they can only grow slowly (Fig 2B).

Decreasing growth rates in our model induce slower generation times, i.e. times between

cell divisions. In particular, the last few divisions before cell death last significantly longer, as

observed previously [75, 80]. In contrast to published models of protein damage accumulation

that have to assume this decline in growth [46, 47], here it is a direct output of the model.

Taken together, our model can reproduce characteristics of replicative ageing in wildtype

yeast cells, being a consequence of a shrinking pool of functional proteins available for the

metabolism and an increasing demand of energy for non-growth associated maintenance such

as damage repair. In particular, simulated cells undergo distinct metabolic phases: (I) maximal

growth phase mainly mediated by fermentation, (II) switching phase to respiration character-

ised by a mixed metabolism, a decrease in growth rate and an increase in ROS/RNS produc-

tion, and (III) slow growth phase defined by ethanol uptake (Fig 2D).

Metabolic regulation by the signalling network is beneficial for the

replicative lifespan

To identify the effect of stress signalling on the replicative lifespan, we simulated cells with

varying regulation strengths. By regulation strength we mean the magnitude of the constraints

on the protein abundance caused by stress signalling affecting the metabolic model. The regu-

lation strength is different for every protein depending on the solution space, and is controlled

by a global regulation factor �, as specified in Eq (1). The model showed that increasing the

strength of the regulation of enzymes is beneficial for the replicative lifespan up to �� 0.04

(Figs 2C and 3A), corresponding to constraining a down- or upregulated enzyme in its usage

from above or below respectively by 4% of its enzyme variability. Wildtype cells, i.e. cell with

around 23 divisions and an average generation time of 1.5 to 2h, can only be generated with

this maximal regulation strength and low damage formation rates (Fig 2C and S3B Fig). We

observed that regulation has a particularly strong effect on the maximal growth phase, i.e.

phase I. Due to regulation the amount of damage that is produced in this phase is reduced

while the amount of divisions increased (Fig 3A and S3C Fig). An increase in the number

of divisions in phase II is only possible for a large impact of regulation on the metabolism

(� > 0.02). There is a similar maximal amount of damage that a cell can tolerate (damage at

end of phase III) regardless of the regulation, indicating that a decreased damage accumulation

in the early life of the cell is essential for the replicative lifespan.

The model cannot handle higher regulation factors than � = 0.05. If enzymes are too heavily

constrained, i.e. � is large, the model sooner or later becomes over-constrained and infeasible
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only because of the regulation, observed in a drop in time spent in respective phases (Fig 3A).

The higher the regulation factor, the earlier the drop occurs. We therefore restricted all follow-

ing analysis to � = 0.04.

To further understand the impact of regulation in our model, we performed knockout

experiments of key proteins in the signalling pathways Snf1, PKA, TOR, Yap1 and Sln1, and

combinations that are know from literature to modulate lifespan (Fig 3B). The model qualita-

tively predicts a lifespan increase for deletion of Msn2/4 and Rim15 while deletion of Msn2/4

alone decreases the lifespan [81]. Deletion of the TOR pathway by inhibiting the TOR complex

Fig 3. Effect of regulation and NGAM on lifespan. All distributions are based on 29 wildtype parameter sets with f0� 5 � 10−4 and r0� 2 � 10−2 that

lead to 23 divisions (from data in Fig 2A). (A) Effect of the regulation factor �, i.e. how strong gene expression changes caused by stress signalling affect

the metabolic model, on the lifespan simulations (line: mean, ribbons: 5% and 95% quantiles). Our model can only handle �� 5%. Weak regulation ��

2.5% mostly affects phase I, and stronger regulation � > 2.5% phase II. (B) Distributions of replicative lifespans and average generation times for cells

with knockouts of signalling proteins in the different pathways of the Boolean model (line: median, box: IQR, whiskers: median ±1.5 IQR). (C) Effect of

the age-dependent non-growth associated maintenance NGAM (Eq (5)) on the transition between the phases (line: mean, ribbons: 5% and 95%

quantiles). Increasing cost for non-growth associated maintenance, such as damage repair, can explain the switch from fermentation to respiration in

phase II, indicated by higher O2 uptake, lower ethanol and higher CO2 and acetate production. The fluxes are normalised by the glucose uptake rate,

negative fluxes are uptake and positive production rates. (D) Damage at cell death depending on NGAM (line: mean, ribbons: 5% and 95% quantiles).

Increasing NGAM leads to lower damage tolerance before cell death, that happens in phase II for low NGAM and in phase III for higher NGAM.

https://doi.org/10.1371/journal.pcbi.1010261.g003

PLOS COMPUTATIONAL BIOLOGY Yeast replicative ageing model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010261 July 7, 2022 8 / 22

https://doi.org/10.1371/journal.pcbi.1010261.g003
https://doi.org/10.1371/journal.pcbi.1010261


increases the lifespan [82]. Our model can however not predict lifespan extension by Sch9

deletion [82], being an important cross-talk protein in the included pathways. While the oxida-

tive stress response proteins Yap1, Skn7 and Msn2/4 cannot modulate lifespan if deleted

alone, only the triple deletion reduces the lifespan, indicating a robustness of the cellular

response to oxidative stress. Other tested deletions, including the knockout of the PKA (corre-

sponds to ΔTpk1–3) or the Snf1 pathway, do not have an influence on the lifespan in our simu-

lations, in contrast to experimental evidences [82, 83], but potentially change the growth

behaviour and consequently the cells’ average generation times in our model, emphasising the

limits of a Boolean representation of signalling and the uncertainties in the transcriptional

layer.

Overall, the knockout experiments showed that the increase in the lifespan is in all cases

due to a larger number of divisions in phase I, while a reduction in the lifespan is often caused

by fewer divisions in phase II compared to the wildtype (S4 Fig).

An increased ATP demand for damage repair during ageing can explain

the switch from fermentation to respiration

Our model emphasised that the maximal growth phase I is particularly important for the repli-

cative life of a cell. However, a cell cannot maintain that state forever since the pool of func-

tional proteins decreases over time, eventually leading to a drop in the growth rate and an

increase in the protein damage. To understand why cells at that point start switching from fer-

mentation to respiration, we asked if it could be explained by an increased energy (ATP)

demand while ageing, i.e. a non-growth associated maintenance (NGAM). We considered

protein damage repair as one crucial type of NGAM, and therefore modelled NGAM(t) to be

linearly dependent on the fraction of damaged components D(t) in the cell (Eq (5)), reaching

its maximal value NGAMmax when the cell has a fully damaged proteome. We then simulated

wildtype cells with increasing NGAMmax to evaluate the effect of the added ATP cost on the

metabolic phases.

Our model demonstrated that the growth rate drops regardless of the additional ATP cost

and cells enter phase II and III. However, without NGAM (NGAMmax = 0), cells only ferment

at lower rates, and do not switch to a predominantly respiratory energy metabolism (Fig 3C).

Only for larger NGAMmax, cells make increasingly use of O2 and produce CO2, indiciating

respiratory activity.

Moreover, we observed that NGAM affects the damage tolerance of the cells, measured by

the fraction of damage in old cells at cell death (Fig 3D). It can be explained by the higher

energy demand associated to NGAM, which the cells can at some point during ageing not sat-

isfy anymore given the metabolic network and the resources. As a consequence, cell death is

induced earlier. Only for NGAM = 0, the in silico cells can be solved until it has a fully dam-

aged proteome (here� 0.46 g(gDW)−1 [84]), being however biologically unreasonable. The

variability in the damage at cell death between the tested wildtype parameters is increased for

low NGAM (NGAM< 0.25 [mmol(gDWh)−1]). In this regime, cells do not yet manage to enter

phase III, and the time between the last division and death can vary a lot depending on the

underlying damage formation and repair, explaining the observed non-monotonic behaviour

of the measured mean fraction of damage at cell death.

In accordance with the value used in the yeast consensus model [29], we picked NGAMmax

= 0.7 [mmol(gDWh)−1] in other simulations, leading to a damage tolerance of about half of the

proteome in our model.

PLOS COMPUTATIONAL BIOLOGY Yeast replicative ageing model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010261 July 7, 2022 9 / 22

https://doi.org/10.1371/journal.pcbi.1010261


Lifespan can be modulated by intervention in specific metabolic phases

Next, we asked if it is possible to control lifespan in our model by enhancing or repressing the

right processes in the right moment. We performed deletions and overexpressions of all

enzymes, as well as of combinations of isoenzymes that catalyse the same reaction, and ana-

lysed the resulting replicative lifespans compared to the wildtype (Fig 4A and 4B, S1 File). All

simulations were performed for the respective perturbation during the whole life, only in

Fig 4. Effect of enzyme perturbations on lifespan. The simulations are based on f0 = 0.0001 and r0 = 0.0005 (as in Fig 2B) and perturbations (deletion

or overexpression) in individual enzymes or isoenzyme combinations (140 + 23 cases) for different phases in the metabolic model. (A-B) Distribution

(line: median, box: IQR, whiskers: median ±1.5 IQR) of the number of divisions in total and in particular phases upon overexpression or deletion of

enzymes during specific times (facets) in relation to the wildtype (grey lines). An intervention in a specific phase can have a different effect than an

intervention over the whole lifespan. (C-D) Relation between replicative lifespan and total enzyme usage relative to the wildtype. Each dot represents

one simulation with the perturbation in a specific phase of an enzyme/isoenzymes. Both enzyme deletion and overexpression can lead to an increased

but also decreased total usage of the enzyme compared to the wildtype.

https://doi.org/10.1371/journal.pcbi.1010261.g004
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phase I, only in phase II and only in phase III. Deletion in the model corresponds to restricting

the usage of the enzyme(s) to 0. In contrast, overexpression is modelled by constraining the

usage of the enzyme(s) to 150% of the optimal usage after the regulation step.

Enzyme perturbations can enforce metabolic adaptions during replicative

ageing

To gain further insight on how those enzyme perturbations affect the replicative lifespan, we

studied the changes in the cumulative enzyme usage compared to the wildtype. We further

looked for patterns between enzyme usages, related pathways and effects on the number of

divisions (Fig 4C and 4D and S5 Fig). The data that the following results are based on can be

found in detail in S1 File.

A perturbation of an enzyme can naturally result in an increase or decrease in the enzyme

usage compared to the wildtype. Here, we showed that both can have a similar effect on the

replicative lifespan of the cell. An increase in the lifespan can be induced by an increased usage

of an enzyme, likely by enhancing processes that are beneficial for the number of divisions. On

the other hand, a similar increase in the lifespan can arise from using less of a certain enzyme,

indicating that high usage of this enzyme is disruptive for certain processes that correlate with

lifespan. Interestingly, we found cases where an overexpression leads to a decreased usage

(Fig 4C, marked with TCA cycle) and a deletion can result in an increased usage (Fig 4D,

marked with glycolysis) of the enzyme in relation to the wildtype, showing that cells compen-

sate for the loss or overuse in the successive metabolic phases, caused by altered preconditions.

To study more closely how the cells adapt to the perturbations (S1 File), several scenarios

have been tested. We found that prolonging the time spent in phase I, can result in an increase

of cell divisions. A prolongation of phase I can be reached by overexpressing particular

enzymes from the oxidative phosphorylation pathway in phase I, or by deleting particular

enzymes in the glycolysis in phase I. More specifically, we found that those enzymes typically

shorten lifespan instead when overexpressed over the whole lifespan (S5A Fig, e.g. NDI1,

TIM11, OLI1, several ATPs, and S5B Fig, e.g. PGI1, TPI1). Overexpression of NDI1 has been

associated with ROS accumulation and apoptosis like cell death [85]. It is possible that the

increased ROS production is beneficial in phase I whereas if present during the whole lifespan

becomes deleterious. One can speculate that the deletion of glycolytic enzymes is likely to force

flux through the glycerol pathway in the case of the TPI1 deletion or the pentose phosphate

pathway for the PGI1 deletion. This probably slows down the overall growth rate and gives

more time for protein repair. When enzyme capacity and the energy demand for repair starts

to become limiting the added protein burden of the forced flux becomes deleterious.

Another possibility to increase lifespan is enhancing certain enzymes that remove ROS/

RNS, being beneficial in both phase I and II. Similarly, overexpressing particular enzymes in

the TCA cycle can as well be advantageous in those two phases. Effectively, all cases described

so far lead to a decreased growth rate that is responsible for an increase in lifespan. It is a con-

sequence of forcing a bit of respiration already in phase I. In addition, supporting a faster

switch from phase II to III can lead to more cell divisions, for instance by deleting specific

enzymes in the oxidative phosphorylation in phase II. In those cases, phase III is prolonged

instead. Also here, the respective enzymes are typically only beneficial for the lifespan when

deleted in phase II but not over the whole lifespan (S5B Fig, e.g. COX12, COX13).

Enzymes responsible for removing hydrogen peroxide affect lifespan

Lastly, we investigated in more detail how sensitive the lifespan is to changes in the enzymes

added for ROS/RNS production and removal (S5B Fig). We found that the system is in general
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robust towards perturbations in those enzymes. Most perturbations do not affect the lifespan,

with few exceptions [86]. Double deletion of Trx1 and Trx2 or the deletion of Trr1, enzymes

that involved in the transformation from H2O2 to water, are harmful for cell growth and divi-

sions in all three phases [87]. Double deletion of Sod1 and Sod2, enzymes that create hydrogen

peroxide of superoxide, show similar behaviour [86]. Further, we observed that overexpression

of Sod1, Sod1 and Sod2, and Gpx3 completely or in phase II reduce the replicative lifespan of

the cell [81]. In those cases, cells transition faster to phase III, potentially mediated by the

enhanced respiratory activity. In contrast, overexpression of Trx2, Trx1 and Trx2 and Trr1 in

the same phases increase lifespan, likely by enhancing removal of reactive oxidative species

more efficiently in phase II but also by prolonging phase III.

3 Discussion

Here, we presented a novel multi-scale model consisting of the metabolism, stress signalling

and damage accumulation in the budding yeast S. cerevisiae that allowed us to study key fea-

tures of replicative ageing. We incorporated reactive oxygen and nitrogen species (ROS and

RNS), as a crucial interface between the metabolism and ageing, and accounted for the asym-

metric damage segregation at cell division. The model is based on established modelling tech-

niques in Systems Biology, such as Boolean modelling, flux balance analysis and ordinary

differential equations, but stands out due to the combination of the three modules to a larger

interconnected model (Table 1), that tackles the challenge to deal with the complexity and

multi-scale nature of ageing. Our model could reproduce realistic values for both the replica-

tive lifespans and generation times of yeast wildtype cells, as characterised by experiments. We

further showed that a regulatory layer is crucial for replicating wildtype cells in our model. Pre-

viously proposed metabolic phases [23, 24] are a direct outcome of our model, and here we

demonstrated that those phases are tightly linked to the replicative lifespan using enzyme over-

expressions and deletions.

We identified the non-growth associated maintenance (NGAM) as a key feature of the met-

abolic phases. Traditionally, NGAM is defined as the substrate yield that is used for other pro-

cesses than growth [88–91]. NGAM is a dynamic variable, highly dependent on for instance

the metabolic state of the cell or the nutrient composition in the media. However, there is a

lack of consensus in what is included in the NGAM, since there are no direct ways to experi-

mentally assess and quantify ATP demands specific to certain processes. Here, we assumed

that protein repair and replacement of damaged proteins with functioning proteins are the

main contributions to the NGAM, such that the NGAM should scale with protein damage. In

the model, NGAM is defined to be linearly dependent on the damaged protein fraction, which

increases with age. This simplified age-dependent definition provides a new perspective on the

cost, based on the idea that the more damage there is in a cell, the more energy it needs for

repair and degradation.

We tested how sensitive the model is to the maximal value of NGAM, when damage levels

are the highest, and studied its effect on ageing phenotypes. We found that the increased ATP

cost connected to the NGAM has a major effect when lower enzyme availability causes a

decrease in the growth rate, since in that moment damage accumulation starts to increase in

speed. More specifically, the NGAM changes the dynamics of the switch from fermentation to

respiration happening in phase II. Leupold et al. [23] speculated that an increase in cellular vol-

ume and thus a decreased volumetric substrate intake lead to the switch of metabolic pheno-

type by inhibiting the carbon uptake rate [92]. In our model, NGAM plays a crucial role in

determining the ratio between respiration and fermentation in the mixed metabolism that

characterises phase II, and the model showed that without NGAM the switch is not induced
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properly, but fermentation is mainly slowed down. Since cellular respiration has a higher ATP

yield compared to fermentation, we propose that an increased ATP demand due to a non-zero

NGAM together with a decreasing capacity to take up nutrients is another explanation for the

metabolic switch during replicative ageing.

Gene regulation is a crucial mechanism to adapt to stressful conditions and to ensure that

the right proteins are expressed in the proper time. In our model, regulation acts upon internal

stress caused by ageing. It helps to increase the replicative lifespan, even under nutrient rich

conditions without artificial stress, by inhibiting damage formation predominantly in phase I,

but also in phase II. Delaying the onset of protein damage accumulation further prolongs the

cell’s health span, and in that way has a positive effect on the progeny and thus the whole cell

population [47]. The model demonstrated that regulatory constraints are an important exten-

sion of FBA models in the context of ageing, as they are key in predicting wildtype lifespans.

Regulation and stress have been extensively studied in relation to replicative ageing [52, 93,

94]. Gene modifications of proteins in the nutrient and stress signalling systems, such as

Msn2/4 and Tor1/2, have been connected to longevity [52], and our model was able to qualita-

tively predict long- or short-lived mutants for some gene knockouts. Similarly, we simulated

perturbations in the enzymes contained metabolic model, and were able to confirm some qual-

itative correlations between enzyme deletion or overexpression and lifespan, focusing on

enzymes connected to ROS/RNS. Nonetheless, the model cannot capture all known relations.

There are both technical reasons and knowledge gaps that could cause the discrepancies when

comparing the model to an observed phenotype. Firstly, connecting transcription factor activ-

ity to changes in gene expression is a non-trivial problem. Advanced methods utilising high-

throughput data can provide means to improve the connection between signalling and the

metabolism, estimating probabilistic mappings between transcription factor activities and

gene expression, and translating those to the metabolic fluxes [43, 95]. However, those models

are non-mechanistic and highly context-dependent, and the ability to extrapolate to other con-

ditions, where data is limited, is questionable. Secondly, the topology of the signalling network

is not completely elucidated and there are still conditions under which we cannot explain

responses given our current knowledge [27, 42]. Moreover, by implementing signalling as a

Boolean model, we reduced the complexity of the system which automatically limits the com-

plexity of the model responses. Lastly, even though FBA models are good in predicting

exchange fluxes and qualitative changes in pathway fluxes, individual enzyme predictions

remain a challenge [37].

Motivated by the distinct metabolic phases a cell undergoes during ageing, we propose an

intervention span for lifespan control. Our model showed that an enzyme perturbation in a

specific phase can prolong lifespan, while the same perturbation over the whole lifespan can

shorten lifespan. The same thought can be reversed, and such models can help to identify

enzymes that shorten lifespan when perturbed in a specific metabolic phase, but do not affect

or even prolong lifespan when perturbed over the whole life. While we focused solely on life-

span extensions in the context of ageing, phase-dependent interventions using our modelling

approach can have further applications. Phase I is dominated by fermentation, and genetic

modifications that prolong this phase can be of great interest in industrial applications to

increase production yields. For this purpose, replacing the reconstruction of the central carbon

metabolism by a reconstruction of the yeast consensus metabolic network [29] together with

the addition of relevant production pathways can extend the applicability of our model and

enables testing of a greater variety of interventions.

Practically, to realise such a phase-specific intervention, induceable and conditionally

expressed genes in genetically modified production strains have established experimental

methods.
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Mathematical modelling typically is a balance between biological realism and mathematical

simplicity, such that also our model is naturally based on numerous assumptions and simplifi-

cations. Yet, the model we constructed constitutes a first attempt to shed light on replicative

ageing from a multi-scale perspective, incorporating several hallmarks of ageing. We could

replicate important features of replicative ageing, and moved a step further in understanding

and utilising the connection between the metabolism and ageing. Moreover, the modularity of

our approach facilitates developing and extending the model further, and translating it to

other organisms. Multi-scale mathematical models, like the one presented here, are an impor-

tant aid to bridge the gap between biological realism, the knowledge we have and experimental

feasibility, and to test hypotheses in a complex phenomenon like ageing.

4 Methods

Extension of a regulated enzyme-constrained metabolic model by

production of reactive oxygen and nitrogen species and the cellular

response to them

We based our work on a previously published hybrid model of nutrient signalling and the met-

abolic network of the central carbon metabolism, that consists of a Boolean modelling

approach of the nutrient signalling pathways TOR, PKA and Snf1 combined with an enzyme-

constrained flux balance analysis approach (ecFBA) via a transcriptional layer [37]. In this

model, the first step is to optimise the ecFBA model for a given objective. The optimal glucose

uptake flux then determines the state of glucose in the Boolean model, i.e. glucose is present if

the glucose intake exceeds a critical threshold glcinc . A switch of the state induces a cascade of

events in the Boolean model and eventually its steady state gives rise to which of the transcrip-

tion factors in the pathways are active. For each transcription factor in the Boolean model the

database Yeastract [49] can tell which genes are subsequently expressed or inhibited. Since also

enzymes of the ecFBA model are included in the target lists from Yeastract the constraints on

their usages in the ecFBA model can be altered accordingly.

In particular, for each enzyme i a rank based on the number of transcription factors that

up- or down-regulate it determines if the netto regulation is positive or negative. The bounds

of the enzymes ei,min and ei,max in the ecFBA are then constrained according to:

upregulation : ei;min  ei;min þ Di � �

downregulation : ei;max  ei;max � Di � �;
ð1Þ

with � being a regulation factor, and Δi being the range of enzyme usages that the model can

take (result from enzyme variability analysis) without varying the objective value of the origi-

nal optimisation up to the flexibility γ. This is necessary to ensure that the regulation does not

induce the infeasibility of the model and that the network has enough flexibility to reallocate

the resources caused by the regulation. The solution of the ecFBA with the new constraints

corresponds to the regulated metabolic network.

We used the same methodology but increased the size of the metabolic network by includ-

ing reactions in the ecFBA that produce and remove reactive oxygen (ROS) and nitrogen

(RNS) species (Fig 1A). The major source are electrons that escape from the electron transport

chain in the mitochondria during cellular respiration [17] and react with oxygen to produce

superoxide. Superoxide can via RNS be transformed to hydroxyl radicals which can oxidise

and thus damage proteins. A second way to create protein damage from superoxide is via

hydrogen peroxide. Hydrogen peroxide in the model is either removed or reacts further to

become the dangerous hydroxyl radical [14, 18, 21, 22, 50–52]. Subsequently, certain levels of
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oxidative stress in the cell trigger stress signalling [21]. Therefore, we added the oxidative stress

sensing pathways Yap1 and Sln1 to the Boolean model (Fig 1B), that induce regulation of the

metabolic network via gene regulation by the transcription factors Yap1 and Skn7 [53–67]. To

improve the transcriptional layer, we extended the data from Yeastract by data from [68], that

particularly focused on the effects of Yap1 and Skn7. The presence of oxidative stress in the

Boolean model is steered by the production of proteins with oxidative damage in the ecFBA

model, that if larger than dc switches the presence of H2O2 to 1. Similarly, the enzyme usage of

Trx1/2, proteins known to regulate the Yap1 pathway as well as to activate Msn2/4, determines

if the protein is present in the Boolean model, in particular if it exceeds a critical threshold trcc.
In total, we added 9 new components and 13 new rules to the existing model of nutrient sig-

nalling to account for oxidative stress signalling by the Yap1 and the Sln1 pathway. Moreover,

the ecFBA model was extended by 53 new fluxes, 28 new components and 13 new enzymes.

For the metabolic- and signalling modules, the number of components, reactions, and rules

were chosen inclusively to reflect our current knowledge of the pathways in the context of

nutrient signalling and ROS/NOS, whereas the pathways added were chosen based on biologi-

cal relevance. The dynamical module of cellular growth and damage accumulation is con-

structed as a minimal model.

Multi-scale model construction of the regulated cellular metabolism and

replicative ageing

We used the extended regulated enzyme-constrained FBA model described above and opti-

mised it for maximal growth and parsimony. Besides the resulting optimal value of the growth

rate g(t), defined by the biomass equation, the model now also outputs a protein damage for-

mation rate fm(t) that is caused by oxidative stress. fm(t) is defined by the exchange flux from

protein damage (Fig 1B).

To evaluate the protein damage formation over time, we incorporated a third module: a

dynamical model based on a simple system of ordinary differential equations. The states are

the cell’s dry weight M(t), its fractional intact protein content P(t) [g(gDW)−1] and its frac-

tional damaged protein content D(t) [g(gDW)−1]. The latter two can be transformed between

each other, however the total fraction of proteins P(t) + D(t) is assumed to remain constant

over time (, d
dt ðPðtÞ þ DðtÞÞ ¼ 0). This assumption is based on experimental data measuring

the relative change in protein abundance of a set of proteins over replicative ageing [69] multi-

plied by absolute proteomics data [70], exhibiting only minor changes (< 5%) in the estimated

total abundance during ageing.

dMðtÞ
dt
¼ gðtÞMðtÞ ð2Þ

dPðtÞ
dt
¼ � ðfmðtÞ þ f0ÞPðtÞ þ r0DðtÞ ð3Þ

dDðtÞ
dt
¼ þðfmðtÞ þ f0ÞPðtÞ � r0DðtÞ: ð4Þ

Besides the parameters that are directly obtained from the solution of the ecFBA, we included

a non-metabolic damage formation rate f0 to account for all other processes that produce dam-

age, and a damage repair rate r0 that represents all mechanisms that repair damaged proteins.

The solution of the ODE model (2)–(4) for a small time step determines the fraction of the

enzyme pool that is available in the ecFBA model in the next time step. Moreover, an
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increasing amount of damage increases the non-growth associated ATP cost (NGAM) in the

ecFBA model, assuming that the cell needs to allocate more energy to repair damage. In partic-

ular,

NGAMðtÞ ¼
DðtÞ

PðtÞ þ DðtÞ
� NGAMmax: ð5Þ

In this way, we can simulate ageing as the accumulation of damage in the cell over time.

Consequently, the amount of enzymes available in the ecFBA model shrinks, and the meta-

bolic fluxes are forced to adapt in the course of the cell’s lifespan.

As soon as a cell has built up enough in biomass, M(td) = s−1M(0), it divides into a mother

and a daughter cell, according to a size proportion s 2 [0.5, 1] that corresponds to the fraction

of biomass that remains in the mother cell at cell division. While the total fraction of proteins

is constant in both cell compartments, the composition of functional and damaged proteins is

determined by damage retention. The larger the retention factor re 2 [0, 1], the more damage

is retained in the mother cell. The states of mother and daughter cell are updated according to

mother daughter

M  sMðtdÞ ¼ Mð0Þ M  ð1 � sÞMðtdÞ ¼ ð1 � sÞs� 1Mð0Þ

P ð1 � reÞPðtdÞ P ð1þ reÞPðtdÞ

D ð1þ reÞDðtdÞ D ð1 � reÞDðtdÞ:

ð6Þ

Cell death occurs when the enzyme-constrained FBA becomes infeasible, i.e. when the cell

is not able to obtain enough energy for maintenance and growth anymore.

By including the dynamic module for damage accumulation, we incorporated the notion of

time to the regulated metabolic model, under the assumption that the steady state of the

metabolism is reached fast in the time scale of replicative ageing. It further led us to introduce

a time delay between the moment the cell receives a stress signal and the moment the meta-

bolic network is affected by altered gene regulation.

A schematic view of the complete model is shown in Fig 1. All details about the individual

models and the extensions made in this work for both the signalling and the metabolic

reactions can be found in S1 Text, and on github https://github.com/cvijoviclab/

IntegratedModelMetabolismAgeing under ModelFiles.

Simulation details

All simulations and their analysis were performed in the programming language Julia version

1.6 [71] and were run on a normal computer with 2.3 GHz Dual-Core Intel Core i5 and 8GB

RAM. The linear program (ecFBA) was solved using the JuMP and Gurobi packages. The

developed model can be downloaded from https://github.com/cvijoviclab/

IntegratedModelMetabolismAgeing. Model parameters, constraints and pseudo code for a life-

span simulation can be found in S2 Text.

Supporting information

S1 File. Collection of all simulation data of enzyme deletions and overexpressions and

their effect on the respective phases.

(XLSX)

S1 Text. Model details.

(PDF)

PLOS COMPUTATIONAL BIOLOGY Yeast replicative ageing model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010261 July 7, 2022 16 / 22

https://github.com/cvijoviclab/IntegratedModelMetabolismAgeing
https://github.com/cvijoviclab/IntegratedModelMetabolismAgeing
https://github.com/cvijoviclab/IntegratedModelMetabolismAgeing
https://github.com/cvijoviclab/IntegratedModelMetabolismAgeing
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010261.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010261.s002
https://doi.org/10.1371/journal.pcbi.1010261


S2 Text. Computational guidelines.

(PDF)

S1 Fig. Validation of Boolean model extension. Boolean model states when turning on (0!

1) and off (1! 0) hydrogen peroxide (H2O2) depending on glucose and nitrogen availability

and the presence of thioredoxins (Trx1/2). H2O2 eventually triggers active transcription factors

Skn7 and Yap1, the latter only if Trx1/2 is not active. Active Trx1/2 inhibits Yap1 activation

and activates Msn2/4.

(EPS)

S2 Fig. Validation of the ecFBA model extension. Simulation of the chemostat experiment

[73] using the extended regulated enzyme-constrained metabolic model. The left panel shows

exchange fluxes in the model (solid lines) compared to the experimental data (dots). The right

panel shows damage-related fluxes in the model, where chemostat data is not available.

(EPS)

S3 Fig. Complementary simulations of yeast cells. For varying damage repair r0 and non-

metabolic damage formation rates f0. (A) Correlation between the time cells spend in phase I

and their replicative lifespan. (B) Average generation times. (C) Fraction of damaged protein

content at the end of phase I. (D) Replicative lifespans. (A)-(C) are coming from the same data

set as Fig 2C. The grid in (D) is further zoomed out. If there is no colour it means that the cell

did not stop dividing in the simulation time, since repair is so efficient that it overcomes dam-

age formation and retention.

(EPS)

S4 Fig. Effect of signalling protein knockouts on phases. Split of the number of divisions

over the metabolic phases for knockouts of signalling proteins in the different pathways of the

Boolean model for the cells in Fig 3B. The distributions are based on 29 wildtype parameter

sets with f0� 5 � 10−4 and r0� 2 � 10−2 that lead to 23 divisions (from data in Fig 2A). A life-

span increase is mostly achieved by prolonging phase I.

(EPS)

S5 Fig. Effect of enzymes perturbations on phases. Absolute changes in the number of divi-

sions in relation to a wildtype cell (23 divisions) for overexpressions (A) or deletions (B) of sin-

gle enzymes or isoenzyme combinations (140 + 23 cases) in different phases in the metabolic

model. The simulations are based on f0 = 0.0001 and r0 = 0.0005 (as in Figs 2B and 4). Enzymes

that do not lead to any differences are excluded in this plot. Perturbation in a specific phase

can have a different effect on the lifespan than the same perturbation over the whole life.

(EPS)
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Investigation: Barbara Schnitzer, Linnea Österberg.
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42. Welkenhuysen N, Schnitzer B, Österberg L, Cvijovic M. Robustness of Nutrient Signaling Is Maintained

by Interconnectivity Between Signal Transduction Pathways. Frontiers in Physiology. 2019; 9:1964.

https://doi.org/10.3389/fphys.2018.01964 PMID: 30719010

43. Niu P, Soto MJ, Yoon BJ, Dougherty ER, Alexander FJ, Blaby I, et al. TRIMER: Transcription Regula-

tion Integrated with Metabolic Regulation. iScience. 2021; 24(11):103218. https://doi.org/10.1016/j.isci.

2021.103218 PMID: 34761179

44. Erjavec N, Cvijovic M, Klipp E, Nystrom T. Selective benefits of damage partitioning in unicellular sys-

tems and its effects on aging. Proceedings of the National Academy of Sciences. 2008; 105(48):

18764–18769. https://doi.org/10.1073/pnas.0804550105 PMID: 19020097

45. Clegg RJ, Dyson RJ, Kreft JU. Repair rather than segregation of damage is the optimal unicellular aging

strategy. BMC Biol. 2014; 12(1):52. https://doi.org/10.1186/s12915-014-0052-x PMID: 25184818

46. Borgqvist J, Welkenhuysen N, Cvijovic M. Synergistic effects of repair, resilience and retention of dam-

age determine the conditions for replicative ageing. Sci Rep. 2020; 10(1):1556. https://doi.org/10.1038/

s41598-020-58444-2 PMID: 32005954

47. Schnitzer B, Borgqvist J, Cvijovic M. The synergy of damage repair and retention promotes rejuvenation

and prolongs healthy lifespans in cell lineages. PLoS Comput Biol. 2020; 16(10):e1008314. https://doi.

org/10.1371/journal.pcbi.1008314 PMID: 33044956

48. Song R, Acar M. Stochastic modeling of aging cells reveals how damage accumulation, repair, and cell-

division asymmetry affect clonal senescence and population fitness. BMC Bioinformatics. 2019; 20(1):

391. https://doi.org/10.1186/s12859-019-2921-3 PMID: 31307385

49. Monteiro PT, Oliveira J, Pais P, Antunes M, Palma M, Cavalheiro M, et al. YEASTRACT+: a portal for

cross-species comparative genomics of transcription regulation in yeasts. Nucleic Acids Research.

2020; 48(D1):D642–D649. https://doi.org/10.1093/nar/gkz859 PMID: 31586406

50. Kanti Das T, Wati MR, Fatima-Shad K. Oxidative Stress Gated by Fenton and Haber Weiss Reactions

and Its Association With Alzheimer’s Disease. Arch Neurosci. 2014; 2(3). https://doi.org/10.5812/

archneurosci.20078

51. Cobley JN. Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the

Unknown, and the Intriguing. Antioxidants. 2020; 9(10):933. https://doi.org/10.3390/antiox9100933

PMID: 33003362

52. Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Research. 2020; 20(1):foz085.

https://doi.org/10.1093/femsyr/foz085 PMID: 31816015

53. Kuge S, Jones N. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces

cerevisiae to oxidative stress by hydroperoxides. The EMBO Journal. 1994; 13(3):655–664. https://doi.

org/10.1002/j.1460-2075.1994.tb06304.x PMID: 8313910

54. Kuge S, Toda T, Iizuka N, Nomoto A. Crm1 (XpoI) dependent nuclear export of the budding yeast tran-

scription factor yAP-1 is sensitive to oxidative stress. Genes to Cells. 1998; 3(8):521–532. https://doi.

org/10.1046/j.1365-2443.1998.00209.x PMID: 9797454

55. Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB. A Thiol Peroxidase Is an H2O2 Receptor

and Redox-Transducer in Gene Activation. Cell. 2002; 111(4):471–481. https://doi.org/10.1016/S0092-

8674(02)01048-6 PMID: 12437921

56. Veal EA, Ross SJ, Malakasi P, Peacock E, Morgan BA. Ybp1 Is Required for the Hydrogen Peroxide-

induced Oxidation of the Yap1 Transcription Factor. Journal of Biological Chemistry. 2003; 278(33):

30896–30904. https://doi.org/10.1074/jbc.M303542200 PMID: 12743123

57. Isoyama T, Murayama A, Nomoto A, Kuge S. Nuclear Import of the Yeast AP-1-like Transcription Factor

Yap1p Is Mediated by Transport Receptor Pse1p, and This Import Step Is Not Affected by Oxidative

Stress. Journal of Biological Chemistry. 2001; 276(24):21863–21869. https://doi.org/10.1074/jbc.

M009258200 PMID: 11274141

PLOS COMPUTATIONAL BIOLOGY Yeast replicative ageing model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010261 July 7, 2022 20 / 22

https://doi.org/10.1038/s41467-022-28467-6
http://www.ncbi.nlm.nih.gov/pubmed/35145105
https://doi.org/10.1186/1471-2105-7-56
https://doi.org/10.1186/1471-2105-7-56
http://www.ncbi.nlm.nih.gov/pubmed/16464248
https://doi.org/10.1186/1752-0509-3-7
https://doi.org/10.1186/1752-0509-3-7
http://www.ncbi.nlm.nih.gov/pubmed/19144179
https://doi.org/10.1186/s12918-015-0193-8
https://doi.org/10.1186/s12918-015-0193-8
http://www.ncbi.nlm.nih.gov/pubmed/26259567
https://doi.org/10.3389/fphys.2018.01964
http://www.ncbi.nlm.nih.gov/pubmed/30719010
https://doi.org/10.1016/j.isci.2021.103218
https://doi.org/10.1016/j.isci.2021.103218
http://www.ncbi.nlm.nih.gov/pubmed/34761179
https://doi.org/10.1073/pnas.0804550105
http://www.ncbi.nlm.nih.gov/pubmed/19020097
https://doi.org/10.1186/s12915-014-0052-x
http://www.ncbi.nlm.nih.gov/pubmed/25184818
https://doi.org/10.1038/s41598-020-58444-2
https://doi.org/10.1038/s41598-020-58444-2
http://www.ncbi.nlm.nih.gov/pubmed/32005954
https://doi.org/10.1371/journal.pcbi.1008314
https://doi.org/10.1371/journal.pcbi.1008314
http://www.ncbi.nlm.nih.gov/pubmed/33044956
https://doi.org/10.1186/s12859-019-2921-3
http://www.ncbi.nlm.nih.gov/pubmed/31307385
https://doi.org/10.1093/nar/gkz859
http://www.ncbi.nlm.nih.gov/pubmed/31586406
https://doi.org/10.5812/archneurosci.20078
https://doi.org/10.5812/archneurosci.20078
https://doi.org/10.3390/antiox9100933
http://www.ncbi.nlm.nih.gov/pubmed/33003362
https://doi.org/10.1093/femsyr/foz085
http://www.ncbi.nlm.nih.gov/pubmed/31816015
https://doi.org/10.1002/j.1460-2075.1994.tb06304.x
https://doi.org/10.1002/j.1460-2075.1994.tb06304.x
http://www.ncbi.nlm.nih.gov/pubmed/8313910
https://doi.org/10.1046/j.1365-2443.1998.00209.x
https://doi.org/10.1046/j.1365-2443.1998.00209.x
http://www.ncbi.nlm.nih.gov/pubmed/9797454
https://doi.org/10.1016/S0092-8674(02)01048-6
https://doi.org/10.1016/S0092-8674(02)01048-6
http://www.ncbi.nlm.nih.gov/pubmed/12437921
https://doi.org/10.1074/jbc.M303542200
http://www.ncbi.nlm.nih.gov/pubmed/12743123
https://doi.org/10.1074/jbc.M009258200
https://doi.org/10.1074/jbc.M009258200
http://www.ncbi.nlm.nih.gov/pubmed/11274141
https://doi.org/10.1371/journal.pcbi.1010261


58. Moye-Rowley WS. Transcription Factors Regulating the Response to Oxidative Stress in Yeast. Antiox-

idants & Redox Signaling. 2002; 4(1):123–140. https://doi.org/10.1089/152308602753625915 PMID:

11970849

59. Izawa S, Maeda K, Sugiyama Ki, Mano J, Inoue Y, Kimura A. Thioredoxin Deficiency Causes the Con-

stitutive Activation of Yap1, an AP-1-like Transcription Factor in Saccharomyces cerevisiae. Journal of

Biological Chemistry. 1999; 274(40):28459–28465. https://doi.org/10.1074/jbc.274.40.28459 PMID:

10497208

60. Grant CM, Collinson LP, Roe J, Dawes IW. Yeast glutathione reductase is required for protection

against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Molecular Microbiol-

ogy. 1996; 21(1):171–179. https://doi.org/10.1046/j.1365-2958.1996.6351340.x PMID: 8843443

61. Dumond H, Danielou N, Pinto M, Bolotin-Fukuhara M. A large-scale study of Yap1p-dependent genes

in normal aerobic and H2O2-stress conditions: the role of Yap1p in cell proliferation control in yeast. Mol

Microbiol. 2000; 36(4):830–845. https://doi.org/10.1046/j.1365-2958.2000.01845.x PMID: 10844671

62. Xu Q, Porter SW, West AH. The Yeast YPD1/SLN1 Complex. Structure. 2003; 11(12):1569–1581.

https://doi.org/10.1016/j.str.2003.10.016 PMID: 14656441

63. Singh KK. The Saccharomyces cerevisiae sln1p-ssk1p two-component system mediates response to

oxidative stress and in an oxidant-specific fashion. Free Radical Biology and Medicine. 2000; 29(10):

1043–1050. https://doi.org/10.1016/S0891-5849(00)00432-9 PMID: 11084293

64. Morgan BA. The Skn7 response regulator controls gene expression in the oxidative stress response of

the budding yeast Saccharomyces cerevisiae. The EMBO Journal. 1997; 16(5):1035–1044. https://doi.

org/10.1093/emboj/16.5.1035 PMID: 9118942

65. Charizanis C, Juhnke H, Krems B, Entian KD. The oxidative stress response mediated via Pos9/Skn7 is

negatively regulated by the Ras/PKA pathway in Saccharomyces cerevisiae. Mol Gen Genet. 1999;

261(4-5):740–752. https://doi.org/10.1007/s004380050017 PMID: 10394911

66. Hasan R, Leroy C, Isnard AD, Labarre J, Boy-Marcotte E, Toledano MB. The control of the yeast H2O2

response by the Msn2/4 transcription factors. Mol Microbiol. 2002; 45(1):233–241. https://doi.org/10.

1046/j.1365-2958.2002.03011.x PMID: 12100562

67. Boisnard S, Lagniel G, Garmendia-Torres C, Molin M, Boy-Marcotte E, Jacquet M, et al. H2O2 Acti-

vates the Nuclear Localization of Msn2 and Maf1 through Thioredoxins in Saccharomyces cerevisiae.

Eukaryot Cell. 2009; 8(9):1429–1438. https://doi.org/10.1128/EC.00106-09 PMID: 19581440

68. Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, et al. Yap1 and Skn7 Control Two Specialized

Oxidative Stress Response Regulons in Yeast. Journal of Biological Chemistry. 1999; 274(23):16040–

16046. https://doi.org/10.1074/jbc.274.23.16040 PMID: 10347154
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