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Background: Coronavirus disease 2019 (COVID-19) is
commonly associated with skin manifestations, and may also
exacerbate existing skin diseases, yet the relationship between
COVID-19 and skin diseases remains unclear.
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Objective: By investigating this relationship through a
multiomics approach, we sought to ascertain whether
patients with skin conditions are more susceptible to
COVID-19.
Methods: We conducted an epidemiological study and then
compared gene expression across 9 different inflammatory skin
conditions and severe acute respiratory syndrome coronavirus
2–infected bronchial epithelial cell lines, and then performed a
genome-wide association study transdisease meta-analysis
between COVID-19 susceptibility and 2 skin diseases (psoriasis
and atopic dermatitis).
Results: Skin conditions, including psoriasis and atopic
dermatitis, increase the risk of COVID-19 (odds ratio, 1.55; P 5
1.4 3 1029) but decrease the risk of mechanical ventilation
(odds ratio, 0.22; P 5 8.5 3 1025). We observed significant
overlap in gene expression between the infected normal
bronchial epithelial cells and inflammatory skin diseases, such
as psoriasis and atopic dermatitis. For genes that are commonly
induced in both the severe acute respiratory syndrome
coronavirus 2 infection and skin diseases, there are 4 S100
family members located in the epidermal differentiation
complex, and we also identified the ‘‘IL-17 signaling pathway’’
(P 5 4.9 3 10277) as one of the most significantly enriched
pathways. Furthermore, a shared genome-wide significant locus
in the epidermal differentiation complex was identified between
psoriasis and severe acute respiratory syndrome coronavirus 2
infection, with the lead marker being a significant expression
quantitative trait locus for S100A12 (P 5 3.3 3 1027).
Conclusions: Together our findings suggest association between
inflammatory skin conditions and higher risk of COVID-19, but
with less severe course, and highlight shared components
involved in anti–COVID-19 immune response. (J Allergy Clin
Immunol 2021;147:857-69.)

Key words: COVID-19, SARS-CoV-2, skin conditions, psoriasis,
atopic dermatitis, epidemiology, genetics, gene expression

Coronavirus disease 2019 (COVID-19) is an emerging and
rapidly growing pandemic, with more than 23 million confirmed
cases worldwide as of August 23, 2020,1 including 5.6 million
cases and more than 170,000 deaths in the United States alone.
COVID-19 is caused by infection with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), which has an estimated
basic reproduction number between 1.4 and 6.49.2,3 The Centers
for Disease Control and Prevention (CDC) report that symptoms
can appear 2 to 14 days after exposure, and may include cough,
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fever, chills, muscle pain, shortness of breath, sore throat, and new
loss of taste or smell.4 Cutaneous manifestations have also
been described,5,6 with prevalence between 7.8% and 20.4%.7-9

A detailed study of 375 COVID-19 skin-affected patients in
Spain10 found maculopapular rashes to be the most common
manifestation (47% of skin-affected patients). Other manifesta-
tions include pseudo-chilblains, urticarial lesions, and vesicular
eruptions.10 Histopathology reports describe lymphocyte infiltra-
tion11-16 (including of CD4/CD8 T cells17,18) with or without ev-
idence of vasculitis,19-21 colocalization of SARS-CoV-2 spike
proteins with signs of complement activation,19 and antibodies
for SARS-CoV-2 in the upper dermis and epithelial cells of ec-
crine glands.22,23

It is currently unclear whether patients with inflammatory skin
conditions are at greater risk of COVID-19 than the general
population.24,25 Although no skin conditions are included on the
CDC list of COVID-19 risk factors,26 many of the diseases listed
by the CDC as risk factors have been found to co-occur more
frequently with skin diseases,27-30 for example, type 2 diabetes
and psoriasis,31 cardiovascular diseases and eczema,32 or chronic
kidney disease and lupus.33 Notably, patients suffering from in-
flammatory skin conditions can have different susceptibility to
infection, potentially due to their defective skin barrier or sys-
temic impact on the immune system.34 For instance, patients
with psoriasis are more susceptible to pneumonia35 and serious
infections in general,36-38 while skin and systemic infections are
also more common in patients suffering from atopic derma-
titis.39,40 Staphylococcus aureus skin colonization,41 subclinical
Chlamydophila psittaci infection of PBMCs,42 and skin/hair
colonization with b-papillomaviruses43 have all been found to
occur more frequently among patients with psoriasis than among
the general population, while other infections, including strepto-
coccal pharyngitis44 and periodontitis,45 are associated with trig-
gering or exacerbating psoriasis. Preliminary case reports from
Turkey and the United States suggest that COVID-19 risk may
be higher in patients with psoriasis,46 and that it may exacerbate
or trigger psoriasis.47,48 One epidemiological study grouped pso-
riasis with systemic lupus erythematosus (SLE) and rheumatoid
arthritis,49 and found that together they had an elevated rate of
COVID-19 in-hospital death (1.19 adjusted hazard ratio).
Many skin conditions have dysregulated immune responses,
and thus could potentially alter the risk of COVID-19 suscepti-
bility and manifestation through their interaction with host
immunology, either directly or through various immunosuppres-
sant treatments.50 Although previous work has illustrated the
binding of SARS-CoV-2 to angiotensin-converting enzyme 2
(ACE2), a cell entry receptor, in lung epithelia,51 ACE2 is also
present in skin,52 particularly in the epidermal layer,53,54 and
thus could act as a reservoir for indirect transmission.55,56

SARS-CoV-2 has at least 10 times higher binding affinity with
ACE2 compared with severe acute respiratory syndrome corona-
virus 1,51 but it induces less interferon response in the early stages
of infection, thus allowing accumulation of the viral load57 and
making it difficult to detect and clear. Elderly patients and those
with imbalanced immune systems can particularly have a delayed
response on the viral infection,58 and if the virus is not cleared
quickly this may lead to a sudden immune overreaction,59 which
could be further exacerbated in patients with preexisting immune-
mediated diseases.

The mechanisms linking COVID-19 with skin conditions
remain unclear. Registries are being established to record the
details of cases with psoriasis60-62 as well as other dermatologic
and inflammatory conditions,63,64 yet because these registries
only include cases, they cannot be used to test for prevalence.
We therefore performed an epidemiological study of the link be-
tween psoriasis and COVID-19 in a large hospital-wide health
system, and investigated the relationship further through genomic
analysis.
METHODS

Epidemiology
We conducted an epidemiological study of 435,019 patients in Michigan

Medicinewho had at least 1 health system encounter between January 1, 2019,

and June 20, 2020, with recorded race, age, sex, body mass index (BMI), and

socioeconomic status (for use as covariates). There were 1115 (0.26%)

patients identified as having COVID-19, from a detected, presumptive positive

or positive SARS-CoV-2 laboratory test result or a diagnosis code of U07.1 or

U07.2 tested elsewhere, ofwhich 150 (13.5%) requiredmechanical ventilation

between March 1 and June 20, 2020 (see Table E1 in this article’s Online Re-

pository at www.jacionline.org). A total of 24 different disease conditions

were considered in the comorbidity association analysis, including COVID-

19 risk factors reported by the CDC26 (chronic kidney disease, chronic

obstructive pulmonary disease [COPD], coronary artery disease, and type 2

diabetes), inflammatory diseases (such as rheumatoid arthritis, SLE, and mul-

tiple sclerosis), and skin conditions (including psoriasis, atopic dermatitis, and

cutaneous lupus).

Data on patients with COVID-19, their medical conditions, and covariates

were extracted using the University ofMichigan’s DataDirect.65 A patient was

determined as having a condition if they have at least 1 International Classi-

fication of Diseases, Ninth Revision or International Classification of Dis-

eases, Tenth Revision code for the condition (Table E1). Covariates were

extracted using the various views available through DataDirect. In particular,

social disadvantage was extracted using a DataDirect filter designed to esti-

mate disadvantage by comparing census tract location to data from the

2013-2017 American Community Survey. The mean of 4 different indicators

(pfhfam: proportion of families female headed; ppubas: proportion of house-

holds with public assistance income; punemp: proportion 161 unemployed;

ppov: proportion of people with income below poverty level) is taken and

the population was divided into 4 quartiles. The highest quartile (Disadvan-

tage 3) included 60,299 individuals from our study. Obesity was graded into

3 categories, following the same procedure as a recent large-scale epidemio-

logical study.49

http://www.jacionline.org
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The risk of COVID-19 among all patients and mechanical ventilation

among patients with COVID-19 was modeled using logistic regression and

correcting for multiple testing (false detection rate [FDR] <_ 0.05), condition-

ing on all the covariates and applying each of the 24 comorbidities 1 at a time.

For the risk of COVID-19 among all patients, we used the following model:

COVID-19; Race 1 Age1 Obese1 Social Disadvantage1 Comorbidity.

For the risk of requiring mechanical ventilation among patients with COVID-

19, we used the following model: Ventilation ; Race 1 Age 1 Obese 1
Social Disadvantage 1 Comorbidity. To ensure a sufficient sample size for

accurate risk factor estimation, we included only those traits that have more

than 5 cases, and otherwise aggregated the traits together.
Transcriptome
Expression data for SARS-CoV-2–infected human bronchial epithelial

cells were extracted from 2 previous studies: normal bronchial epithelial cells

(NHBE) and 2 lung cancer epithelial cell lines (A549 and Calu-3) were RNA-

sequenced with and without SARS-CoV-2 infection58; in a separate study,66

human bronchial organoids (hBO) were prepared from normal bronchial

epithelial cells and RNA-sequenced with and without SARS-CoV-2 infection.

We compared the differentially expressed genes from these studies with those

from 8 skin conditions: acne67 (6 lesional and 6 control, microarray), alopecia

areata68 (60 lesional and 36 control, microarray), atopic dermatitis69 (21 le-

sional and 38 control, RNA-seq), burn injury70 (57 lesional and 63 control, mi-

croarray), discoid lupus71 (7 lesional and 3 control, microarray), hidradenitis

suppurativa72 (22 lesional and 10 control), nonneoplastic nevi73 (18 lesional

and 7 control, microarray), psoriasis69 (28 lesional and 38 control, RNA-

seq), and rosacea74 (19 lesional and 10 control, microarray); we also included

a nonskin inflammatory disease, rheumatoid arthritis75 (10 cases and 10 con-

trol from synovial tissue), for comparison. Details of each study are provided

in Table E2 in this article’s Online Repository at www.jacionline.org.

Genes were considered to be significantly upregulated in the cases if they

have FDR less than or equal to 0.05 and log2fold change (FC) greater than or

equal to 1 in the differential expression analysis when compared with the con-

trols. Kyoto Encyclopedia of Genes and Genomes Pathway enrichment was

performed on the upregulated genes from each data set using a web-based

pathway analysis tool Enrichr.76 Pathways were compared between data

sets, using Association analysis based on SubSETs (ASSET)77 to detect the

most significant subset, and also the data sets belonging to each significant

pathway. To avoid biasing the results toward any 1 data set, we adopted an

equally weighted analysis, supplying the same sample size to ASSET for

each data set.
Genetics
Psoriasis genetic meta-analysis was used from our previous study78 and

COVID-19 susceptibility genetic meta-analysis summary statistics were ex-

tracted from the Host Genetics Initiative,79 a continuously expanding meta-

analysis of COVID-19 susceptibility, which at the time of our analysis (release

2, May 2020) included 1,678 COVID-19 cases and 674,635 controls. As with

pathway analysis, transdisease meta-analysis (TDMA) was performed using

an equally weighted combination of the effect sizes (bPsV;T2D 5 bPsV 1 bCovid

2
)

and variances (VPsV;T2D 5 VPsV 1 VCovid

4
), to avoid biasing the results toward

the disease with the largest sample size (psoriasis). Loci were considered sig-

nificant if the lead marker from TDMA is genome-wide significant (P <_

5 3 1028) in TDMA, as well as suggestive significant in both psoriasis and

COVID-19 (P <_ 1 3 1024) and more significant in TDMA than in either

disease.
RESULTS

Epidemiology of COVID-19 in Michigan Medicine
Confirming previous research,49 we found blacks to be at a sub-

stantially higher risk of COVID-19 than whites (odds ratio [OR],
4.86; P 5 4.1 3 10293), with other ethnic groups also having
significantly elevated risk compared with whites (Table I). We
observed an increased risk with age and obesity: OR, 21.04,
P 5 1.6 3 10238 for age 80 years or more compared with the
youngest group; OR, 2.06, P 5 6.2 3 10215 for BMI greater
than or equal to 40 kg/m2 (ie, ‘‘Obese 3’’) compared with nonob-
ese. Social disadvantage was significant only for the highest
compared with the lowest quartile (OR, 1.67; P 5 2.3 3 1028).
Chronic kidney disease (OR, 1.96; P5 5.33 10217), type 2 dia-
betes (OR, 1.77; P5 7.83 10216), coronary artery disease (OR,
1.56; P 5 2.3 3 1027), and COPD (OR, 1.40; P 5 8.4 3 1024)
were all significant risk factors as per the CDC’s guidance. Inter-
estingly, we further confirmed 3 comorbidities indicated as hav-
ing limited information by the CDC: type 1 diabetes (OR, 1.55;
P 5 9.4 3 1024), hypertension (OR, 1.39; P 5 5.1 3 1026),
and asthma (OR, 1.24; P 5 2.3 3 1023); some of these findings
are consistent with results from a recent study using the Univer-
sity of Michigan Michigan Medicine data.80

Several skin conditions, including burn injury (OR, 1.59; P 5
.011), acne (OR, 1.53; P5 5.93 1025), psoriasis (OR, 1.48; P5
.022), and atopic dermatitis (OR, 1.48; P 5 .020), were signifi-
cantly associated with an increased risk of COVID-19, condition-
ing on all covariates and testing comorbidities 1 at a time, using
FDR less than or equal to 0.05 to correct for multiple testing
and declare statistical significance. Interestingly, cutaneous lupus
(including discoid lupus and subacute cutaneous lupus erythema-
tosus) was nominally significant (OR, 1.67; P 5 .038), whereas
SLE had substantially lower effect size and was not significant
(OR, 1.19; P 5 .372). Significantly, we found having at least 1
of the skin conditions (including the skin conditions above as
well as alopecia areata, cutaneous lupus, hidradenitis suppurativa,
rosacea, and nonneoplastic nevi) to be a significant risk factor for
COVID-19 (OR, 1.55, P 5 1.4 3 1029), as is having an inflam-
matory skin disease (ie, excluding burn injury and nonneoplastic
nevi) (OR, 1.59;P5 2.13 1029). The use of disinfectant and per-
sonal protective equipment (including gloves and masks) may
exacerbate certain preexisting skin conditions, such as acne81,82

and atopic dermatitis.83 We therefore repeated the model with
the same covariates, but only included cases with diagnoses
from encounters before 2020, and found comparable effect size
for acne (OR, 1.45), atopic dermatitis (OR, 1.43), burn injury
(OR, 1.59), and psoriasis (OR, 1.41), indicating that individuals
with preexisting skin conditions have elevated risk for COVID-
19. We also applied Cox proportional hazard regression on the
risk of patients with a diagnosis of burn injury, acne, atopic
dermatitis, or psoriasis before 2020 contracting COVID-19. The
regression was significant for these diseases (P 5 2.3 3 10221;
hazard ratio, 1.78), whereas for rheumatoid arthritis by compari-
son it was not significant (P 5 .23; hazard ratio, 1.18).

Previous researchers84 have considered whether immunosup-
pressive treatments such as biologics used for certain skin dis-
eases (such as psoriasis) may increase the risk of COVID-19 by
modulating immune response.We tested the effect of 31 immuno-
suppressant agents (see Table E3 in this article’s Online Reposi-
tory at www.jacionline.org), using the same logistic model and
covariates, but the result was not significant, neither was being
prescribed a biologic from a subset used to treat psoriasis. Non–
COVID-19 respiratory tract infections have previously been
observed to occur more frequently in patients with psoriasis on
IL-17 inhibitors (brodalumab, which targets IL-17RA; ixekizu-
mab and secukinumab, which target IL-17 directly).85 Analysis
of patients treated with these drugs came close to achieving nom-
inal significance (OR, 3.13; P 5 .050), providing some limited

http://www.jacionline.org
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TABLE I. Logistic regression for risk of COVID-19 infection

Covariates N OR P value Traits N OR P value

Black 422 4.86 (4.18-5.66) 4.1 3 10293 Myasthenia gravis 5 2.02 (0.83-4.90) .120

Asian 54 1.70 (1.28-2.26) 2.5 3 1024 Chronic kidney disease 224 1.96 (1.67-2.29) 5.3 3 10217

Other race 52 1.77 (1.33-2.36) 9.9 3 1025 Type 2 diabetes 345 1.77 (1.54-2.04) 7.8 3 10216

Age 18-39 y 257 8.42 (5.53-12.83) 3.2 3 10223 Sj€ogren syndrome 21 1.77 (1.14-2.75) .010

Age 40-59 y 423 14.17 (9.35-21.48) 8.4 3 10236 Alopecia areata 7 1.71 (0.81-3.62) .161

Age 60-79 y 333 13.20 (8.68-20.05) 1.3 3 10233 Cutaneous lupus 17 1.67 (1.03-2.72) .038

Age 801 78 21.04 (13.28-33.33) 1.6 3 10238 Primary biliary cirrhosis 5 1.62 (0.67-3.93) .284

Male 507 1.15 (1.02-1.30) .021 Burn injury 31 1.59 (1.11-2.28) .011

Obese 1 (BMI 30-34.9 kg/m2) 235 1.26 (1.08-1.48) 3.3 3 1023 Coronary artery disease

Hidradenitis suppurativa

193

17

1.56 (1.32-1.85)

1.56 (0.96-2.54)

2.3 3 1027

.074

Obese 2 (BMI 35-39.9 kg/m2) 171 1.75 (1.47-2.09) 4.5 3 10210 Any skin condition*

Type 1 diabetes

251

62

1.55 (1.35-1.79)

1.55 (1.20-2.01)

1.4 3 1029

9.4 3 1024

Obese 3 (BMI >_40 kg/m2) 167 2.06 (1.72-2.46) 6.2 3 10215 Acne

Atopic dermatitis

105

38

1.53 (1.24-1.88)

1.48 (1.06-2.06)

5.9 3 1025

.020

Disadvantage 1 227 1.05 (0.88-1.25) .599 Psoriasis 36 1.48 (1.06-2.07) .022

Disadvantage 2 216 1.17 (0.97-1.40) .093 Inflammatory bowel disease 101 1.44 (1.18-1.77) 4.7 3 1024

Disadvantage 3 376 1.67 (1.40-2.00) 2.3 3 1028 COPD 121 1.40 (1.15-1.70) 8.4 3 1024

Hypertension 596 1.39 (1.21-1.60) 5.1 3 1026

Rosacea 35 1.35 (0.96-1.89) .088

Celiac disease 8 1.32 (0.66-2.66) .435

Multiple sclerosis 9 0.77 (0.40-1.50) .447

Asthma 265 1.24 (1.08-1.43) 2.3 3 1023

Rheumatoid arthritis 38 0.81 (0.59-1.13) .219

Systemic lupus 27 1.19 (0.81-1.76) .372

Nonneoplastic nevi 23 1.10 (0.72-1.66) .670

Other inflammatory disease� 84 0.95 (0.75-1.19) .630

ICD-9, International Classification of Diseases, Ninth Revision; ICD-10, International Classification of Diseases, Tenth Revision.

N refers to either (a) the number of patients with COVID-19 or (b) the number of COVID-19 cases requiring ventilation (for more details, see Table E1).

Bold indicates results significant after adjusting for multiple tests (FDR <_ 0.05). Covariates are evaluated together, without any traits, and then traits are evaluated 1 at a time,

conditioning on the covariates. The P values shown are the original unadjusted values.

*Patients are indicated as having ‘‘Any Skin Condition’’ if they have ICD-9/ICD-10 codes for at least 1 of the following conditions: acne, alopecia areata, atopic dermatitis, burn

injury, cutaneous lupus, hidradenitis suppurativa, nonneoplastic nevi, psoriasis, rosacea.

�Patients are indicated as having ‘‘Other Inflammatory Disease’’ if they have ICD-9/ICD-10 codes for at least 1 of the following conditions: celiac disease, multiple sclerosis,

myasthenia gravis, primary biliary cirrhosis, rheumatoid arthritis, Sj€ogren syndrome, systemic lupus.
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support to the hypothesis of IL-17 involvement. However, condi-
tioning on the IL-17 inhibitors (in addition to the existing covari-
ates) did not have a substantial impact on the effect size for
psoriasis (OR, 1.42-1.48) or skin disease in general (same OR,
1.55), suggesting that biologic treatments alone are not sufficient
to explain this effect.

To further investigate the role of skin conditions and other
diseases with respect to COVID-19, we tested the impact of each
comorbidity on the risk of requiring mechanical ventilation
among patients with COVID-19 (Table II). Because of the
reduced sample size, we merged together some of the covariates
to increase their impact. Blacks were not at a significantly higher
risk of requiring ventilation, but people who are older (age >_60
years; OR, 2.45; P 5 2.0 3 1026), obese (BMI >_ 35kg/m2; OR,
1.68; P5 9.23 1023), or in the highest quartile for social disad-
vantage (OR, 2.15; P5 5.23 1024) were at increased risk. Inter-
estingly, although the risk of COVID-19 infection between sexes
was only marginally significant (OR, 1.15; P5 .021), males were
at a substantially higher risk of requiring ventilation (OR, 2.99;
P 5 1.6 3 1028).

Of all the comorbidities tested, having a skin condition had the
greatest effect size, reducing the risk of requiring mechanical
ventilation for all skin conditions (OR, 0.22; P5 8.53 1025) and
for inflammatory skin diseases in particular (OR, 0.16; P 5
1.1 3 1024). In contrast, the other comorbidities that remained
significant after multiple testing correction—type 2 diabetes
(OR, 3.53; P 5 3.7 3 10210), hypertension (OR, 2.95; P 5
9.5 3 1026), chronic kidney disease (OR, 2.35; P 5
3.23 1025), and coronary artery disease (OR, 1.72; P5 .013)—
all increased the risk of requiringmechanical ventilation. Interest-
ingly, the ‘‘Other Inflammatory Disease’’ category (composed of
diseases with fewer than 5 cases of ventilation) also had an OR
below 1, although it was not significant. We tested whether
the lack of significance may be due to insufficient power by
combining it with the other immune-mediated diseases that fell
shy of significance (asthma, COPD, inflammatory bowel disease,
and type 1 diabetes), but the combination of inflammatory dis-
eases still had no significant impact on the risk of ventilation
(OR, 1.06; P 5 .772), even though it included almost twice as
many COVID-19 samples as ‘‘Any Skin Condition’’ (460
compared with 251), suggesting the observation is not due to
lack of power.

Because some of the comorbidities of skin diseases are known
risk factors of COVID-19, we included all the comorbidities apart
from skin diseases that were associated with a significant risk of
COVID-19 (chronic kidney disease, type 2 diabetes, Sj€ogren
syndrome, coronary artery disease, type 1 diabetes, inflammatory
bowel disease, COPD, hypertension, and asthma) as covariates, in
addition to the covariates we have already been using. Having a
skin disease was still significantly associated with increased risk
of COVID-19 (OR, 1.45; P 5 4.1 3 1027) among the general
population and decreased risk of requiring ventilation (OR,



TABLE II. Logistic regression for risk of requiring mechanical ventilation

Covariates N OR P value Traits N OR P value

Black 81 1.48 (0.96-2.28) .079 Any skin condition* 8 0.22 (0.11-0.47) 8.5 3 1025

Age 601 y 83 2.45 (1.69-3.55) 2.0 3 1026 Type 2 diabetes 96 3.53 (2.38-5.24) 3.7 3 10210

Male 100 2.99 (2.05-4.38) 1.6 3 1028 Hypertension 123 2.95 (1.83-4.76) 9.5 3 1026

Obese 2/3 (BMI >_35 kg/m2) 57 1.68 (1.14-2.49) 9.2 3 1023 Chronic kidney disease

Other inflammatory disease�
64

5

2.35 (1.57-3.52)

0.45 (0.17-1.15)

3.2 3 1025

.094

Disadvantage 3 80 2.15 (1.39-3.30) 5.2 3 1024 Coronary artery disease 50 1.72 (1.12-2.65) .013

COPD 26 1.37 (0.82-2.30) .230

Type 1 diabetes 12 1.35 (0.68-2.69) .394

Asthma 32 1.12 (0.71-1.74) .628

Inflammatory bowel disease 13 0.91 (0.48-1.74) .777

ICD-9, International Classification of Diseases, Ninth Revision; ICD-10, International Classification of Diseases, Tenth Revision.

N refers to either (a) the number of patients with COVID-19 or (b) the number of COVID-19 cases requiring ventilation (for more details, see Table E1).

Bold indicates results significant after adjusting for multiple tests (FDR <_ 0.05). Covariates are evaluated together, without any traits, and then traits are evaluated 1 at a time,

conditioning on the covariates. The P values shown are the original unadjusted values.

*Patients are indicated as having ‘‘Any Skin Condition’’ if they have ICD-9/ICD-10 codes for at least 1 of the following conditions: acne, alopecia areata, atopic dermatitis, burn

injury, cutaneous lupus, hidradenitis suppurativa, nonneoplastic nevi, psoriasis, rosacea.

�Patients are indicated as having ‘‘Other Inflammatory Disease’’ if they have ICD-9/ICD-10 codes for at least 1 of the following conditions: celiac disease, multiple sclerosis,

myasthenia gravis, primary biliary cirrhosis, rheumatoid arthritis, Sj€ogren syndrome, systemic lupus.
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0.21; P5 6.93 1025) among patients with COVID-19. Notably,
many of the comorbidities became nonsignificant when included
in the model together (only type 2 diabetes and chronic kidney
disease were significantly associated with COVID-19, and only
type 2 diabetes and hypertension were significantly associated
with ventilation), suggesting many of the comorbidities share
a common basis (eg, metabolic syndrome or autoimmunity),
whereas having a skin disease is an independent risk factor.

Previous research indicates that sore throat occurs more
frequently in patients with psoriasis than in controls,44 and by ex-
tending our epidemiological study, we revealed sore throat
(tonsillitis or pharyngitis) to be significantly associated with the
risk of psoriasis (OR, 1.64; P 5 1.3 3 10274). Interestingly, his-
tory of sore throat was also associated with increased risk of
COVID-19 (OR, 1.60; P 5 3.7 3 10210) and decreased risk of
requiring mechanical ventilation (OR, 0.38; P 5 2.7 3 1023).
However, including it as an additional covariate did not substan-
tially impact the risk of COVID-19 from psoriasis (OR, 1.43), nor
skin conditions in general (OR, 1.43); neither was the effect of
sore throat substantially reduced by conditioning on psoriasis
(OR, 1.59) or skin conditions (OR, 1.47). Similarly, the effect
of skin conditions on the risk of requiring ventilation was not sub-
stantially reduced by conditioning on sore throat (OR, 0.26), and
conditioning on skin conditions did not substantially impact the
effect of sore throat (OR, 0.47); taken together, these findings sug-
gest that sore throat and skin conditions are independent risk fac-
tors for COVID-19.
Gene expression
To evaluate the potential shared mechanisms between skin

conditions and COVID-19 infection, we collected transcriptomic
expression data from 9 different skin conditions, as well as 4
different SARS-CoV-2–infected bronchial epithelial cell lines
(Methods). Fig 1, A, presents the overlap of upregulated genes
(log2 FC >_ 1, FDR <_ 0.05) between the skin conditions and
SARS-CoV-2–infected cells, using Fisher exact test to calculate
the enrichment log ORs, and showing the total number of overlap-
ped genes for each pair. Fig E1 in this article’s Online Repository
at www.jacionline.org presents the same plot including SARS-
Cov-2–infected bronchial epithelial cancer cell lines (A549 and
Calu3) and a nonskin inflammatory disease (rheumatoid arthritis)
for comparison. Interestingly, the infected noncancer (hBO and
NHBE) epithelial cell lines clustered more closely with the in-
flammatory skin conditions (except hidradenitis suppurativa),
than did the infected cancer (A549 and Calu-3) cell lines, and
they had higher overlap with skin diseases than rheumatoid
arthritis. In particular, NHBE showed strong overlap with psoria-
sis (OR, 53.72, P 5 1.4 3 10267), atopic dermatitis (OR, 60.13;
P 5 1.5 3 10268), acne (OR, 64.72; P 5 4.9 3 10224), discoid
lupus (OR, 34.58; P 5 7.1 3 10237), and rosacea (OR, 44.07;
P 5 1.2 3 10247).

We investigated the overlap between these 5 skin conditions
and the SARS-CoV-2–infected NHBE, including all 94 genes
upregulated in NHBE and at least 1 skin condition (Fig 1, B).
A total of 14 genes were upregulated in all 5 skin conditions:
S100A7/8/9/12 are located in the epidermal differentiation com-
plex, which regulates the epidermal barrier protecting against
infection,86 and have antiviral activities87; S100A12 activates nu-
clear factor kappa B through RAGE, which may also be involved
in COVID-19 immune responses88; KRT6B is a barrier alarmin,89

signaling injury or infection; BCL2A1, CXCL1, and PI3 are
involved in nuclear factor kappa B signaling90; TLR2 is essential
for viral and bacterial recognition91-93 and is the target of a drug
under phase 2 trial for the prevention of COVID-1994; IL36G,95

SERPINB4,96 and SLC6A1497 are involved in protecting against
infection; TYMP is upregulated by TNF-a, IFN-g, and IL-1798;
and CFB is a factor for complement activation, which was found
to be involved in microvascular injury and thrombosis of COVID-
19 cases.19 Interestingly, we also found that these genes tend to
have tissue-specific expressions when investigating their profiles
using the Genotype-Tissue Expression project (GTEx) data.99,100

Among the 14 commonly upregulated genes in NHBE and the 5
skin diseases, skin and the esophagus epithelium are among the
tissues in which 8 (S100A7/8/9, KRT6B, PI3, IL36G, SERPINB4,
and SLC6A14) are most expressed. There are also relevant genes
upregulated in all but acne: ICAM1 controls nuclear factor kappa
B in response to rhinovirus and influenza101; IFI27 is a potential
biomarker for influenza102; IFI16 binds and detects the DNA of
herpes simplex and human cytomegalovirus103; and IL32 is
considered a master regulator for controlling against infectious
diseases.104

http://www.jacionline.org
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FIG 1. Overlap of upregulated genes between COVID-19–infected bronchial epithelial cells and skin

conditions. A, Heatmap of enrichment log ORs, with the number of genes overlapped in cyan and the total

number of genes for each data set next to the data set names. Bronchial epithelial cells are shown in red.

Inset: histogram and color key for enrichment log ORs. B, Circular plot of genes, overlapping NHBE, and

the 5 most enriched skin conditions, in red. C, Heatmap of the genes overlapping at least 1 of the 5 most

significant pathways from ASSET in red. HS, Hidradenitis suppurativa.
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In parallel with the investigation of individual genes, we
conducted pathway-level analysis using data from the Kyoto
Encyclopedia of Genes and Genomes.105,106 ASSET77 was
applied to the summary statistics from Enrichr76 (see Fig E2 in
this article’s Online Repository at www.jacionline.org). The sub-
sets identified by ASSET for each pathway are indicated using a
cyan square. The most significant pathway overall was ‘‘Cyto-
kine-cytokine receptor interaction’’ (P5 7.93 102126), followed
by ‘‘Rheumatoid arthritis’’ (P 5 6.3 3 10293), ‘‘TNF signaling
pathway’’ (P 5 1.3 3 10281), ‘‘IL-17 signaling pathway’’ (P 5
4.9 3 10277), and ‘‘Staphylococcus aureus infection’’ (P 5
3.33 10270). The first 4 were indicated for all SARS-CoV-2–in-
fected bronchial epithelial cell lines, as well as the 5 skin condi-
tions with high gene overlap, whereas Staphylococcus aureus
infection was indicated only for hBO, in addition to the skin con-
ditions. Interestingly, TNF signaling pathway and IL-17 signaling
pathway are specific to the 5 skin conditions, whereas the other 2
also include hidradenitis suppurativa and alopecia areata. Burn
injury and atopic nevi show little involvement in the top 20 path-
ways, whereas discoid lupus and rosacea clustered together
because of their high involvement in all the pathways.

Fig 1, C, presents the genes overlapping NHBE and the 5 skin
conditions involved in the 5 most significant pathways from
ASSET. The FC for these genes in each condition and SARS-
CoV-2–infected bronchial epithelial cell line is provided in Fig
E3 in this article’s Online Repository at www.jacionline.org.
The pathway with the greatest number of overlapping genes
is IL-17 signaling (17 of 26 genes), followed by cytokine-
cytokine receptor interaction with 15, TNF signaling with 14,
and the rheumatoid arthritis pathway with 12. Of the genes upre-
gulated in all 5 skin conditions, CXCL1 is included in every
pathway, except Staphylococcus aureus infection; IL36G is pre-
sent only in cytokine-cytokine receptor interaction and TLR2 is
present only in the rheumatoid arthritis pathway, whereas
S100A7, S100A7, and S100A9 are present only in IL-17
signaling. IL-17 is considered a key target for COVID-19 treat-
ment, being involved in cytokine storm and lung damage,107 but
it is also central to inflammatory skin diseases, such as
psoriasis.108
Genetics
To investigate whether genetic susceptibility may play a role in

the relationship between skin conditions and COVID-19, we took
advantage of our recent large meta-analysis of 11,024 psoriasis
cases and 16,336 controls,78 and compared it against release 2 of
the COVID-19 Host Genetics Initiative meta-analysis (May
2020),79 using TDMA (Methods). TDMA identified a signal
(Fig 2) in the epidermal differentiation complex (chromosome
1) whose lead marker, rs12564811 (previously known as
rs151224049), was suggestive significant for psoriasis (OR,
1.17; P 5 1.4 3 1025) and COVID-19 (OR, 1.33, P 5
5.8 3 1025), but genome-wide significant in TDMA (OR, 1.25;
P 5 2.7 3 1028). The epidermal differentiation complex is a
known locus for psoriasis, and our signal is located near a more
significant psoriasis signal (rs6677595), but the 2 signals are
not in linkage disequilibrium with each other (r2 5 0.0464 in
1000 Genomes Europeans). To confirm the signals are indeed
distinct, we conditioned on the known psoriasis signal and found
that our signal became the most significant in the region (see Fig
E4 in this article’s Online Repository at www.jacionline.org).
rs12564811 is a significant eQTL in whole blood109 for
S100A12 (P5 3.33 1027), one of the genes that was upregulated
in each of the 5 skin conditions and NHBE. It is also an eQTL for
LCE1E in GTEx-exposed skin (P5 1.03 10211) and not exposed
skin (P 5 7.1 3 10210). The transcription start site for LCE1E
overlaps cg14792160, which is a significant methylation QTL
for rs12564811 in whole blood during pregnancy (P 5
1.08 3 10222), birth (P 5 4.9 3 10219), adolescence (P 5
2.27 3 10228), and middle age (P 5 1.26 3 10216).110 Further-
more, rs12564811 is an eQTL for LCE3A (P 5 1.9 3 1027)
and LCE3C (P 5 1.1 3 1024) in exposed skin, as well as
LCE3D (P 5 3.5 3 1025) in esophagus mucosa (epithe-
lium).99,100 We applied colocalization analysis in GTEx using a
colocalization approach (fastENLOC111), which takes advantage
of multiple imputation and precomputed signal clusters. In total,
the eQTL signals of 9 genes expressing in 14 tissue types were co-
localized with the genome-wide association study signals in the
same regions, with exposed skin having the highest number of co-
localized eQTL signals (7 of 9, including LCE1E). However, none
of the colocalizations had a high regional colocalization probabil-
ity, with LCE4A being the most probable candidate (regional co-
localization probability5 0.015), indicating it may be difficult to
reach a firm conclusion with regard to the target genes. LCE3
genes have been found to have antibacterial/antimicrobial activ-
ity,86 and are often upregulated in inflamed tissue.112,113 Some
of the LCE3 genes exhibit tissue-specific expression patterns
(eg, LCE3A/C/D/E are expressed only in the mucosa of the esoph-
agus, skin, and a few other tissues according to GTEx).
DISCUSSION
We conducted a large epidemiological study of COVID-19

susceptibility (435,019 patients) and severity (indicated by
requiring mechanical ventilation), using a range of covariates
(race, age, sex, BMI, and socioeconomic status) to ensure the
robustness of our findings. Most notably, having a skin condition
or inflammatory skin disease increased the risk of being infected
with SARS-CoV-2, but decreased the risk of requiringmechanical
ventilation, whereas previously known risk factors (eg, chronic
kidney disease or coronary artery disease) increased the risk of
both. One potential explanation would be that SARS-CoV-2 can
enter through the skin,114 or that the skin can act as a reser-
voir,55,56 because this could result in a different rate of disease
progression compared with transmission via the respiratory tract.
Skin conditions such as psoriasis,115 atopic dermatitis,116 and
burn injuries117,118 are associated with defective epidermal bar-
rier, and because the immune system is already activated in le-
sional sites of the skin, it is possible these infected individuals
can have different immunologic rates of viral response. Indeed,
previous research has suggested that an early interferon response
or decreased viral load can result in a mild form of the disease,119

and thus could be associated with the lower rate of requiring
ventilation among patients with COVID-19 with skin conditions.
Notably, COVID-19 is known to affect multiple organs120 and has
been found to replicate effectively in gut epithelia,121 but more
work is needed to determine whether this is also true of the skin.

Interestingly, we found that having a previous diagnosis of sore
throat (tonsillitis or pharyngitis) elevated the risk of COVID-19
but decreased the risk of ventilation, and it was independent of the
effect of skin disease. This raises another interesting possibility
that the link between skin conditions and COVID-19

http://www.jacionline.org
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FIG 2. TDMA. Regional association plots for the chromosome 1 epidermal differentiation complex locus in

psoriasis and COVID-19 (with the leadmarker in purple). The locus is suggestive significant for each disease

and genome-wide significant in the TDMA.
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susceptibility may also be through the oral/respiratory epithe-
lium. Clinically normal tissue (ie, noninvolved skin) of patients
with skin diseases, such as psoriasis and atopic dermatitis, has a
heightened immune state69 and can exhibit delayed barrier recov-
ery.115 Although still unstudied, it would be expected that this also
occurs in the oral mucosal and respiratory epithelium, where low-
grade inflammation may facilitate entry of the virus, but at the
same time the already heightened immune state may help accel-
erate the immune response against the virus, leading to less severe
outcomes. As with epidermal keratinocytes,53 ACE2 is also
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expressed in epithelial cells of oral mucosa,122,123 serving as a po-
tential entry point for SARS-CoV-2. Of the skin diseases we
investigated, ACE2 is upregulated (FDR <_ 0.05, logFC >_ 1)
only in psoriasis and discoid lupus, yet barrier dysregulation
without upregulation could still make ACE2 more accessible.
Interestingly, SARS-CoV-2–specific T cells have been found in
a large proportion of unexposed patients,124-126 and this is
believed to be a result of cross-reactivity with other circulating
coronaviruses, such as the common cold. Mucosal barrier disrup-
tion facilitates various infections (including with
coronaviruses127), which in turn weaken the barrier function,
potentially increasing susceptibility to COVID-19, while
providing some degree of immunity, which might help speed up
the initial interferon response, allowing COVID-19 to be more
effectively controlled.

An alternative measure of COVID-19 severity used by some
reasearchers49 is mortality; however, only 4 of the 251 COVID-
19 skin condition patients (OR, 0.44; P5 .133) and 3 of the 217
COVID-19 inflammatory skin disease patients (OR, 0.42; P 5
.154) died between March 1 and June 20, 2020. This lack of as-
sociation may be due to the low sample size, and it is also
possible some of the deaths recorded during this period were
not related to COVID-19. Case-fatality rates are notoriously
difficult to estimate128; for example, the United Kingdom sub-
stantially reduced its COVID-19 mortality count because it
was found patients had died of causes other than COVID-
19.129 Although we found hypertension (OR, 5.0; P 5
3.4 3 1023) and coronary artery disease (OR, 2.7; P 5
9.8 3 1024) to be associated with mortality among patients
with COVID-19, these conditions are known to be associated
with mortality in general.130 It therefore appears we have insuf-
ficient power for an analysis of conditions based on mortality,
and hence we believe mechanical ventilation is a more accurate
metric for COVID-19 severity. It is also worth noting the poten-
tial for ascertainment bias, because patients with more severe
COVID-19 and other diseases may be more likely to interact
with the health system.

Secondary diagnoses are included in the data from
Michigan Medicine, whereby a patient is in hospital for
something else and a skin condition gets captured too. We
believe it is important to include these diagnoses to ensure all
the patients’ conditions are taken into account. However, it is
conceivable secondary diagnoses may be less likely to be
recorded in urgent care settings, such that skin conditions
could potentially be underreported in patients with
COVID-19 on mechanical ventilation, for example. We
therefore repeated our analysis restricting to only those
patients who had at least 1 health system encounter in
2019. If the negative association between skin conditions
and requirement for ventilation was due to patients who
sought urgent care only for COVID-19, we would expect it to
disappear given the requirement for patients to also have been
seen before the pandemic. In contrast, we still observed a
strong negative association in our new analysis (OR, 0.39),
albeit with nominal significance (P 5 .027) due to reduced
sample size.

Furthermore, we tested the hypothesis that patients with a
recorded skin diagnosis may be more vigilant with regard to their
health, thus increasing the rate of COVID-19 testing (even if they
have no symptoms). Specifically, for patients who have received
at least 1 test for COVID-19, we evaluated the ratio of patients
diagnosed with a skin condition (burn injury, acne, atopic
dermatitis, or psoriasis) before 2020 among patients who have
been tested positive for COVID-19, and compared that with the
ratio for patients who did not have skin conditions. The results
showed no significant direction of effect (P 5 .90; OR, 1.01), in
contrast to the same test applied to rheumatoid arthritis (P 5
.02; OR, 0.73), suggesting that patients with skin disease are
not prone to overtesting compared with the general population.
The significant result for rheumatoid arthritis could potentially
be due to routine testing performed before surgery, for example,
joint replacement.

Through the use of TDMA, we identified a shared genome-
wide significant locus between psoriasis and COVID-19. The
location of this signal, in the epidermal differentiation complex, is
consistent with our findings from the gene expression analysis,
which showed S100 genes to be upregulated in SARS-CoV-2–
infected NHBE cells and the 5 most enriched skin diseases.
Although we were unable to replicate this locus in the phase 3
release (June 2020) of the Human Genetics Initiative, a substan-
tial difference between this and the version we used is the
inclusion of a large meta-analysis of severe COVID-19 infec-
tion.131 Our lead marker is not available in the phase 4 release
(October 2020), due to limitations on the 23andMe cohort; how-
ever, a nearby variant (rs10888505, r2 5 0.82) had P 5
1.1 3 1023 in COVID-19, P 5 9.1 3 1025 in psoriasis, and
P5 9.03 1027 in TDMA (which is substantiallymore significant
than the phase 3 result: P 5 6.9 3 1022 in COVID-19 and P 5
8.63 1025 in TDMA). It is possible that the inclusion of a large
number of patients with severe COVID-19 in phase 3 may cancel
out the relationship observed (which could support our epidemi-
ologic finding that patients with skin disease are less susceptible
to severe COVID-19 infections than the general population). The
phase 4 release also revealed a genome-wide significant locus in
chromosome 14 (rs10047949: COVID-19 P 5 5.9 3 1023, pso-
riasis P 5 1.1 3 1027, TDMA P 5 2.4 3 1029), in proximity
to a known psoriasis locus indicated for NFKBIA.132 We further
applied TDMA (with the phase 4 release) to summary statistics
from a genome-wide association study for atopic dermatitis,133

revealing a different locus in chromosome 14 (rs190850598:
COVID-19 P 5 3.9 3 1024, psoriasis P 5 7.3 3 1025, TDMA
P5 1.63 1027), although no loci were genome-wide significant
for this disease.

We also found cutaneous lupus to have a higher effect size
(OR, 1.67) than SLE (OR, 1.19), although it was only
nominally significant, providing further evidence for a
skin-specific effect. This did not however apply to psoriatic
arthritis, which had a higher effect size (OR, 1.88) than
psoriasis alone (OR, 1.34), yet it is important to note that
most patients with psoriatic arthritis develop skin symptoms
first before their joint inflammation,134 whereas patients with
SLE are more likely to develop fatigue, fever, and joint pain
first.135 We also identified differentially expressed genes
involved in host defense outside the epidermal differentiation
complex (eg, TLR2) common to SARS-CoV-2–infected
NHBE cells and the skin diseases. Previous researchers have
reported that inflammation in COVID-19 does not match the
distribution of SARS-CoV-2,136 and this suggests it is the
immune response that causes damage, rather than the direct
effect of the virus itself.

We analyzed transcriptome data (RNA-seq and microarray)
from multiple different skin diseases because our
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epidemiological evidence suggests they may all have effect on
COVID-19 susceptibility. Steps were taken to ensure compara-
bility of these results. All the RNA-seq studies were analyzed
using Differential Expression analysis for Sequence count data
2,137 and the microarray studies using limma138 (through the R
programming language implemented in the Gene Expression
Omnibus of National Center for Biotechnology Information139).
There were minor differences in the preprocessing steps per-
formed by each RNA-seq study. For example, although most
studies used Spliced Transcripts Alignment to a Reference140

for the alignment and high-throughput sequencing software li-
brary141 (or RNA Express,142 which is comparable to high-
throughput sequencing software library) for gene expression
quantification, the COVID-19 study for hBO used Hierarchical
Indexing for Spliced Alignment of Transcripts 2143 for align-
ment and featureCounts144 for counting. By including both
hBO and NHBE as normal bronchial epithelial cell lines (with
or without infection), we were able to assess the impact of these
differences and conclude the particular pipeline used to have
minimal effect. It is also important to point out we do not
combine the data through meta- or mega-analysis. Instead, we
apply multiple testing adjustment (FDR) and separately report
the significantly upregulated genes in each study. Although
some studies may have more power to detect upregulated genes
than others due to differences in sample size, we ameliorate this
effect through pathway analysis. The enrichment of a pathway
is not affected by the total number of upregulated genes,
because it measures the relative proportion of genes in the
pathway.

IL-17 signaling was one of the most strongly enriched
pathways across the data sets we investigated. In particular,
S100 genes are targets of IL-17 signaling145-147 and (in addi-
tion to being upregulated) were indicated by eQTL analysis
of the TDMA locus. IL-17 is believed to have a complex rela-
tionship to viral response,148 because it can both protect
against and promote viral infections. IL-17 stimulation can
induce ACE2 expression in bronchial epithelial cells,149 and
ACE2 has been shown to modulate IL-17–mediated neutrophil
infiltration.150 A previous study85 suggested that IL-17 inhibi-
tors can increase the risk of respiratory tract infections, and our
epidemiological analysis indicated that IL-17–targeted bio-
logics may also increase COVID-19 risk (close to nominal sig-
nificance) with a substantial effect size. Consistent with
previous research, treatment with other biologic immunosup-
pressants was far from significant.151,152 For example, no sig-
nificant association with respiratory tract infections was
observed for IL-23 inhibitors,153 and in a large study of 600
COVID-19 cases with rheumatic disease (including 74 with
psoriatic arthritis), TNF inhibitors did not significantly in-
crease COVID-19 hospitalization.154
Conclusions
Overall, our study has highlighted the significant link between

skin conditions and COVID-19. By further revealing the shared
genomic components, this work will serve as an important study
to reveal individuals who are more susceptible to infection of
SARS-CoV-2, and how their preexisting conditionsmay affect the
course of the disease. The epidemiologic and genetic findings
require additional validation and replication, for example, to
assess the impact of including presumptive positive patients and
confirm the rs12564811 locus. Animal models that have been
used to enable the study of SARS-CoV-2 infection,155 such as the
mouse-adapted version of the virus,156 could help validate the
suggested pathophysiology mechanisms, including the testing
of the hypothesis that animals with lesional skin157 or dysregu-
lated epithelium may experience a higher rate of SARS-CoV-2
infection.

Key messages

d Skin conditions are associated with increased COVID-19
risk.

d However, intriguingly they are associated with less severe
disease course.

d There are shared components between skin conditions
and COVID-19 immune response.
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FIG E1. Heatmap of enrichment log ORs, with the number of genes overlapped in cyan, and the total

number of genes for each data set next to the data set names. Bronchial epithelial cells are shown in red, and

a nonskin inflammatory disease (rheumatoid arthritis) is included for comparison in blue. Inset: histogram

and color key for enrichment log ORs. HS, Hidradenitis suppurativa.
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FIG E2. Heatmap of enrichment 2log10 P values from top 20 most significant pathways from analysis in

Kyoto Encyclopedia of Genes and Genomes, with expression data sets selected by ASSET for each pathway

set indicated in cyan. COVID-19–infected bronchial epithelial cells are shown in red, and the ASSET P value

for each pathway is provided next to the pathway names. HS, Hidradenitis suppurativa.
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shown in red. HS, Hidradenitis suppurativa.

J ALLERGY CLIN IMMUNOL

MARCH 2021

869.e3 PATRICK ET AL



0

2

4

6

8

10

lo
g 1

0(
p

va
lu

e)

0

20

40

60

80

100

R
ecom

bination
rate (cM

/M
b)

rs151224049

0.2

0.4

0.6

0.8

r2

1 gene
omitted

FLG AS1

RP11 107M16.2

HRNR FLG

FLG2

RP1 91G5.3

CRNN

LCE5A

CRCT1

LCE3E

LCE3D

LCE3C

LCE3B

LCE3A

LINC00302

LCE2D

LCE2C

LCE2B

LCE2A

LCE4A

C1orf68

KPRP

LCE1F

LCE1E

LCE1D

LCE1C

LCE1B

LCE1A

LCE6A

SMCP

IVL

RP1 13P20.6

SPRR4

SPRR1A

SPRR3

SNORA31

SPRR1B

SPRR2D

SPRR2A

SPRR2B

SPRR2E

SPRR2F

SPRR2G

152.2 152.4 152.6 152.8 153
Position on chr1 (Mb)

FIG E4. Regional association plot of psoriasis meta-analysis, conditioning on known epidermal differen-

tiation complex signal (rs6677595).
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TABLE E1. Summary of cohort used in our study

Characteristic

Individuals,

n (%)

COVID,

n (%)

Ventilation,

n (%)

Race

Black 42,886 (9.9) 422 (0.98) 81 (19.19)

Asian 24,651 (5.7) 54 (0.22) 6 (11.11)

White 347,769 (79.9) 587 (0.17) 56 (9.54)

Other 19,713 (4.5) 52 (0.26) 7 (13.46)

Age (y)

0-17 96,323 (22.1) 24 (0.02) 2 (8.33)

18-39 108,391 (24.9) 257 (0.24) 14 (5.45)

40-59 105,854 (24.3) 423 (0.40) 51 (12.06)

60-79 105,854 (24.3) 333 (0.31) 70 (21.02)

801 18,597 (4.3) 78 (0.42) 13 (16.67)

Sex

Female 237,863 (54.7) 608 (0.26) 50 (8.22)

Male 197,156 (45.3) 507 (0.26) 100 (19.72)

BMI

Not obese 305,030 (70.1) 542 (0.18) 61 (11.3)

Obese 1 (30-34.9 kg/m2) 69,398 (16.0) 235 (0.34) 32 (13.6)

Obese 2 (35-39.9 kg/m2) 34,272 (7.9) 171 (0.50) 27 (15.8)

Obese 3 (>40 kg/m2) 26,319 (6.1) 167 (0.63) 30 (18.0)

Socioeconomic disadvantage

Not disadvantaged 176,961 (40.7) 296 (0.17) 25 (8.45)

Disadvantage 1 (Q1-Q2) 116,265 (26.7) 227 (0.20) 25 (11.01)

Disadvantage 2 (Q2-Q3) 81,494 (18.7) 216 (0.27) 20 (9.26)

Disadvantage 3 (>Q3) 60,299 (13.9) 376 (0.62) 80 (21.3)

Comorbidity

Acne (L70.*, 706.[0,1]) 40,154 (6.9) 105 (0.35) 1 (0.95)

Alopecia areata (L63.*,

704.01)

1,130 (0.3) 7 (0.62) 0 (0.00)

Asthma (J45.*, 493.*) 79,306 (18.2) 265 (0.33) 32 (12.08)

Atopic dermatitis (L20*,

691.8)

18,360 (4.2) 38 (0.21) 1 (2.63)

Burn injury 6,558 (1.5) 31 (0.47) 0 (0.00)

Celiac disease (K90.0,

579.0)

3,373 (0.8) 8 (0.24) 0 (0.00)

Coronary artery disease

(I25.*, 414.*)

37,105 (8.5) 193 (0.52) 50 (25.91)

Chronic kidney disease

(N18.*, 585.*)

31,212 (7.2) 224 (0.72) 64 (28.57)

COPD (J4[2-4].*, 49

[1,2].*)

23,836 (5.5) 121 (0.51) 26 (21.49)

Cutaneous lupus (L93.*,

695.4)

2,284 (0.5) 17 (0.74) 1 (5.88)

Hidradenitis suppurativa

(L73.2, 705.83)

1,921 (0.4) 17 (0.88) 1 (5.88)

Hypertension (I1[0-5].*, 40

[1-5].*)

132,291 (30.4) 596 (0.45) 123 (20.64)

Inflammatory bowel

disease

26,813 (6.2) 101 (0.38) 13 (12.87)

Multiple sclerosis (G35,

340)

3,487 (0.8) 9 (0.26) 0 (0.00)

Myasthenia gravis

(G70.0*, 358.0*)

756 (0.2) 5 (0.66) 1 (20.00)

Nonneoplastic nevi (I78.1,

448.1)

9,685 (2.2) 23 (0.24) 4 (17.4)

Primary biliary cirrhosis

(K74.3, 571.6)

1,033 (0.2) 5 (0.48) 0 (0.00)

Psoriasis (L40.*, 691.[0,1]) 8,720 (2.0) 36 (0.41) 2 (5.56)

Rheumatoid arthritis 13,506 (3.1) 38 (0.28) 3 (7.89)

Rosacea (L71.*, 695.3) 11,253 (2.6) 35 (0.31) 0 (0.00)

Sj€ogren syndrome

(M35.0*, 710.2)

3,642 (0.8) 21 (0.58) 1 (4.76)

(Continued)

TABLE E1. (Continued)

Characteristic

Individuals,

n (%)

COVID,

n (%)

Ventilation,

n (%)

Systemic lupus (M32.*,

710.0)

5,562 (1.3) 27 (0.49) 1 (3.70)

Type 1 diabetes (E10.*,

250.[0-9][1,3])

10,380 (2.4) 62 (0.60) 12 (19.35)

Type 2 diabetes (E11.*,

250.[0-9][0,2])

53,106 (12.2) 345 (0.65) 96 (27.83)

Total 435,019 (100.0) 1,115 (0.26) 150 (13.5)

ICD-9, International Classification of Diseases, Ninth Revision; ICD-10, International

Classification of Diseases, Tenth Revision. Burn injury (T[20-25,30-32].*, 94[1-6,8-9].*).

Inflammatory bowel disease ICD-9/ICD-10: (K55.*, 55[5-8].*).

Rheumatoid arthritis ICD-9/ICD-10: (M0[5,6,8].*, 714.[0-3]*, 714.81).
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TABLE E2. Transcriptome study samples

Study Test Cases* Controls* Technology Pipeline

NHBE SARS-CoV-2 vs mock

infected

3 3 RNA-seq (Illumina

NextSeq 500)

STAR/RNA-Express/

DESeq2

A549 SARS-CoV-2 vs mock

infected

3 3 RNA-seq (Illumina

NextSeq 500)

STAR/RNA-Express/

DESeq2

Calu-3 SARS-CoV-2 vs mock

infected

3 3 RNA-seq (Illumina

NextSeq 500)

STAR/RNA-Express/

DESeq2

hBO SARS-CoV-2 vs mock

infected

3 3 RNA-seq (Illumina

NovaSeq 6000)

HISAT2/featureCounts/

DESeq2

Acne SARS-CoV-2 vs mock

infected

6 (29 y) 6 (38 y) Microarray (Affymetrix

U133A 2.0)

limma (GEO2R)

Alopecia areata Lesional skin vs control 60 (41 F, 19 M, 41 y) 36 (23 F, 13 M, 38 y) Microarray (Affymetrix

U133 Plus 2.0)

limma (GEO2R)

Atopic dermatitis Lesional skin vs control 21 (10 F, 17 M, 34 y) 38 (6 F, 4 M, 70 y) RNA-seq (Illumina HiSeq

2500)

STAR/HTSeq/DESeq2

Burn injury Lesional skin vs control 57 (12 F, 45 M, 24 y) 63 (33 F, 30 M, 21 y) Microarray (Affymetrix

U133 Plus 2.0)

limma (GEO2R)

Discoid lupus Lesional skin vs control 7 (5 F, 2 M) 3 Microarray (Affymetrix

U133A 2.0)

limma (GEO2R)

Hidradenitis suppurativa Lesional skin vs control 22 (13 F, 13 M, 42 y) 10 (6 F, 4 M, 70 y) RNA-seq (Illumina

NextSeq 500)

STAR/HTSeq/DESeq2

Nonneoplastic nevi Lesional skin vs control 18 (9 F, 9 M, 33 y) 7 (6 F, 1 M) Microarray (Affymetrix

U133A)

limma (GEO2R)

Psoriasis Lesional skin vs control 28 (14 F, 14 M, 42 y) 38 (22 F, 16 M, 33 y) RNA-seq (Illumina HiSeq

2500)

STAR/HTSeq/DESeq2

Rosacea Lesional skin vs control 19 10 Microarray (Affymetrix

U133 Plus 2.0)

limma (GEO2R)

Rheumatoid arthritis Synovial tissue cases vs

control

10 10 Microarray (Affymetrix

U133A)

limma (GEO2R)

DESeq2, Differential Expression analysis for Sequence count data 2; F, female; GEO2R, Gene Expression Omnibus into the R programming language; HISAT2, Hierarchical

Indexing for Spliced Alignment of Transcripts 2; HTSeq, high-throughput sequencing software library; M, male; STAR, Spliced Transcripts Alignment to a Reference.

*Number of samples, along with number of males, females, and average age, where available.
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TABLE E3. Biologics tested in our model

Biologic Full set Psoriasis set IL-17 set

Abatacept Yes

Adalimumab Yes Yes

Alefacept Yes

Anakinra Yes

Basiliximab Yes

Belatacept Yes

Belimumab Yes

Benralizumab Yes

Brodalumab Yes Yes

Canakinumab Yes

Certolizumab pegol Yes

Daclizumab Yes

Dupilumab Yes

Eculizumab Yes

Efalizumab Yes

Etanercept Yes Yes

Golimumab Yes

Infliximab Yes Yes

Ixekizumab Yes Yes Yes

Mepolizumab Yes

Muromonab-CD3 Yes
Natalizumab Yes

Omalizumab Yes

Reslizumab Yes

Rilonacept Yes

Rituximab Yes

Sarilumab Yes

Secukinumab Yes Yes Yes

Tocilizumab Yes

Ustekinumab Yes Yes

Vedolizumab Yes
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