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Discovering genetic interactions bridging pathways
in genome-wide association studies
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Genetic interactions have been reported to underlie phenotypes in a variety of systems, but
the extent to which they contribute to complex disease in humans remains unclear. In
principle, genome-wide association studies (GWAS) provide a platform for detecting genetic
interactions, but existing methods for identifying them from GWAS data tend to focus on
testing individual locus pairs, which undermines statistical power. Importantly, a global
genetic network mapped for a model eukaryotic organism revealed that genetic interactions
often connect genes between compensatory functional modules in a highly coherent manner.
Taking advantage of this expected structure, we developed a computational approach called
BridGE that identifies pathways connected by genetic interactions from GWAS data. Applying
BridGE broadly, we discover significant interactions in Parkinson's disease, schizophrenia,
hypertension, prostate cancer, breast cancer, and type 2 diabetes. Our novel approach
provides a general framework for mapping complex genetic networks underlying human
disease from genome-wide genotype data.
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enome-wide association studies (GWAS) have been
increasingly successful at identifying single-nucleotide
polymorphisms (SNPs) with statistically significant asso-
ciation to a variety of diseases!? and gene sets significantly
enriched for SNPs with moderate association®. However, for most
diseases, there remains a substantial disparity between the disease
risk explained by the discovered loci and the estimated total
heritable disease risk based on familial aggregation®>. While there
are a number of possible explanations for this “missing herit-
ability”, including many loci with small effects or rare variants?,
genetic interactions between loci are one potential culprit>®.
Genetic interactions generally refer to a combination of two or
more genes whose contribution to a phenotype cannot be com-
pletely explained by their independent effects>’. One example of
an extreme genetic interaction is synthetic lethality where two
mutations, neither of which is lethal on its own, combine to
generate a lethal double mutant phenotype. Thus, genetic inter-
actions may explain how relatively benign variation can combine
to generate more extreme phenotypes, including complex human
diseases®>8. Several studies have reported genetic interactions
between specific variants in various disease contexts”?, and
scalable computational tools have been developed for searching
for interactions amongst SNPs”>10. However, systematic discovery
of statistically significant genetic interactions on a genome-scale
remains a major challenge. For example, a theoretical analysis
estimated that ~500,000 subjects would be needed to detect sig-
nificant genetic interactions under reasonable assumptions®,
which remains beyond the cohort sizes available for a typical
GWAS study or even the large majority of meta-GWAS studies.
Genome-wide, reverse genetic screens in model organisms
have produced rich insights into the prevalence and organization
of genetic interactions! 12, Specifically, the mapping and analysis
of the yeast genetic network revealed that genetic interactions are
numerous and tend to cluster into highly organized network
structures, connecting genes in two different but compensatory
functional modules (e.g., pathways or protein complexes) as
opposed to appearing as isolated instances!l!3. For example,
nonessential genes belonging to the same pathway often exhibit
negative genetic interactions with the genes of a second non-
essential pathway that impinges on the same essential function
(Fig. 1a). Owing to their functional redundancy, the two different
pathways can compensate for the loss of the other, and thus, only
simultaneous perturbation of both pathways (e.g., A* and Y*)
(Fig. 1a) results in an extreme loss of function phenotype, which
could be associated with either increased or decreased disease
risk. Importantly, the same phenotypic outcome could be
achieved by several different combinations of genetic perturba-
tions in both pathways (e.g., A-X, A-Z, B-X, B-Y, B-Z) (Fig. 1b).
This model for the local topology of genetic networks, called the
“between-pathway model” (BPM), has been widely observed in
yeast genetic interaction networks!' !4, Indeed, as many as ~70%
of negative genetic interactions observed in yeast occur in BPM
structures, indicating that genetic interactions are highly orga-
nized and this type of local clustering is the rule rather than the
exception!3, In addition to BPMs, combinations of mutations in
genes within the same pathway or protein complex also tend to
exhibit a high frequency of genetic interaction (Fig. 1b), a
network structure referred to as a “within-pathway model”
(WPM)!L14, Indeed, ~80% of essential protein complexes in yeast
exhibit a significantly elevated frequency of within-pathway
interactions!>. In the context of human disease, a WPM may
reflect an individual that inherits two variants in the same
pathway, resulting in reduced flux or function of a particular
pathway and an increase or decrease in disease risk.
The prevalence of BPM and WPM structures observed in the
yeast global genetic network has important practical implications

that can be exploited to explore disease-associated genetic inter-
actions in humans based on GWAS data. Although tests to
identify genetic interactions between specific SNP or gene pairs
are statistically under-powered, we may be able to detect genetic
interactions by leveraging the fact that pairwise interactions
between genome variants are likely to cluster into larger BPM and
WPM network structures similar to those observed in the yeast
global genetic network. Indeed, other studies exploited similar
structural properties to derive genetic interaction networks from
phenotypic variation in a yeast recombinant inbred population!©.

Here, we present a new method, called BridGE (Bridging Gene
sets with Epistasis), that leverages the expected between- and
within-pathway structure of genetic interactions to discover them
based on human population genetic data. We present results from
application of this method to seven different diseases, with sig-
nificant interactions discovered in six of the seven, along with
extensive simulation results establishing the utility of the
approach. We note that the method proposed here is broadly
similar to previous approaches that have used gene-set enrich-
ment or GO enrichment analysis to interpret SNP sets arising
from univariate or interaction analyses®!7 or aggregation tests for
rare variants!®19 (see Methods). Other existing approaches have
also successfully identified interactions by reducing the test space
for SNP-SNP pairs, either through knowledge or data-driven
prioritization?%-2! (see Methods). However, to our knowledge, no
existing method has been developed to systematically identify
between-pathway genetic interaction structures based on human
genetic data, which is the focus of this study.

Results

A new method for discovery of genetic interactions from
GWAS. We developed a method called BridGE (Bridging Gene
sets with Epistasis) to explicitly search for coherent sets of
SNP-SNP interactions within GWAS cohorts that connect groups
of genes corresponding to characterized pathways or functional
modules. Specifically, although many pairs of loci do not have
statistically significant interactions when considered individually,
they can be collectively significant if an enrichment of SNP-SNP
interactions is observed between two functionally related sets of
genes or within a functional coherent gene set (Fig. 1b). Thus, we
imposed prior knowledge of pathway membership and exploited
structural and topological properties of genetic networks to gain
statistical power to detect genetic interactions that occur between
or within defined pathways in GWAS associated with diverse
diseases. Our algorithm identifies BPM structures, where two
distinct pathways are “bridged” by several SNP-level interactions
that connect them, as well as WPM structures, where interactions
densely connect SNPs linked to genes in the same pathway, and
finally, pathways whose SNPs show increased interaction density
relative to the rest of SNPs in the network, though not coherently
as in a BPM (referred to as “PATH” structures).

Our approach involves five main components, each of which is
described briefly below (Fig. 1c and Supplementary Fig. 1; see
Methods): (I) Data processing; (II) construction of a SNP-SNP
interaction network; (III) binarization of the SNP-SNP network;
(IV) scoring of BPMs and WPMs for enrichment of SNP-SNP
interactions; (V) estimation of false discovery rate based on a
hybrid permutation strategy. (I) For data processing, in addition
to standard GWAS data processing procedures, BridGE controls
for population substructure between the cases and controls to
eliminate false discoveries due to population stratification?2, Also,
in dataset pre-processing, the input set of SNPs is pruned down to
a subset of SNPs that are less likely in linkage disequilibrium (LD)
with each other to avoid discovery of spurious BPM/WPM
structures due to LD. (IT) Construction of a SNP-SNP interaction
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Fig. 1 Between-pathway and within-pathway model of genetic interactions. a Two distinct pathways, A— B — C and X - Y — Z converge to regulate the
same essential function. Independent genetic perturbations in either pathway (indicated by blue color with an asterisk) have little or no contribution to a
phenotype, but combined perturbations in both pathways in the same individual result in a genetic interaction, leading to a loss of function phenotype that
can be associated with either an increase or decrease in disease risk. b The bipartite structure of genetic interactions (between-pathway model) resulting
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model. Genetic perturbations in any pair of genes across the two pathways or within the same pathway combine to increase or decrease disease risk. Edges
indicate observed interactions at the gene-gene or SNP-SNP level. ¢ Conceptual overview of the BridGE method for detecting genetic interactions from

GWAS data

network: BridGE can use any one of four different disease models
to compute a SNP-SNP interaction network: additive, recessive,
dominant, or combined recessive and dominant. When run in the
additive, recessive and dominant mode, BridGE tests all SNP
pairs across the two pathways using the same disease model. In
the combined recessive and dominant mode, BridGE integrates
edges derived from multiple disease models, which allows for
SNPs to interact in multiple ways as long as they still connect
across the two pathways of interest. Each model encodes different
assumptions and will result in a different, overall complementary,
set of significant BPM/WPM structures at the end of the pipeline.
The additive disease model was implemented as previously
described®, with SNP-SNP interaction scores derived from
likelihood ratio tests comparing models with and without an
interaction term’. Interactions based on recessive and dominant
disease models are estimated using a hypergeometric-based
metric that directly tests for disease association for individuals
that are either homozygous (recessive and dominant models) or
heterozygous (dominant only) for the minor allele at two loci of

interest, and compares the observed degree of association to the
marginal effects of both loci. BridGE can be run in any of these
disease model modes and also implements a combined dominant/
recessive mode where interactions among SNP pairs are taken
from the maximum (most significant) of the dominant and
recessive models. (III) Binarization of the SNP-SNP network: The
SNP-SNP network derived from a chosen disease model is
thresholded by applying a lenient significance cutoff to all
pairwise SNP-SNP interactions to generate a low-confidence,
high-coverage network that is expected to contain a large number
of false positive interactions, but enables the assessment of
significance of SNP-SNP interactions collectively at the pathway
level. The binarization threshold is determined by a pilot run that
evaluates the SNP-SNP interaction network at a range of cutoffs
with a limited number of permutations to establish preliminary
significance estimates (see Methods). (IV) Scoring of BPMs and
WPMs for enrichment of SNP-SNP interactions: after SNP-SNP
network binarization, pathways are defined by curated functional
standards?3-2%, and these pathways (in the case of WPMs) and
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pairs of pathways (for BPMs) are tested for enrichment of
SNP-SNP pair interactions. The enrichment significance is
measured by a permutation test (pperm) derived from randomly
shuffling of the SNP-pathway assignment (see Methods). In
addition to discovering BPM and WPM structures, our approach
also identifies individual pathways that have significantly elevated
marginal density of SNP-SNP interactions even where the
interaction partners do not necessarily have clear coherence in
terms of pathways (PATH structures, see Methods). In this case,
we are not identifying pathway-pathway interactions but simply
assessing whether a particular pathway is a highly connected hub
and associated with numerous SNP-level interactions. (V)
Estimation of false discovery rate based on a hybrid permutation
strategy: finally, to correct for multiple hypothesis testing and
assess the significance of the candidate BPM, WPM, or PATH
interactions, BridGE uses sample permutation to establish an
FDR. Specifically, FDR is estimated by measuring the average
number of discovered BPMs/WPMs from the random sample
labels that achieve a higher significance level than the BPMs/
WPMs reported from the real sample labels relative to the total
number of discoveries (i.e., FDR ~ average number of discoveries
at greater significance in the random permutations/total number
of discoveries in the real dataset). As the number of hypothesis
tests performed for all possible pathways and all possible
between-pathway combinations is substantially less than the
number of tests for all possible SNP pairs (~10° as compared to
~1011), our power for discovering interactions relative to
approaches that operate on individual SNP-SNP interactions is
greatly increased. These five steps enabled us to extract
statistically significant pathway-level interactions that can be
associated with either increased risk of disease when pairs of
minor alleles linked to two pathways occur more frequently in the
diseased population or, conversely, decreased risk of disease when
pairs of minor alleles annotated to two pathways occur more
frequently in the control population. The code implementing our
approach is available at http://csbio.cs.umn.edu/bridge.

Discovery of interactions in a Parkinson’s disease cohort. We
first applied BridGE to identify BPM genetic interactions in a
genome-wide association study of Parkinson’s disease (PD)20,
denoted as PD-NIA (Supplementary Data 1). Recent work esti-
mated a substantial heritable contribution to PD risk across a
variety of GWAS designs (20-40%)27-28, and although a relatively
large number of variants have been individually associated with
PD, the loci discovered to date explain only a small fraction
(6-7%) of the total heritable risk?’. The PD-NIA cohort used in
this analysis consists of 519 patients and 519 ancestry-matched
controls after balancing the population substructure (see Meth-
ods). We compiled a collection of 833 curated gene sets (MSigDB
Canonical pathways)?® representing established pathways or
functional modules from KEGG?3, BioCarta?4, and Reactome?®
(Supplementary Data 2) and found that 658 of these pathways
were represented in the PD-NIA cohort after filtering based on
gene-set size (minimum: 10 genes or SNPs, maximum: 300 genes
or SNPs). After using SNP-pathway membership permutations
(NP = 150,000) and sample permutations (NP = 10) to establish
global significance and correct for the multiple hypotheses tested
(see Methods), BridGE reported 23 significant BPMs involving 32
unique pathways at a false discovery rate (FDR) of <0.25 (pperm <
4.7 x 107°) using a combined disease model (Figs. 2a, 3, Sup-
plementary Data 3, 4). For example, one of the highest confidence
BPMs (FDR <0.05) was identified between the Golgi-associated
vesicle biogenesis and FC epsilon receptor I (FceRI) signaling
pathways. More specifically, we observed 2281 SNP-SNP inter-
actions between the vesicle biogenesis and FceRI signaling gene

sets (Fig. 2b), a 1.5-fold enrichment relative to the expected
number of SNP-SNP interactions (1510) based on the global
density of the SNP-SNP interaction network (5%) and 1.3- and
1.2-fold enrichment given the marginal density of the two path-
ways (5.9% and 6.5%), respectively (pperm < 6.7 X 1076, Fig. 2¢).
Importantly, none of the individual SNPs-associated genes
annotated to either the Golgi-associated vesicle biogenesis or
FceRI signaling were significant on their own after multiple
hypothesis correction based on single-locus tests on this cohort
(Fig. 2b). Furthermore, none of the individual SNP-SNP inter-
actions between the two pathways were significant when tested
independently under an additive disease model (Fig. 2d, FDR
>0.98), or recessive or dominant models (see Methods) (Sup-
plementary Fig. 2). Thus, the wvariants involved in this
pathway—pathway interaction could not be identified using tra-
ditional univariate analysis or interaction tests that focus on
individual SNP pairs, but were highly significant when assessed
collectively by BridGE.

Furthermore, few of the pathways we discovered as implicated
in a significant BPM (Fig. 3, Supplementary Data 4) would be
discovered using approaches based on pathway enrichment tests
of single-locus effects®. More specifically, Golgi-associated vesicle
biogenesis, Clathrin-derived vesicle budding and the Rac-1 cell
motility signaling pathway modules were enriched among the
single-locus effects associated with PD at the same FDR applied
to the discovery of BPMs (FDR < 0.25; Supplementary Data 5).
Aside from the Golgi-associated vesicle biogenesis gene set
(implicated in 4 of our 23 BPMs), gene-set enrichment analysis of
single-locus effects failed to identify any of the remaining 31
BPM-involved pathways (Supplementary Data 4 and 5).

The large majority (22 of 23) of discovered BPMs were
associated with decreased risk for Parkinson’s disease (Fig. 3).
This may suggest that, in the case of Parkinson’s disease, genetic
interactions may be more frequently associated with protective
effects, or alternatively, that there is more heterogeneity across the
population in genetic interactions leading to increased risk, which
would limit our ability to discover such interactions. Several BPM
interactions were highly relevant to the biology of Parkinson’s
disease. In particular, the FceRI signaling pathway represented a
hub in the pathway-level genetic interaction network (Fig. 3).
FceRI is the high-affinity receptor for Immunoglobulin E and is
the major controller of the allergic response and associated
inflammation. In general, immune-related inflammation has been
frequently associated with Parkinson’s disease, and several
immuno-modulating therapies have been pursued, but it remains
unclear whether this is a causal driver of the disease or is rather a
result of the neurodegeneration associated with disease
progression3%31. There has been relatively little focus on the
specific role of FceRI in Parkinson’s, but recent observations
support the relevance of this pathway to the disease’?. For
example, Bower et al.33 reported an association between the
occurrence of allergic rhinitis and increased susceptibility to PD.
Furthermore, reduction of IL-13, one of the cytokines activated
by FceRI and a member of the FceRI signaling pathway, was
shown to have a protective effect in mouse models of PD?4, and
galectin-3, which is known to modulate the FceRI immune
response, was shown to promote microglia activation induced by
a-synuclein, a cellular phenotype associated with PD3%36, These
observations indicate that a hyperactive allergic response may
predispose individuals to PD, and suggest that protective
interactions discovered by our BridGE method may result from
variants that subtly reduce the activity of this pathway.

Aberrant events in the Golgi and related transport processes
have also been known to play an important role in the pathology
of various neurodegenerative diseases, including Parkinson’s
disease3”-38. For example, a-synuclein expression has been shown
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Fig. 2 Significant pathway-pathway interactions discovered from the PD-NIA Parkinson’s disease cohort. a Quantile-quantile (QQ) plot comparing
observed p-values (based on SNP-pathway membership permutations) for all possible pathway-pathway interactions between the 685 pathways to the
expected, uniform distribution (log;o scale). The horizontal line at 6.7 x 10~ reflects the maximum resolution supported by 150,000 permutations.

b Interaction between Golgi-associated vesicle biogenesis pathway (Reactome) and FceRI signaling pathway (KEGG). Two sets of SNPs mapped to genes
in these pathways are connected by gray lines that reflect SNP-SNP interactions above a lenient top-5% percentile cutoff. The two groups of horizontal
bars (grouped and colored by chromosome) show the —log;o p-values derived from a single-locus (univariate) test applied to each SNP individually
(hypergeometric test), and the two dashed lines correspond to an uncorrected hypergeometric test p < 0.05 cutoff, indicating that very few of the SNPs
show marginal significant association before multiple hypothesis test correction. € Null distribution of the SNP-SNP interaction density between the Golgi-
associated vesicle biogenesis pathway and FceRI signaling pathway described in b based on 150,000 SNP permutations. The observed density for the
Golgi-associated vesicle biogenesis and FceRI signaling interaction is indicated by the red arrow and was not exceeded by any of the random instances
(Pperm < 6.7 % 10-9). d Distribution of p-values from individual tests for pairwise SNP-SNP interactions for SNP pairs supporting the pathway-pathway
interaction, as measured by an additive disease model (—log;o p-value). None of the SNP pairs are significant after multiple hypothesis correction (dashed
line at the most significant SNP-SNP pair corresponds to FDR = 0.98)

to interfere with ER-to-Golgi vesicular trafficking®® and the
overexpression of Rabl, GTPase that regulates tethering and
docking of the transport vesicle with the Golgi, was shown to
protect against a-synuclein-induced dopaminergic neuron loss in
an animal model of PD38. BridGE discovered 5 distinct between-
or within-pathway interactions involving the Golgi-associated
vesicle biogenesis gene set, including a high confidence interac-
tion with the FceRI signaling pathway (Figs. 2b and 3).
Interestingly, a previous study reported a genetic interaction

between RAB7L1 and LRRK2 in which overexpression of RAB7LI
could rescue defects caused by LRRK2 (ref. 3%). RAB7LI itself is
not annotated to the Golgi vesicle biogenesis gene set, but we
further investigated the individual genes driving the observed
between-pathway interaction. The strongest SNP contributing to
this pathway interaction was linked to the gene RAB5C, another
Rab GTPase that regulates early endosome formation*?, for which
an isoform (Rab5B) is known to physically interact with LRRK2
(refs. 3%41). Our result suggests that beyond this known
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interaction, there are many other combinations of common
variants that affect vesicle trafficking involved in genetic
interactions associated with risk of PD. BridGE also identified
three protective interactions involving the IL-12 and
STAT4 signaling pathway, a pro-inflammatory cytokine that
has a major role in regulating both the innate and adaptive
immune responses?2. Specifically, microglial cells both produce
and respond to IL-12 and IFN-gamma, and these comprise a
positive feedback loop that can support stable activation of
microglia®3#4, a hallmark of PD, particularly in later stages*>. The
prevalence of the FceRI and IL-12 interactions among the
discovered interactions suggests a major role for immune
signaling as a causal driver of PD.

In addition to significant BPM interactions, we also discovered
three significant WPMs associated with PD risk. These included
interactions within the Golgi-associated vesicle biogenesis

(Pperm £ 4.7 X 1075, and FDR <0.01), Collagen mediated activa-
tion cascade (Pperm <4.2X 1074, and FDR=0.13), and the
HCMV and MAP kinase pathways (pperm<2.9x107% and
FDR =0.25) (Fig. 3, Supplementary Data 4). In all three cases,
minor allele combinations within the pathways were associated
with decreased risk of PD. All three of these pathways were also
implicated in high confidence protective BPM interactions with
other pathways suggesting they play important roles in PD risk.

Replication analysis of Parkinson’s disease interactions. To
validate our findings, we tested if BPM interactions discovered in
the PD-NIA cohort could be replicated in an independent PD
cohort (PD-NGRC)# consisting of 1947 cases and 1947 controls,
all of European ancestry (subjects overlapping with PD-NIA
cohort were removed). At a stringent FDR < 0.05 cutoff, BridGE
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PD-NIA data was tested for replication in the PD-NGRC cohort. The collective significance of replication of the entire set of interactions discovered in PD-
NIA was evaluated by measuring the fraction of significant BPMs discovered from PD-NIA that replicated in the PD-NGRC cohort (blue bars) at five

different FDR cutoffs (x-axis). The random expectation for the number of replicating BPMs is plotted for comparison and was estimated based on 10

random sample permutations (gray bars). b Sample permutation-based approach to check whether the individual SNP-SNP interactions supporting the
replicated pathway-level interactions are similar between PD-NIA and PD-NGRC. The significance of the overlap (blue dots) of SNP-SNP interactions in
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discovered two BPM interactions in the PD-NIA cohort, and one
of them replicated in the PD-NGRC based on all three sig-
nificance criteria (permutation test p = 0.02, Fig. 4a) (see Meth-
ods), including the top-ranked BPM interaction we discovered
between Golgi-associated vesicle biogenesis and the FceRI sig-
naling pathway. We further evaluated the replication rate of
discovered BPMs at a range of less conservative FDR cutoffs, and
indeed, we found that BPMs replicated more frequently than
expected by chance and showed a stronger tendency to replicate
in the independent cohort at more stringent FDR cutoffs (Fig. 4a,
Supplementary Data 6). Intriguingly, another BPM interaction
between the FceRI signaling pathway and a glycolysis/gluconeo-
genesis gene set, also replicated providing additional evidence for
the contribution of FceRI signaling to PD risk (see Supplementary
Data 6 for a complete list of replicated BPMs).

While we confirmed replication of a significant fraction of the
discovered BPM interactions, this does not necessarily imply that
the individual SNP pairs supporting these pathway-level effects are
shared across cohorts. For the eight BPMs that were validated in the

PD-NGRC cohort, five of them exhibited significant overlap in their
supporting SNP-SNP interactions, and collectively, the set of eight
replicated BPMs were strongly shifted toward higher than expected
SNP-SNP interaction overlap (see Methods) (one-tailed rank-sum
test p = 6.7 x 10~4) (Fig. 4b, see Supplementary Data 6 for a list of
SNP-SNP pairs in common across cohorts). However, despite
statistically significant overlap among SNP-SNP interactions
identified in replicated BPMs, the extent of the observed overlap
in terms of fraction of pairs was relatively low for most cases, with
all of them exhibiting an overlap coefficient of less than 0.15 (see
Methods) (Fig. 4c). Thus, the same pathway-pathway interaction
may be supported by different sets of SNP-SNP interactions in
different populations, or alternatively, this may reflect that the
power for reliably pinpointing specific locus pairs is limited. In
either case, these results highlight the primary motivation for our
method: genetic interactions, in particular those in a BPM structure,
can be more efficiently detected from GWAS when discovered at a
pathway or functional module level rather than at the level of
individual genomic loci.
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Discovery of genetic interactions in five other diseases. We
applied BridGE more broadly to an additional twelve GWAS
cohorts representing seven different diseases (Parkinson’s disease,
schizophrenia, breast cancer, hypertension, prostate cancer, pan-
creatic cancer, and type 2 diabetes)*’~>2 (Supplementary Data 1)
(see Methods). Including PD-NIA, of the 13 cohorts, analysis of 11
cohorts (covering six different diseases) resulted in significant dis-
coveries for at least one of the three types of interactions (BPM,
WPM, or PATH) at FDR <0.25. More specifically, significant
BPMs were discovered for eight cohorts (covering six different
diseases), significant WPMs for six cohorts (covering four different
diseases) and significant PATH structures for six cohorts (covering
three different diseases) at FDR<0.25 (Fig. 5, Table 1, Supple-
mentary Data 7-18). The number of interaction discoveries per
cohort varied substantially, from as low as two in one of the schi-
zophrenia cohorts to as many as 50 interactions in one of the breast
cancer cohorts. While we tested multiple disease models (additive,
dominant, recessive, and combined dominant-recessive), the most

significant discoveries for the majority of diseases examined were
reported when using a dominant or combined model as measured
by our SNP-SNP interaction metric (see Methods). The relative
frequency of interactions under a dominant vs. a recessive model
may be largely due to our increased power to detect interactions
between SNPs with dominant effects compared to recessive effects
(see Methods).

Importantly, we were able to successfully replicate genetic
interactions discovered for 3 additional diseases beyond Parkin-
son’s, including prostate cancer, breast cancer and schizophrenia
(Supplementary Data 19 replication summary). For example, 3 of
9 BPMs (FDR <0.20) discovered in the ProC-CGEMS prostate
cancer cohort were replicated in the ProC-BPC3 cohort (15-fold
enrichment, permutation test p=0.0001) while 2 of 7 WPMs
discovered from the ProC-BPC3 cohort (FDR <0.10) could be
replicated in ProC-CGEMS (2.22-fold enrichment, permutation
test p =0.0001). For breast cancer, 6 of 108 significant BPMs
(FDR <£0.20) discovered from the BC-MCS-JPN cohort replicated
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The number of discoveries made in each of the disease cohorts evaluated, the disease model under which discoveries were made, and the direction of the disease association is reported. A complete list of interactions discovered is available as Supplementary Data 4, 9-18

in the BC-MCS-LTN cohort (twofold enrichment, permutation
test p=0.07) and the sole significant PATH interaction
discovered from the BC-MCS-LTN cohort replicated in the BC-
MCS-JPN cohort. For schizophrenia, 1 of 8 significant BPMs
(FDR<0.25) discovered from the SZ-GAIN cohort replicated
(fold-enrichment > 10, permutation test p=0.02), and the top
significant WPM (FDR <0.1) also replicated in the SZ-CATIE
cohort (fold-enrichment > 10, permutation test p = 0.03).

The vast majority of the genetic interactions we discovered
appear to be disease-specific (Fig. 5, Supplementary Data 7), and
many of the pathways implicated in genetic interactions showed
strong relevance to the corresponding disease. For example, we
identified several cancer-related gene sets involved in replicated
BPMs predicted to affect breast cancer risk, including
p53 signaling, a basal cell carcinoma gene set, as well as an
increased-risk interaction between MTA3 related genes and T cell
receptor activation initiated by Lck and Fyn. MTA3 is a Mi-2/
NuRD complex subunit that regulates an invasive growth
pathway in breast cancer®3, and Lck and Fyn are members of
the Src family of kinases whose expression have been found to be
associated with breast cancer progression and response to
treatment>4>°,

We also identified and replicated multiple prostate cancer risk-
associated interactions that involved DNA repair, PD-1 (pro-
grammed cell death protein 1) signaling, and insulin regulation
pathways. Consistent with our findings, metabolic syndrome has
been recently associated with prostate cancer>®, and serum insulin
levels have been shown to correlate with risk of prostate cancer>’.
We also identified a replicating interaction associated with
decreased risk of prostate cancer between the p38 MAPK
signaling and AKAP95 chromosome dynamics pathways. P38
MAPK signaling has been associated with a variety of cancers,
and AKAP95 is an A kinase-anchoring protein involved in
chromatin condensation and maintenance of condensed chromo-
somes during mitosis®® whose expression has been previously
implicated in the development and progression of rectal and
ovarian cancers®0. We also discovered and replicated two WPMs
associated with prostate cancer risk. The first involves the antigen
processing and presentation pathway (associated with increased
risk) and a second involving a gene set associated with activation
of ATR in response to replication stress (associated with
decreased risk). Both of these pathways have strong relevance
to cancer risk®1-62,

For schizophrenia, we discovered and replicated a BPM
interaction comprising a gene set associated with the HIV life
cycle and a vitamin and cofactor metabolism pathway. Interest-
ingly, a recent large Danish schizophrenia study reported that
schizophrenia patients are at a twofold increased risk of HIV
infection, and conversely, that individuals infected with HIV
exhibited increased risk of schizophrenia, especially in the year
following diagnosis®®. Our finding suggests a common genetic
basis between risk factors for schizophrenia and host response to
the HIV virus, which may help to explain the observed co-
morbidity of these diseases. We also discovered and replicated a
protective. WPM for schizophrenia in the nicotinate and
nicotinamide metabolism pathway. Nicotinic acid (vitamin B;)
supplements have been pursued as a treatment for schizophrenia
dating back to the 1950s%4. Interestingly, after an initial series of
reports of promising treatments, several follow-up studies had
difficulty reproducing the beneficial effects of nicotinic acid®?,
which could be a result of modifier effects within this pathway. In
summary, BridGE was able to detect each of these different types
of pathway-level genetic interactions (BPM, WPM, and PATH)
across several diverse disease cohorts, highlighting the utility of
our method and the potential for genetic interactions to underlie
complex human diseases.
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Power simulation study. Several of our results indicate that the
additional power gained by aggregating SNPs connecting between
or within pathways is critical for discovering genetic interactions
from GWAS, at least based on the cohort sizes analyzed here. To
fully explore the limits of our approach, we carried out a simu-
lation study to estimate the statistical power afforded by the
BridGE method with respect to sample size, interaction effect size,
minor allele frequency, and pathway size, all of which should
affect the sensitivity of detection of pathway-level genetic
interactions.

We focused our power analysis on the detection of BPMs,
which comprise most of our discoveries. Briefly, our simulations
involved two components: one in which the discovery rate of
individual SNP-SNP pairs was evaluated using a simulated
population cohort, and another component that simulated the
detection rate of BPM interaction structures across a range of
sizes given the corresponding level of false positives in the SNP-
level network as determined by the first component. More
specifically, for the first component of these simulations, we used
GW Asimulator® to generate synthetic GWAS datasets with 100
embedded SNP-SNP interaction pairs under different controlled
scenarios representing various combinations of different sample
size, interaction effect size, and minor allele frequency. Then, we
measured the discovery rate of the embedded SNP-SNP
interactions. This provides a direct measure of the sensitivity
and specificity of the SNP-SNP interaction-level measure that
forms the basis of the pathway-level statistics. The statistics on
sensitivity and specificity of SNP-SNP interaction detection from
this component of our simulations were then used to guide a
second set of simulations in which we assessed the sensitivity of
BridGE in detecting BPMs with different levels of noise in the
SNP-SNP level network. We generated a synthetic SNP-SNP
interaction network matching the degree distribution of the
network derived from one of the real datasets (PD-NIA,
dominant-dominant model). Then, a set of non-overlapping
BPMs among synthetic pathways of different sizes were
embedded into this network, and BridGE was run to measure
the rate of detection for each scenario (see Methods for more
details on this simulation procedure).

For each parameter setting, we measured the minimum cohort
size required to detect a pathway-level interaction with the
corresponding properties at a fixed FDR (FDR<0.25) (ie.,
controlling the Type I error rate). Indeed, we found that each of
the evaluated parameters (sample size, interaction effect size,
minor allele frequency, and pathway size) affected the power of
our approach (Fig. 6). As expected, the sensitivity of our method
increases with increasing pathway size, which is a key motivation
for the approach. For example, our power analysis indicated that
a minimum cohort size of 5000 individuals (2500 cases, 2500
controls) is required to detect a 25 x 25 BPM (i.e., two interacting
pathways with 25 SNPs mapping to each pathway) that confers a
2x increase in risk with a minor allele frequency (MAF) of 0.05
(FDR < 25%) while a 300 x 300 BPM with the same effect size
would require only 1000 individuals (500 cases, 500 controls) for
detection at the same level of significance (simulation results for
more stringent FDR cutoffs). As expected, the sensitivity of the
approach also increases for interactions involving SNPs with
higher MAF. For example, the same 25x25 BPM involving
variants at MAF of 0.15 conferring 2x increase in risk can be
detected from cohorts as small as 2000 individuals (1000 cases,
1000 controls), and a 300 x 300 BPM with these characteristics
could be detected from a cohort as small as 500 individuals (250
cases, 250 controls). A key parameter affecting these power
estimates is the assumed biological density of interactions, which
we define as the fraction of SNP-SNP pairs crossing two
pathways of interest that actually have a functional impact on the

disease phenotype relative to all possible SNP-SNP pairs. We
assumed a density of 5% for the power analysis reported here
(analysis based on 2.5 and 10% are included in Supplementary
Fig. 3), meaning that the fraction of SNP pairs that have the
potential to jointly influence the phenotype comprise only a small
minority of all possible SNP pairs. In practice, we anticipate that
this frequency varies substantially across different pathways,
depending on the frequency of functionally deleterious SNPs that
are present in the population for each pathway. A higher density
of functionally deleterious SNPs will result in higher sensitivity of
our approach and vice versa, a lower density of functionally
deleterious SNP combinations can substantially reduce the
sensitivity of our approach (Supplementary Fig. 4). Notably,
while statistical power increases with pathway size (i.e., number of
SNPs mapping to each pathway), this is only true under the
assumption that the SNPs (and the corresponding genes) actually
contribute in a functionally coherent manner to the particular
pathway or functional module. On the real disease cohorts, we
discovered interactions for a large range of pathway sizes
(Supplementary Fig. 5), suggesting there are even relatively small
functional modules (e.g., <20 associated SNPs) that have
sufficiently strong interaction effects to be detected. In general,
these power analyses confirm that our approach is sufficiently
powered to discover pathway-level genetic interactions at
moderate effect size (~2x increased/decreased risk) for relatively
small cohorts (~500 or more individuals), which suggests it could
be broadly applied to discover interactions in hundreds of
existing GWAS cohorts that have been previously analyzed using
only univariate approaches.

Discussion

We described a novel and systematic approach for discovering
human disease-specific, pathway-level genetic interactions from
genome-wide association data. Genetic interactions identified
from eleven GWAS cohorts representing six different diseases
confirmed that structures prevalent in genetic networks of model
organisms are indeed apparent in human disease populations and
that these structures can be leveraged to discover significant
genetic interactions that occur either between or within biological
pathways or functional modules. Genetic interactions discovered
for these six diseases have the potential to contribute substantially
to our understanding of their genetic basis. For example, to date,
there have been ~85 singly associated loci (p < 1.0 x 10~7) and one
genetic interaction (between FGF20 and MAOB) reported for
Parkinson’s Disease®”-%8, Here, we discovered 23 novel pathway-
level genetic interactions, emphasizing the potential of our
approach to expand our knowledge of the contribution of genetic
variation associated with diseases such as PD. Indeed, many of
the pathways discovered by our approach have not been pre-
viously implicated in these diseases. For example, the median
percentage of BridGE-identified pathways for which there was at
least one linked SNP reported in dbGaP across the six diseases
was 22% (Supplementary Data 20), indicating that the large
majority of our discoveries represent novel insights that could not
be made using standard single-locus approaches.

There are several ways the BridGE method could be expanded
and improved upon to better detect genetic interactions. First, our
approach currently depends on literature-curated collections of
biological pathways as a major input. The potential of our method
to detect genetic interactions within or between well-defined
pathways and functional modules could be substantially
improved as more complete curated or data-derived functional
standards are developed and integrated with the approach, which
will be a focus of future work. Second, to avoid spurious network
structures related to SNPs that map to genes located in close
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physical proximity or LD, we sampled a conservatively sized
subset of tag SNPs to run our analysis for each dataset. This
conservative approach has undoubtedly missed functional var-
iants that may contribute to disease risk. More sophisticated
approaches for retaining a larger set of tag SNPs while still
controlling for LD structure could improve the sensitivity of our
method. Finally, we emphasize that our study focuses exclusively
on detecting pathway level genetic interactions between common
variants assayed by typical GWAS. Continued development to
examine the contribution of rare variants or interactions between
rare variants and other loci, or to leverage the full set of variants
identified through whole-genome or exome sequencing represent
logical extensions of the BridGE approach.

Developing mechanistic or clinically actionable disease insights
based on the genetic interactions we have discovered will require
additional strategies that build on pathway-level discoveries to
generate more targeted hypotheses, followed by functional studies
in disease models. One potential strategy to generate more tar-
geted hypotheses involves leveraging an approach like BridGE to
find pathways with robust disease-associated genetic interactions
followed by a more targeted search for individual SNP-SNP or
gene-gene pairs within these pathways that explain these struc-
tures. Our analysis of the Parkinson’s cohort indicated that there
is indeed significant overlap among the strongest SNP-SNP
interactions underlying replicated pathway level interactions,
supporting the potential utility of this hierarchical approach.

The extent to which genetic interactions contribute to the
genetic basis of human disease has been the subject of recent
debate>0%70, This debate is in part fueled by differences in lan-
guage among geneticists that regularly find physiological epistasis
between specific alleles and statistical geneticists who measure the
non-additive component of genetic variance in a population®®71.
The target of our method is to discover disease-relevant physio-
logical epistasis between sets of specific alleles in biological
pathways based on population genetic data. Robust estimates of
the additional heritability explained by pathway level genetic
interactions discovered by our method will be a focus of future
work, but we anticipate these genetic interactions represent just
one of many contributions to heritability. Even in cases where the
contribution to disease heritability is modest, genetic interactions
define genetically distinct disease subtypes and point toward new
insights about disease mechanism that can seed the search for
new, targeted therapies. Also, recent studies suggest that accu-
rately predicting the phenotypes of individuals from genotypes
can depend critically on understanding interactions between
genetic loci®®72, and thus, progress in personalized genome

interpretation and medicine depends on our understanding of
how specific alleles interact to cause phenotypes. Our work
establishes a new paradigm for approaching this problem and
provides a systematic method for detecting genetic interactions
that can be applied to existing population genetic data for a
variety of human diseases.

Methods

Brief summary of existing methods. Although efficient and scalable computa-
tional tools have been developed for searching for interactions among genome-
wide SNPs1073-75 detecting them with statistical significance remains a major
challenge.

There are previous methods that have approached this problem, although from
different perspectives than the method proposed here. We briefly summarize those
methods and describe the novelty of our approach relative to this body of
existing work.

Four general directions taken by previous methods for pathway-based analysis
that are the most similar to our approach are: (1) gene-set enrichment-based
approaches applied to loci derived from univariate tests, (2) gene-set enrichment-
based approaches applied to SNP-level summary statistics from interactions, (3)
methods that use pathways as a prior to study SNP or gene level interactions or
reduce the number of hypothesis tests, and (4) regression methods for pathway-
based GWAS studies.

(1) Gene-set enrichment-based approaches applied to loci derived from
univariate tests: gene-set enrichment analysis (GSEA) was originally
developed for case-control gene expression datasets?”7® but has previously
been adapted to summarize sets of loci (and their linked genes) derived from
univariate tests applied to GWAS datasets®. There are two key differences
between these approaches and the method we propose. First, traditional
approaches for GSEA start from univariate statistics of genes or SNPs, while
our approach is built on interactions between pairs of SNPs that could have
little or no single-locus association with a disease phenotype. Second,
approaches for GSEA target the enrichment of single gene/SNP associations
in each individual pathway while our approach explores the enrichment of
SNP-SNP interactions crossing each pair of pathways (between-pathway
model or BPMs).

(2) Gene-set enrichment-based approaches applied to SNP-level summary
statistics from interactions: The gene-set enrichment approach has also been
applied beyond loci derived from univariate analysis. Another class of
methods first measure genetic interactions based on pairwise SNP analysis,
derive summary statistics at the individual SNP level based on specific
interaction properties, and follow this with GSEA using pathway-associated
SNP (or gene) interaction-based scores. For example, one such approach
was recently applied to a bipolar study and a sporadic Amyotrophic Lateral
Sclerosis study!”77. In this study, whole-genome SNPs were first filtered
based on their ECML scores’® and only the top 1000 SNPs with the
strongest main effects and gene-gene interactions were retained for studying
SNP-SNP interactions. Then, a SNP-SNP interaction network was
constructed using a logistic regression model, and SNPs were ranked based
on their network centrality in this network. Finally, candidate pathways
were evaluated using a gene-set enrichment analysis based on pathway
members’ rankings. A similar GO enrichment approach was applied to the
sporadic Amyotrophic Lateral Sclerosis study!’, but SNP interaction
strength was first estimated using a multiple dimension reduction (MDR)
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model and then summarized at a gene level by enrichment analysis. GO
annotation enrichment approaches were then applied to these gene-level
scores. Again, these studies have not introduced the key concept that
motivates our method: that genetic interactions connect coherently across
pairs of distinct pathways.

(3) Methods that use pathways as a prior to study SNP or gene level interactions
to reduce the number of hypothesis tests: Another strategy implemented by
other existing methods to address the multiple hypothesis testing challenge
presented by pairwise SNP analysis is to reduce the number of hypothesis
tests, based on a variety of different criteria’. These methods typically
employ a filtering step, either data-driven?%21:80 or knowledge-driven8!:$2,
before applying statistical analysis of interactions. Other illustrative
examples of this class of approaches are from a recent autism spectrum
disorder study where all possible SNPs were tested for interactions with the
Ras/MAPK pathway®?, and a melanoma risk study where SNP-SNP
interactions were studied within the five pathways that are significant based
on the traditional individual SNP based-GSEA analysis®*. Most studies
implementing this approach investigate interactions among a small set of
genetic variants (genes or SNPs) that either statistically demonstrate
evidence for individual association with the disease phenotype or are known
to be relevant to the disease based on prior knowledge. Hence, systematic
detection of genetic interactions among novel genes, or genes that show no
marginal association will not be detected by these approaches.

(4) Regression methods for pathway-based GWAS studies. A few regression
approaches have been previously developed to leverage pathway informa-
tion to model the relationship between pathway SNPs and disease
phenotypes with or without considering genetic interactions, including
GRASS®, PBASS, and EBLasso®”. These methods typically build a regression
model using genetic variants (SNPs or pairwise SNPs when considering
genetic interaction) from each pathway and use ridge or lasso methods to
select a subset of variants. Then, a traditional gene-set enrichment analysis
or logistic regression analysis is applied on the chosen genetic variants. Such
methods are conceptually different from our proposed method because they
do not explicitly search for genetic interactions forming coherent within-
pathway or between-pathway structures, which is key foundation of our
approach. Furthermore, the methods cited above do not provide evidence
for replication of the reported pathway discoveries.

In summary, existing approaches are related to the proposed approach in the
general sense that they leverage existing knowledge of pathways or other sets of
functionally related sets of genes to either perform enrichment on univariate effects
or interaction-based SNP summary statistics (e.g., interaction degree), or simply
use pathways as a prior to reduce the number of SNP pairs tested for interactions.
To our knowledge, no existing methods explicitly test for higher-level interactions
connecting within or between multiple pathways and are sufficiently powered to
perform this systematically across comprehensive pathway databases.

GWAS datasets. Twelve GWAS datasets, representing 13 different cohorts cov-
ering seven diseases, were used in this paper: Parkinson’s disease (PD-NIA:
phs000089.v3.p2, PD-NGRC: phs000196.v1.p1), breast cancer (BC-CGEMS-EUR,
BC-MCS-JPN and BC-MCS-LTN: phs000517.v3.p1), schizophrenia (SCHZ-GAIN:
phs000021.v3.p2; SCHZ-CATIE: CATIE study), hypertension (HT-eMERGE:
phs000297.v1.p1l; HT-WTCCC: cases are from EGAD00000000006, controls are
from EGAD00000000001 and EGAD00000000002), prostate cancer (ProC-
CGEMS: phs000207.v1.pl; ProC-BPC3: phs000812.v1.p1), pancreatic Cancer
(.PanC-PanScan: phs000206.v3.p2) and Type 2 Diabetes (T2D-WTCCC: cases are
from EGADO00000000009, controls are from EGAD00000000001 and
EGAD00000000002). These datasets were obtained from three resources: dbGaP88,
Wellcome Trust Case Control Consortium or the National Institute of Mental
Health (NIMH). Details of each dataset (e.g., sample size, genotyping platform) are
summarized in Supplementary Data 1.

Data processing. We used the same set of pre-processing steps for all GWAS
datasets analyzed in this paper. Each of the steps is outlined in detail in the sections
that follow.

Sample quality control. We first controlled data quality using the standard PLINK
inclusion procedure with the following parameters: 0.02 as the maximal missing
genotyping rate for each individual/SNP (--mind, --geno), 0.05 as the minimum
minor allele frequency (--maf), and 1.0 x 10~° as the Hardy-Weinberg equilibrium
cutoff (--hwe le—6).

To identify outlier samples that were not consistent with the reported study
population, we mapped SNPs in each GWAS dataset to Genome Reference
Consortium GRCh37 and combined the samples with the 1000 Genomes data (all
ancestry groups). We then used PLINK to perform multi-dimensional scaling
(MDS) analysis. On the basis of the MDS plot, we removed samples that were not
tightly clustered with the corresponding ancestry groups in the 1000 Genomes
data. For the two Parkinson’s disease cohorts, we followed the previous study® to
remove samples that are likely outliers. For these cohorts, duplicate subjects were

kept in just one cohort with priority given to PD-NIA over the PD-NGRC cohort,
so that we could retain as many samples as possible for the smaller cohort.

Population stratification. Checking relatedness among individuals: Relatedness
among each pair of subjects was tested by calculating IBD?C. For subject pairs with
a proportion IBD score greater than 0.2, one was randomly chosen and removed
from the data, and the other was kept.

Matching population structure between cases and controls: Because spurious
allelic associations can be discovered due to unknown population structure?21,
recent GWAS analyses suggest the use of a procedure to ensure balanced
population structure between cases and controls?°. Here, all subjects were clustered
into groups of size 2, each containing one case and one control that are from the
same sub-population (based on pairwise identity-by-state distance and the
corresponding statistical test), as is implemented in PLINK®.

Future extensions of our method could include parameters capturing
population structure directly in the model for genetic interactions, for example, as
is described in ref. °2. The primary concern in developing and applying our current
approach was to ensure that population structure was not introducing spurious
pathway-level interactions, so we took this relatively conservative approach to
adjust for population stratification. More sophisticated approaches could reduce
the number of samples lost in filtering based on population stratification and
improve the sensitivity of the method.

Filtering SNPs in LD. For each dataset, we selected all SNPs that could be mapped
to at least one of the 6744 genes in the collection of pathways used in the pathway-
level interaction search. A SNP was mapped to all genes that overlap with a +50 kb
window centered at the SNP, and then mapped to pathways to which the corre-
sponding gene(s) were annotated. For the purposes of computing pathway-level
statistics, a SNP was only associated once with each pathway, even if it mapped to
multiple genes in the pathway.

To avoid the discovery of trivial bipartite structures, SNPs in LD need to be
removed before between or within-pathway enrichment of SNP-SNP interactions
is conducted. Two general approaches can be pursued towards this goal: (1)
removing SNPs in LD before calculating pairwise SNP-SNP interactions; and (2)
removing structures that emerge as a result of SNPs in LD after calculating pairwise
SNP-SNP interactions.

The first alternative is more likely to miss informative SNP-SNP interactions
than the second because it only considers a subset of all SNPs, but is more
computationally efficient and scalable. It is worth noting that a biclustering
algorithm pursuing the second approach was designed in ref. 19 to condense a yeast
SNP-SNP interaction network into an LD-LD network. The algorithm described in
that work took the SNP-SNP interaction matrix as input and searched for sets of
consecutive SNPs that had a statistically significant number of across-set SNP-SNP
interactions based on a hypergeometric test. The algorithm was applied on a yeast
SNP-SNP interaction network (originally constructed in ref. °3) with 1977 SNPs,
where the LD effect was assumed to be localized to less than 60 SNPs for
computational reasons. We attempted to apply this algorithm to the human
genotype datasets used in this paper and observed that the algorithm could handle
about 1500 SNPs with a threshold of ¢ below 60, but not beyond. For example, on a
dataset with 2000 SNPs, the program did not finish in two days with ¢ = 100.
Given issues with scalability of this approach, we adopted the first alternative,
which is to select a subset of SNPs that are not in LD.

To accomplish this, we used a procedure in PLINK to select a subset of SNPs
that are less likely in LD from each GWAS dataset, specifically “-indep-pairwise 50
5 0.1”. With this procedure, PLINK searches each window of 50 SNPs with a
sliding step of 5 SNPs, and selects a subset of SNPs with pairwise > below 0.1
within each sliding window. After this procedure, ~15,000-20,000 SNPs were left in
each dataset, and the highest 72 between any pair of SNPs within any window of 1
Mb is lower than the commonly used threshold for controlling LD (r2 < 0.2)%4,
demonstrating that the LD was effectively controlled. Note that by using a stringent
12 threshold of 0.1, we are undoubtedly ignoring many informative SNPs. However,
we chose this conservative approach to minimize the chance that spurious WPMs
and BPMs resulted from remaining LD structure. Future work that explores less
conservative approaches to handling SNPs in LD would be worthwhile.

For diseases that we tested for replication of discovered interactions on
independent cohorts of the same ancestry, to make the discovery and replication
analysis consistent for these instances, cohorts were first combined and then
processed using the PLINK procedures described above to select the subset of SNPs
on which the analysis was run. After selection of SNPs, population stratification
and discovery of interactions was then performed independently. We followed this
procedure for three of the diseases analyzed, Parkinson’s disease, schizophrenia,
and breast cancer. For prostate cancer, our access to ProC-CGEMS and ProC-
BPC3 was gained at different times, so SNPs used in ProC-BPC3 were selected
based on the CGEMS cohort. A summary of all processed datasets used in this
study is included in Supplementary Data 1.

Selection of pathways. A total of 833 human pathways (gene sets) were collected
from the Kyoto Encyclopedia of Genes and Genomes (KEGG)®>°, Biocarta?4, and
Reactome?” (Supplementary Data 2). We excluded any pathway from our analysis
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with less than 10 or more than 300 genes, or less than 10 or more than 300 SNPs,
mapping to the pathway after LD control to avoid pathways that were too small to
provide sufficient statistical power or too large to provide specific biological
insights.

SNP-SNP genetic interaction estimation. MM, Mm and mm are used to denote
the three genotypes of each SNP, i.e., majority homozygous, heterozygous, and
minority homozygous, respectively. Our method implements multiple disease
models, which affect how interactions are estimated at the SNP-SNP interaction
level. A minor allele (m) at each locus could be additive, dominant or recessive in
the context of different diseases. For the additive model, we used the standard
logistic regression-based model implemented in CASSI’# to quantify the interac-
tion between two SNPs coded as follows, mm =2, Mm =1, MM = 0. In this
model, the goodness-of-fit was compared between a standard logistic regression
model with an interaction term between the two loci of interest and a standard
logistic regression without an interaction term, and the significance of the inter-
action was measured by a likelihood ratio test’4. We refer to this type of SNP-SNP
interaction as an additive-additive (AA) model-based interaction. In the dominant
model, a SNP is encoded as mm = 1, Mm = 1, MM = 0. In the recessive model, a
SNP is encoded as mm = 1, Mm = 0, MM = 0. Because the minor allele could have
recessive (R) or dominant (D) contribution to disease at two different loci com-
prising an interaction, four types of SNP-SNP interactions were examined:
recessive-recessive (RR), dominant-dominant (DD), recessive-dominant (RD),
and dominant-recessive (DR) model-based interaction for each pair of SNPs. The
interactions under these four models can also be estimated by a logistic regression-
based model similar to the AA case except with the appropriate encoding of the
SNP genotypes. Alternatively, the RR, DD, DR, and RD interactions can be esti-
mated by explicit statistical tests (e.g., hypergeometric tests) of the association
between a specific genotype combination of two SNPs and a disease of interest,
where this association is compared to the association between each of the indivi-
dual SNPs and the disease (marginal effect). Interactions estimated by logistic
regression-based models directly capture non-additive effects between two SNPs
considering different combinations of SNP genotypes. In contrast, interactions
estimated by explicit statistical tests have the flexibility of specifically testing certain
combinations of genotypes for association with the phenotype. We explored
alternative approaches both in representing different disease models and in the
estimation of SNP-SNP interactions, and found that RR, DD, DR, and RD
interactions estimated by explicit statistical tests more likely led to the discovery of
significant BPMs/WPMs in the context of our BridGE approach. The measure we
developed based on explicit statistical tests, called hygeSSI, is described in detail
below. The relationship between hygeSSI and logistic regression-based models is
explored in more depth in “Comparison with logistic regression-based interac-
tions” section.

hygeSSI. We designed a hypergeometric-based measurement (hygeSSI) to estimate
the interactions between two binary-coded SNPs (dominant or recessive). The
hypergeometric p-value for a pair of binary-coded SNPs with respect to a
case—control cohort is calculated as follows:

Py(S,,8,,C) = 1~ hygecdf (X — 1,M,K,N)

O
N

Where S, and S, are two SNPs; M is the total number of samples; N is the total
number of samples in class C; K is the total number of samples that have genotype
T; X is the total number of samples that have genotype T in class C.

We use P,_(S,,C) and P_(S,,C) to represent the individual SNP S, and S,’s
main effects and Py1(8,S,,C); P10(S:S,,C); Po1(8,S,»C) and Poo(Ss»S,,C) to represent
the effects of all pairs of combinations. With a nominal p-value threshold (¢ =
0.05), we first require a SNP pair to have significant association with the phenotype
(P11(8+S,,C) < a). In addition, we specifically exclude instances where other allele
combinations show significant association with the trait, i.e., we require: P1(S.S,,
C) > a, Py1(8S,,C) > & and Pyy(S,S,,C) > a.

Given a binary-coded SNP pair (S,,S,) and a binary class label C, the following
measure hygeSSI (Hypergeometic SNP-SNP Interaction) was defined to estimate
the genetic interaction between two SNPs S, and S, (specifically for Py;):

1 Py (8:,8,€)
hygeSSI. (sxﬁsy) =< Oglomin{Pw(sX.sy.c),Pm(sx,sy,c).Pm,(sx.sy.c),le(sx,c).PNl(syc)}
0; Py >a, Pyg, Pyy, Py < &

As described in a recent comprehensive review’, algorithms based on logistic/
linear regression, multifactor dimensionality reduction (MDR)?’, entropy or
information theory® have been developed to measure genetic interactions. All of
these approaches quantify the synergistic effect of SNP pairs by comparing the
relative strength of the association between a pair of SNPs and a disease trait with
the strength of the associations between two individual SNPs and the disease trait.
A few of these alternatives were tested in the context of our method and did not

provide the significant results we achieved with the metric above. We designed the
above hygeSSI measure because it explicitly captures the interaction between
combinations of specific genotypes of two loci.

Construction of SNP-SNP interaction networks. We constructed SNP-SNP
interaction networks to serve as the basis for the pathway-level interaction tests
based on each of the disease model assumptions. An AA interaction network was
constructed by the described logistic regression-based approach, where SNP-SNP
edge scores were derived from the -log;, p-value resulting from the likelihood ratio
test. The RR and DD interaction networks were computed based on the hygeSSI
metric, and only positive interactions were kept in the network (i.e., where the joint
effect of the SNP-SNP pair under the corresponding disease model was stronger
than any marginal or alternative combination of SNPs). In addition to the above
three networks, we also constructed a hybrid SNP-SNP interaction network in
which interactions under recessive and dominant disease model could coexist. To
do this, we integrated all four networks (RR, DD, RD, and DR) into a single
network (RD-combined) by taking the maximum hygeSSI among the four inter-
action networks for each pair of SNPs.

Measuring pathway-pathway interactions. For each pair of pathways, we want
to test if the number of SNP-SNP interactions between them is significantly higher
than expected given the overall density of the SNP-SNP network as well as the
marginal interaction density of the two pathways involved. Enrichment analysis
based on SNP-SNP interactions is much more computationally challenging, and
thus we choose to binarize the hygeSSI values (based on a lenient threshold) to
make follow-up computation efficient and scalable. After binarization, we divided
the SNP-SNP interaction network into two networks based whether the joint
mutation of a SNP pair is more prevalent in the case or control group, which we
refer to as the risk and protective networks, respectively.

For each pathway-pathway interaction, we first removed the common SNPs
shared between two pathways. Then, we test if the observed SNP-SNP interaction
density between two pathways is significantly higher than expected globally (the
global network density) and locally (the marginal density of SNP-SNP interactions
of the two pathways). Specifically, the marginal density of a pathway is calculated as
the SNP-SNP interaction density between the SNPs mapped to the pathway and all
other SNPs in the network. We computed a chi-square statistic to test differences
from both global and local density, namely chi-square global (Xélobal) and chi-
square local (X2 ). The chi-square test assumes the SNP-SNP interactions in a
network are independent, which may not be true for a variety of reasons. So, in
addition to these chi-square statistics, we use permutation tests to derive an
empirical p-value for each pathway-pathway interaction. To do this, we randomly
shuffled the SNP-pathway membership (NP = 100,000-200,000 times), and for a
given pathway-pathway interaction (bpm;), we compared its observed Xélobal and
X2 i with the values from these random permutations (Xéloba] and X2 ) to obtain
a permutation-based p-value.

#(iélobal > Xélobal (bpmi) &Xin > X (mei)> +1
pperm (bpmx) = NP

We used (pperm) together with (Xéloba.l) and (X?

incal) for BPM discovery as further
described in detail in the next two sections.

Correction for multiple hypothesis testing. Because a large number of pathway
pairs (all possible pathway-pathway combinations) are tested in the search for

significant BPMs, correction for multiple hypothesis testing is needed. To estimate
a false discovery rate, we employed sample permutations (NP = 10 times) to derive
the number of expected BPMS discovered by chance at each level of significance.
We randomly shuffled the original case-control groups 10 times while maintaining
the matched case—control population structure. For each permuted dataset, the

same, complete pipeline for BPM discovery was performed, including calculation of
the SNP-SNP interaction network after permutation, which was then thresholded
at a fixed interaction density matching the density chosen for the real sample labels.

From these sample permutations, we obtained three null distributions (Xélobal’

X2 1> and Pperm)> from which we estimated the FDR for each BPM (e.g., bpm).
Specifically, we compared the number of BPMs observed in each real dataset that
have better overall statistics than bpm; with the corresponding random expectation
estimated from the three null distributions derived from sample permutations

2 %2 s .
(Xglobal’ Xlocal’ and Pperm)‘

FDR(bpm. ) _ # {Xélcbal> Xélobal (bpm,) & X} >X0 (bpmr ) & Pperm < Pperm (bpm, ) } /NP
' # {deobnl > X;lubnl (bpm;) & X5 >XE (bp mx) & Pperm < Pperm (me,) }

A simpler approach to estimate FDR would be to use only the SNP permutation-
based p-value, pperm, in the above formula. However, we chose to use all three
measurements (Xélobal’ Xlzocal’ and pperm) because we observed that in some cases the
permutation-based p-value alone did not provide enough resolution to differentiate
among top BPMs (this could be improved with additional SNP permutations, but
this is computationally expensive). X;lobal and X}, provide higher resolution
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measures of significance of each BPM and, when combined with the permutation-
based p-value, can differentiate among the top-most significant discoveries.

We emphasize that we have used a hybrid permutation strategy to assess
significance of the discovered structures. The primary permutation applied was to
permute the SNP labels, for which 100,000-200,000 permutations were used for
each dataset analyzed. The sample (case-control label) permutation approach
mentioned above was used in addition to the SNP permutation strategy to estimate
our false discovery rate across all discovered interactions. For each of the 10 sample
permutations, we ran the full set of 100,000-200,000 SNP permutations. This
hybrid approach provides a robust estimate of significance of the discovered
pathway interactions and properly corrects for multiple testing.

We also conducted a study to explore the sensitivity of our FDR estimation on
the number of sample permutations. Specifically, for the PD-NIA dataset, we
performed 1000 sample permutations (and 200,000 SNP permutations within each
of these) to derive an estimate of FDR for discoveries in this dataset
(Supplementary Data 23). As shown in Supplementary Fig. 6, the FDRs estimated
from 10 sample permutations show reasonable agreement to FDRs estimated from
1000 sample permutations (Pearson’s correlation of 0.81).

Selection of disease models and density thresholds. The method we proposed
for pathway-level detection of genetic interactions is general in the sense that any
disease model (e.g., RR, DD, RD-combined, and AA) or interaction statistic could
be used to discover pathway-level interactions. In this study, we focus on prior-
itizing a single disease model per disease cohort for full analysis by our pipeline to
limit the complexity of data analysis across the 13 GWAS cohorts we explored with
our method. Here, we describe the strategy we used to select the disease model to
focus on for each GWAS dataset.

To prioritize the disease model and SNP-SNP interaction network density
threshold for each dataset, we first performed a pilot experiment in which we
examined combinations of different disease models and different density
thresholds, but with fewer SNP permutations (Supplementary Data 21). To exclude
SNP pairs with little or weak interactions from our analysis, we required each SNP
pair’s hygeSSI score to be at least 0.2 before applying density-based binarization.
For each combination, we performed 10,000 SNP-pathway membership
permutations (as compared to 100,000-200,000 for a complete run) to estimate
FDRs using a similar procedure as that described in the section “Correction for
multiple hypothesis testing”, except that SNP permutations were used to estimate
FDR instead of sample permutations, as sample permutations are much more
computationally expensive. On the basis of this pilot experiment in each cohort, we
chose the disease model and density threshold combination that resulted in the
lowest estimated FDR for the top-most significant pathway-pathway interaction.
The rationale for using such a pilot experiment is to identify the disease model that
is most likely to discover significant pathway-level interactions while limiting the
computational burden of applying our approach to several GWAS cohorts under
multiple disease models. Based on these pilot experiments, which were performed
for all 13 cohorts, we ran the complete BridGE pipeline, including 100,000-200,000
SNP permutations and 10 sample permutations with the disease model and
network density threshold chosen from the pilot experiments. The results of pilot
experiments for all cohorts are reported in Supplementary Data 21, and all full
BPM discovery results for all diseases can be found in Supplementary Data 3 and
9-18 as well a summary in Supplementary Data 8. We note that for focused
application of our approach on a single or small number of cohorts of interest, we
would suggest exploring all possible disease models with complete runs.

Replication in independent cohorts. The significant BPMs discovered from one
cohort could be evaluated in another independent cohort for replication. To
determine whether a discovered BPM was replicated in an independent cohort, we

required the BPM to satisfy Xglobal test p < 0.05, X, test p <0.05, and pperm < 0.05

on the validation cohort. We also performed sample permutation tests (NP = 10)
for each validation cohort, from which we could generate null distributions for
Xélobal’ Xlzocal’ and pperm in the validation cohort. Given a set of discovered BPMs

2
local

(e.g, FDR <0.25), we calculated fold enrichment by comparing the number of
BPMs discovered from the original dataset that passed the validation criteria to the
average number of BPMs that passed the same validation criteria in the random
sample permutations. More specifically, given a set of significant BPMs (bpm; , . x)
which were discovered from original cohort, the fold enrichment for replication is
defined as:
# {p(x;ml) <0.058p(X2,,) <0.05&ppr <005 }
# { p()‘(é,nbal) <0.05&p(X2 ) < 0.058p ey < 0.05} /Np’
We also evaluated the significance of the fold enrichment by 10,000
bootstrapped BPM sets. Specifically, we randomly selected the same number of
BPMs and used the above procedure to evaluate the fold enrichment, and we
repeated this for 10,000 times to generate a null distribution for the fold
enrichment scores in the validation cohort. We then evaluated the significance of
the fold enrichment score for our discovered BPM set based on this empirical null
distribution. All replication results can be found in Supplementary Data 6 and 19.
For the BPMs that replicated in an independent cohort, we further checked if
the SNP-SNP interactions supporting the discovered pathway-level interactions
were similar between the cohort used for discovery and the independent cohort

Fold =

Pmy, ok

used for replication. For example, we used the BPMs discovered from PD-NIA
(FDR <0.25) and for each BPM replicated in PD-NGRC, we computed the number
of SNP-SNP interactions in common between the PD-NIA and PD-NGRC
interaction networks as supporting interactions for the BPM. We used the same
permutation approach as that described in the “Correction for multiple hypothesis
testing” section for BPM-level validation except that the SNP-SNP interactions
supporting each BPM were compared between the discovery and validation cohorts
by a hypergeometric test. This was done for the real validation cohort PD-NGRC
first and then repeated 10 times under sample permutations of the validation
cohort to estimate a null distribution. A Wilcoxon’s rank-sum test was then used to
evaluate the significance of the SNP-SNP interaction overlap between the
replicated BPMs in the real validation cohort and in the random sample permuted
validation cohorts (Fig. 4b).

BPM redundancy. Due to the fact that many of the curated gene sets overlap, we
needed to control for redundancy in the discovered BPMs. To do this, in reporting
total discoveries, we filtered BPMs based on their relative overlap in terms of
SNP-SNP interactions using an overlap coefficient. The overlap coefficient between
two BPMs is defined as the number of overlapping SNP pairs divided by the
number of possible SNP pairs in the smaller BPM.

For the significant BPMs discovered, we computed all pairwise overlap
coefficients and used a maximum allowed similarity score of 0.25 as a cutoff. We
reported the number of unique BPMs based on the number of connected
components. For visualization purposes (Fig. 3), we selected representative BPMs
from each connected component, prioritizing BPMs that validated in the
independent cohort (PD-NGRC) for visualization. Significance of the validation of
the set of BPMs was evaluated on the entire set of discovered BPMs using the
permutation procedures described above, which directly accounts for the
redundancy among the discovered BPMs.

Measuring within-pathway interactions. In addition to the between-pathway
model (BPM), we also tested for enrichment of genetic interactions within each
pathway!# (within-pathway models, WPMs). All of the measures and procedures
described above for BPMs apply directly to the WPM case, only we specifically look
at SNP pairs connecting genes within the same pathways/gene sets instead of
between-pathway pairs. For WPMs, the false discovery rate and validation statistics
were computed separately from BPMs. All WPM discovery results can be found in
Supplementary Data 3, 9-18.

Identifying pathway hubs in the SNP-SNP interaction network. Since both
“between-pathway model” and “within-pathway model” analysis have been
designed to avoid discoveries caused by the higher marginal interaction density of
the individual pathways, pathways that are frequently interacting with many loci
across the genome (as opposed to localized interactions with functionally coherent
gene sets) are less likely to appear in our pathway-pathway or within-pathway
interactions. However, such pathways may also be disease relevant as they reflect
pathways that modify the disease risk associated with a large number of other
variants, so we also report pathways exhibiting these characteristics with BridGE
(we refer to these as “PATH” discoveries in BridGE output files). For PATH
discovery, the procedure is similar to that for BPMs and WPMs, with a minor
modification to the scoring of each pathway. Specifically, each pathway is repre-
sented by a vector of pathway-associated SNPs’ degrees (Dpqn) in the SNP-SNP
interaction network. We then applied a one-tailed rank-sum test (Upqn) to com-
pare each pathway-associated degree vector with the non-pathway-associated
degree vector (Dyon_parh) to see if the PATH-associated SNPs exhibited significantly
more interactions than the entire set of SNPs. PATH discovery and validation is
then done by repeating the same steps as BPM/WPM discovery but replacing the
Xélobal and XlzOcal statistics with the rank-sum test Upqq, p-value (in —logy, scale). All
PATH discovery results can also be found in Supplementary Data 3 and 9-18.
Many of these also have clear relevance to the disease cohort in which they were
discovered. For example, applying BridGE to discover such hub pathways in the
context of Parkinson’s disease resulted in three significant pathways after removing
redundancy (FDR <0.25), including the same Golgi-associated vesicle biogenesis
gene set as well as the IL-12 and STAT4 signaling pathway (Biocarta) discussed in
the main text.

Comparison with logistic regression-based interactions. We examined if the
interactions captured by hygeSSI were non-additive as measured through a stan-
dard logistic regression-based interaction measure. We applied the logistic
regression model on the PD-NIA data and computed RR, DD, RD, and DR
interaction networks (binary encoding as described earlier). We also integrated
these four logistic regression-based networks to form an RD-combined network.
Then we checked (1) if the top SNP-SNP interactions based on hygeSSI were
significant (p <0.05) in logistic regression-based tests, and (2) if the significant
BPMs discovered from a hygeSSI interaction network show significance
(p(XélObal) < 0.05, p(Xiy) < 0.05, and pperm < 0.05) based on SNP-SNP interac-
tions estimated from logistic regression. This analysis revealed that among the top
1% hygeSSI interactions, 93% are significant based on a logistic regression-based
test for interaction. And for the significant BPMs (FDR < 0.05), 100% of them are
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also significant if only SNP-SNP interactions also supported by a logistic regression
model are considered. These data suggest SNP-SNP interactions captured by
hygeSSI do represent non-additive interactions as defined based on a logistic
regression model. Detailed results from this comparison can be found in Supple-
mentary Data 22. Further evaluation of different disease models and different
measures for estimating SNP-SNP interactions in the context of BridGE will be the
focus of future work.

Evaluation of significance of SNP-SNP interaction tests. For SNP-SNP pairs
that supported the between-pathway interaction reported in Fig. 2b, we checked
the statistical significance of SNP-SNP interaction pairs tested individually. We
measured all pairwise AA, RR, DD interactions. We then performed a permutation
test in which sample labels were permuted 10 times and for each permutation, all
pairwise AA, RR, DD interactions were computed for each SNP pair. These per-
mutations were used to estimate a FDR for those SNP-SNP pairs supporting the
reported BPM. No individual SNP-SNP pairs were significant after FDR-based
multiple hypothesis correction (Fig. 2d, Supplementary Fig 2).

Pathway enrichment analysis of single-locus effects. To check if the pathways
involved in the significant BPMs discovered in PD-NIA were enriched for SNPs
with moderate univariate association with Parkinson’s disease, we performed single
pathway enrichment analysis for the same set of 685 pathways used for BPM
discovery. In the single pathway enrichment analysis, we used a hypergeometric
test as the SNP-level statistic for measuring univariate association (risk and pro-
tective associations were evaluated separately) for three different disease models:
(1) recessive; (2) dominant, and (3) a combination of recessive and dominant, in
which each SNP were tested for both recessive and dominant disease models and
the more significant one assigned to each SNP. We then used Wilcoxon’s rank-sum
test to check if a pathway was enriched for SNPs with higher association than the
background (all SNPs). With 10,000 sample permutations, we computed FDR for
each individual pathway (both risk and protective associations) by using same
procedure described in “Correction for multiple hypothesis testing” section. The
results are summarized in Supplementary Data 5.

Comparison of BridGE discoveries with GWAS catalog results. To check if
previous singly associated SNPs also appear in our discovered pathway-level
interactions, we compared our BridGE-discovered pathways with pathways that
could be linked to disease risk loci reported in NHGRI-EBI GWAS catalog®”
(Ensembl release version 87, retrieved on Feb 6, 2017). Based on the GWAS cat-
alog, the numbers of genes linked to known risk loci (p <2.0 x 10~°) in each
disease are: 143 (144 SNPs, Parkinson’s disease), 1009 (824 SNPs, Schizophrenia),
134 (172 SNPs, Breast cancer), 71 (57 SNPs, Hypertension), 249 (234 SNPs,
Prostate cancer), and 294 (288 SNPs, Type II diabetes). For each disease, we
summarized all pathways that were discovered by BridGE (FDR <0.25) and
identified pathways that were implicated by individually associated SNPs reported
in the GWAS catalog (a SNP mapping to a single gene in a given pathway was
assumed to implicate the corresponding pathway). For context, for each disease, we
also summarize the total number of genes implicated by GWAS-identified SNPs,
how many these map to the 833 pathways we used in our study, and how many of
them can be linked to the significant pathways identified by BridGE. These results
are presented in Supplementary Data 20.

Dependence of interaction discoveries on disease model. While we tested
multiple disease models (additive, dominant, recessive, and combined
dominant-recessive), the most significant discoveries for the majority of diseases
examined were reported when using a dominant or combined model as measured
by our SNP-SNP interaction metric. The relative frequency of interactions under a
dominant vs. a recessive model may be largely due to our increased power to detect
interactions between SNPs with dominant effects compared to recessive effects.
More specifically, individuals with both heterozygous and homozygous (minor
allele) genotypes at two interacting loci would be affected under a dominant disease
model, while only individuals with homozygous (minor allele) genotypes would be
affected in a recessive disease model. The number of individuals homozygous at
two interacting loci can be quite small depending on the allele frequency, which
limits our power to discover them. Thus, the larger number of discoveries based on
a dominant model assumption relative to a recessive model is likely a reflection of
difference in statistical power and not an indication that genetic interactions
among alleles with dominant effects are contributing more strongly to disease risk.
We observed that interactions derived from an additive disease model provided the
fewest significant discoveries when used in the context of BridGE based on the pilot
experiments (Supplementary Data 21). To understand this, we investigated whe-
ther the SNP-SNP interactions supporting the BPMs discovered under the com-
bined dominant-recessive model for the PD-NIA cohort were non-additive when
evaluated using a logistic regression-based interaction test as opposed to the direct
association tests used for our dominant and recessive disease models. Most
SNP-SNP interactions supporting the PD-NIA discoveries were indeed non-
additive when assessed using the logistic regression framework, but these were not
necessarily ranked among the highest SNP-SNP pairs when assessed in the context
of a logistic regression model (Supplementary Data 22), which may explain the

difference in results under the additive vs. recessive or dominant disease models.
An important distinction between the SNP-level interaction metric we use is that
we specifically identify the small subset of individuals with the appropriate com-
bination of genotypes (dominant model: heterozygous for minor allele at two
candidate loci; recessive model: homozygous for minor allele at two candidate loci),
and directly test for association with the disease phenotype, whereas for the
additive model, an interaction term must explain a sufficient fraction of the var-
iance across the entire population for it to reach significance. This distinction may
play a role in why we are able to discover pathway-level genetic interactions with
the metric proposed here but rarely with a standard additive model. It is worth
noting that the core of the BridGE approach, discovering genetic interactions in
aggregate rather than in isolation, is readily adaptable to other disease models or
other statistical measures of interaction. Further exploration of different disease
models as well as different statistical measures of interaction®>°° would be
worthwhile.

Power analysis based on interaction simulation study. To characterize the
power of our BridGE approach with respect to sample size, effect size, minor allele
frequency and pathway size, we used a two-stage simulation approach. We first
generated synthetic GWAS datasets with embedded SNP-SNP interaction pairs
using GW Asimulator®®. Specially, we used PD-NIA as input to GW Asimulator and
embedded SNP-SNP interactions with different minor allele frequencies (e.g., 0.05,
0.1, 0.15, 0.2 and 0.25) and a range of interaction effects (e.g., d;; =dj, =dj, = da,
=1.1, 1.5, 2, 2.5, 3, and 5, where 0, 1, 2 refer to the number of minor alleles present
in a given genotype for an individual SNP, and d,, dy», d;», and d,, are defined as
the relative risk of that genotype--11,12, 21 or 22-- versus 00)°. We also varied the
number of samples (genotypes) in the simulation (e.g., 200, 500, 1000, 2000, 5000,
and 10,000). In all simulations, we specified the disease prevalence to be 0.05,
dominance effect for all disease SNPs with PR1 =1 (see GW Asimulator for more
details)®¢. Under different scenarios (combinations of different minor allele fre-
quencies, interaction effects and sample sizes), we embedded 100 SNP pairs and
measured the percentage of SNP-SNP interactions that were identified by our
pairwise SNP-SNP interaction measure, hygeSSI at a 1% network density (e.g.,
SNP-SNP pairs whose hygeSSI is greater or equal to the 99th percentile of all
possible interactions) (Supplementary Fig. 7). These simulations provide a direct
measure of the sensitivity and specificity of the SNP-SNP interaction level measure
that forms the basis of the pathway-level statistics.

The SNP-SNP level power statistics (sensitivity) were complemented with a
second set of simulations in which we directly assessed the sensitivity of BridGE in
detecting BPMs with different levels of noise in the SNP-SNP level network
(derived from the process described above). To characterize the statistical power of
our approach as a function of pathway size, we first generated a synthetic
interaction network with the same degree distribution as the PD-NIA DD network
at 1% density. Then, we embedded a set of non-overlapping BPMs into this
SNP-SNP interaction network while retaining the same degree distribution and
density of the network. Each set had 90 BPM:s at 9 different sizes (number of SNPs
mapped to the two pathways in each BPM: 10 x 10, 25 X 25, 50 X 50, 75 x 75, 100 x
100, 150 x 150, 200 x 200, 250 x 250 and 300 x 300); and 10 different background
densities 0.01, 0.012, 0.014, 0.016, 0.018, 0.02, 0.025, 0.03, 0.04, and 0.05. We
applied 150,000 SNP-pathway membership permutations to assess the significance
of these embedded patterns. The SNP permutation-derived p-values of the
simulations were reported in Supplementary Fig. 4 and provide an estimation of
BPM density required for detecting interactions between pathways of different
sizes. We used the average p-values (SNP permutation p = 3.0 x 10~°) of the
significant BPM discoveries across all GWAS cohorts (FDR < 0.25) as the discovery
significance cutoff for the simulation analysis.

We derived power estimates for each combination of parameter settings by
integrating the results from the two simulation studies above. More specifically, we
estimated the minimum sample size needed to discover significant BPMs at
different pathway sizes under each of the scenarios (e.g., minor allele frequency,
relative disease risk). To connect the two simulation studies, we require a scaling
parameter (here, we explored s = 0.025, 0.05, and 0.1) which corresponds to the
biological density of genetic interactions crossing each pair of truly interacting
pathways. This represents the fraction of all possible SNP-SNP pairs crossing the
pair of pathways of interest for which the combination of variants actually has a
functional deleterious impact on the phenotype. This quantity is expected to be
relatively small, but is difficult to estimate, which is why we have explored three
scenarios (s = 0.025, 0.05 and 0.1). For a given BPM of a specific size (10 x 10, 25 x
25, 50 x 50, 75 x 75, 100 x 100, 150 x 150, 200 x 200, 250 x 250 and 300 x 300),
from the 274 simulation, we identified the corresponding BPM density
(Densitygpy) needed for it to rise to the level of statistical significance required for
a 25% FDR based on the PD-NIA cohort. We then scaled the required density by
the parameter, s, and based on the 1st set of simulation results, identified the
minimum sample size required under each scenario (combinations of minor allele
frequency, interaction effect, and sample size) to support the discovery of the
corresponding BPM: Sensitivity x s > Densityppm. Results are summarized in Fig. 6.

Simulation results for additional scaling parameters (s = 0.1 and s = 0.025) are
included in the Supplementary Fig. 3. These plots together provide an estimate of
the power of the BridGE approach to detect pathway-pathway interaction in these
different scenarios. We note that this power analysis was conducted for the
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dominant disease model, which comprises the majority of the BPM interactions
discovered across all cohorts. Sensitivity of our method under a recessive model
assumption is expected to be lower, which is consistent with the relative rate of
discoveries of both types. We note that our power analysis accounts for both Type I
and Type II error. Specifically, the simulations directly reflect the sensitivity
(sensitivity = [1 - Type II error]) as a function of sample size in discovering BPMs
under the practical scenario where Type I error rate is controlled (through control
of the FDR) for exhaustive pairwise tests for BPMs.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The genome-wide association datasets (PD-NIA: phs000089.v3.p2, PD-NGRC:
phs000196.v3.p1, SZ-GAIN: phs000021.v3.p2, BC-CGEMS-EUR: phs000147.v3.p1, BC-
MCS-JPN: phs000517.v3.p1, BC-MCS-LTN: phs000517.v3.p1, HT-eMERGE: phs000297.
v1.pl, ProC-CGEMS: phs000207.v1.p1, ProC-BPC3: phs000812.v1.p1 and PanC-
PanScan: phs000206.v5.p3) used in this study are available at https://www.ncbi.nlm.nih.
gov/gap. Data access is governed by the dbGaP Authorized Access program. The
genome-wide association datasets (SZ-GAIN, HT-WTCCC: EGAD00000000006, T2D-
WTCCC: EGAD00000000009, and healthy control sets: EGAD00000000001,
EGADO00000000002) used in this study are available at https://www.wtccc.org.uk/. Data
access is controlled by the Wellcome Trust Case Control Consortium. The genome-wide
association dataset (SZ-CATIE) is available at https://www.nimhgenetics.org/. Data
access is controlled by the NIMH Repository and Genomics Resource (NRGR) support
team. All other relevant data is available upon request.

Code availability

The code for the BridGE (Bridging Gene Sets with Epistasis) method described in this
study is available at http://csbio.cs.umn.edu/bridge. This software is freely available for
academic use and non-profit research and can be licensed for commercial use.
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