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Abstract

Since spilling over into humans, SARS-CoV-2 has rapidly spread across the globe, accumulating significant genetic diversity.
The structure of this genetic diversity and whether it reveals epidemiological insights are fundamental questions for under-
standing the evolutionary trajectory of this virus. Here, we use a recently developed phylodynamic approach to uncover
phylogenetic structures underlying the SARS-CoV-2 pandemic. We find support for three SARS-CoV-2 lineages co-
circulating, each with significantly different demographic dynamics concordant with known epidemiological factors. For ex-
ample, Lineage C emerged in Europe with a high growth rate in late February, just prior to the exponential increase in cases
in several European countries. Non-synonymous mutations that characterize Lineage C occur in functionally important
gene regions responsible for viral replication and cell entry. Even though Lineages A and B had distinct demographic pat-
terns, they were much more difficult to distinguish. Continuous application of phylogenetic approaches to track the evolu-
tionary epidemiology of SARS-CoV-2 lineages will be increasingly important to validate the efficacy of control efforts and
monitor significant evolutionary events in the future.
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1. Introduction

The rapid spread of the novel coronavirus SARS-CoV-2 since
December 2019 represents an unparalleled global health threat
(Andersen et al. 2020). Within 4 months of emerging from
Wuhan in Central China, SARS-CoV-2 has now spread to nearly
every country and is a major source of mortality (World Health
Organization 2020). The first cases of the virus outside China oc-
curred in Thailand on January 13, and by January 30, there were
83 cases in 18 countries. As of May 19, there were over 4.5 mil-
lion cases in 203 countries or territories (World Health
Organization 2020). Coronaviruses (order: Nidovirales, family:

Coronaviridae) are enveloped positive-sense non-segmented
RNA viruses that infect a variety of mammals and birds.
SARS-CoV-2 is the seventh coronavirus to be identified infecting
humans. The closest relatives (RaTG13 and RmYN02, 96% and
93% nucleotide identity respectively) derive from the
Intermediate Horseshoe bat (Rhinolophus affinis) and the
Malayan Horseshoe bat (Rhinolophus malayanus) (Zhou et al.
2020), although the original host is yet to be conclusively identi-
fied (Andersen et al. 2020). Since spilling over to humans, the vi-
rus has diverged rapidly, but it is unclear whether these
mutations have resulted in SARS-CoV-2 lineages with different
epidemiological and evolutionary characteristics (Eden et al.
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2020; Korber et al. 2020; Pachetti et al. 2020; Rambaut et al. 2020;
Tang et al. 2020; van Dorp et al. 2020). Several lineages have
been highlighted for potential significance (Eden et al. 2020;
Korber et al. 2020; Tang et al. 2020; van Dorp et al. 2020). For con-
sistency, we adopt the nomenclature outlined by Rambaut et al.
(2020), which classifies the initial Lineages as A and B labelled
‘S’ and ‘L’ (in the GISAID nomenclature, Tang et al. 2020). There
is some evidence that Lineage A is ancestral to the more recent
Lineages B (Rambaut et al. 2020), even though the earliest as-
sembled genomes from December 2019 belong to lineage B
(Rambaut et al. 2020; Tang et al. 2020). Sequences within
Lineage A and the closest known bat virus share two nucleoti-
des in ORF1ab and ORF8 genes that are not found in Lineage B
(Rambaut et al. 2020). More recently, a new Lineage ‘G’ (in the
GISAID nomenclature) has been documented originating in
Europe in February (Korber et al. 2020). For consistency, we call
this Lineage C. It is currently unclear if these lineages differ phe-
notypically, or whether these lineages show distinctive demo-
graphic signatures (i.e. diversity increasing, plateauing, or
declining). Any further population sub-structure within these
three lineages is also unknown at this point.

Pathogen population structure and effective population size
can provide key insights into the epidemiology of an outbreak,
such as whether intervention strategies are working to contain
spread (i.e. is effective population size declining, Dellicour et al.
2018). Population structure may also align with geography,
reflecting the contact structure of the host population.
Understanding these variations is important both for vaccine
development and evaluating the impact of control efforts across
the globe. Detecting structure, particularly in recently emerged
outbreaks, is a challenge as these patterns within the data can
be cryptic (Volz et al. 2020). For example, some lineages within a
population can be rapidly expanding whereas others can be sta-
tionary (Volz et al. 2020). Utilizing large numbers of sequences
provided by GISAID (Elbe and Buckland-Merrett 2017) and re-
cently developed phylodynamic tools, we interrogate SARS-
CoV-2 population patterns to identify ‘hidden’ structure in the
pandemic and investigate whether lineages are geographically
partitioned and/or are on distinct demographic trajectories.

1.1 Three distinct lineages

Our analyses show support for three distinct lineages of SARS-
CoV-2 actively spreading around the world (Fig. 1). These line-
ages are highly unlikely to have been generated under the same
coalescent process (P< 0.0001 for each pairwise treestructure
test, see Section 2) and the same analysis performed on our
maximum clade credibility (MCC) Bayesian phylogeny yielded
very similar results (Fig. 1). However, treestructure tests on a
sample of Bayesian posterior trees revealed that this result was
sensitive to phylogenetic uncertainty with, for example, one lin-
eage (Lineage B, see below) only distinguishable in some of the
posterior trees (see Supplementary Table S1). Nonetheless,
given the balance of evidence presented here and in previous
work (Eden et al. 2020; Tang et al. 2020), Lineage B is likely dis-
tinctive from Lineage A and Lineage C.

Furthermore, we show that these lineages have different de-
mographic trajectories. Based on our maximum likelihood and
Bayesian MCC time-scaled phylogenies, we estimated that
Lineage A (and SARS-CoV-2 overall) diverged from its most re-
cent common ancestor (MRCA) in November 2019 (95% high
posterior density/confidence intervals November to December
2019, Fig. 1). Estimates from both approaches are comparable to
other studies that have analyzed greater numbers of sequences

(van Dorp et al. 2020). We also found support for rate variation
across the phylogeny (coefficient of variation of rates: 0.12), al-
though differences in MRCA estimates was minimal with strict
and relaxed clock model having mostly overlapping distribu-
tions. Since emerging in China, our demographic analysis (Volz
and Didelot 2018) suggests that the growth rate of the effective
population size of Lineage A increased in early January (Fig. 2a),
then decreasing throughout February before increasing once
more. This dip coincides with control of the pathogen in China
(Leung et al. 2020) and subsequent uncontrolled spread in
Europe and North America. We found a similar pattern when
we analyzed the complete dataset (Fig. 3a). The majority of
sequences belonging to Lineage A originated from China in
January to early February, whereas sequences from the USA,
and Washington state, in particular, make up the majority of
the sequences collated in March.

Our results support other analyses suggesting that Lineage B
was derived from Lineage A and was not an independent intro-
duction, even though Lineage B contains the earliest available
genomes (Rambaut et al. 2020; Tang et al. 2020). Linked muta-
tions in ORF1ab (8782, synonymous) and ORF8 (28144, non-
synonymous) help to separate these lineages (as by Rambaut
et al. 2020; Tang et al. 2020). Non-synonymous mutations in
ORF14 (28881-3) also partially define these lineages, yet there is
no evidence of phenotypic differences between these lineages.
Further, there is a high degree of phylogenetic uncertainty
about the node representing their most recent common ances-
tor and this lineage may be polyphyletic (Fig. 1, Supplementary
Fig. S1). The growth rates of both lineages (Fig. 2) are also similar
suggesting that the lineages were co-circulating, but more local
investigation is needed to determine relative fitness differences.
Soon after diverging from Lineage A, the growth rate of Lineage
B was at its highest but then formed a pattern of peaks and
troughs with the credible interval including zero (representing
no growth) from January onward (Fig. 2b). The peak growth rate
coincided with that of Lineage A (Fig. 2) indicating that this first
wave of SARS-CoV-2 through China generated a relatively large
amount of the genetic diversity. As many sequences classified
in Lineage B originate from China (Fig. 1), the subsequent de-
cline of this lineage may also be linked to control of the virus.
There is also evidence for a rapid increase in growth rate of both
Lineage A and Lineage B when spread increased outside of
China and this coincides with the divergence date for Lineage C
(Fig. 2).While our results on their own cannot rule out the possi-
bility that the phylogenetic structure we identified was a result
of founder effects (Korber et al. 2020) (i.e. the lineages diverged
as they were transmitted to new locations), we used an eco-
phylogenetic approach (Fountain-Jones et al. 2018) to quantify
the geographic structure. We found that the sequences were
not strongly clustered by country or continent (phylogenetic sig-
nal K< 0.15, Supplementary Table S2 see Section 2). However,
for the continent contrast (i.e. modelling continent of origin for
each sequence as a trait), this low K value was just significant
using phylogenetically independent tip randomizations
(P¼ 0.012, Z¼�1.513, Supplementary Table S2). This is likely
due to the large numbers of sequences from Lineage C from
Europe.

Lineage C was predominantly European with no evidence
that it circulated in China (Fig. 1). This lineage was well sup-
ported as monophyletic (node posterior support ¼ 0.99, 91%
bootstrap support, Fig. 1) and diverged from Lineage B in late
January (95% highest posterior density late January to early
February). Linked non-synonymous mutations differentiated
this lineage in the S gene (sites 23402-04 or D614G) and ORF1ab
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(14407-09) regions. There is increasing evidence that the muta-
tions in the S gene have resulted in phenotypic change in the vi-
rus [and the resultant changes to the Spike (S) protein] that has
enabled this lineage more readily transmissible (Korber et al.
2020; The COVID-19 Genomics UK Consortium 2020). The muta-
tions in the ORF1ab gene alter the RNA-dependent RNA poly-
merases (RdRp) that are crucial for the replication of RNA from
the RNA template. There is evidence that this RdRp mutation
may increase the mutation rate of the virus overall by reducing
copy fidelity (Pachetti et al. 2020). The growth rate of Lineage C
was initially high in late February, prior to the rapid increase of
cases in Europe, but then declined, with one further peak
around February 27, although the short duration suggests this
may not be significant and could represent sampling noise.
Accordingly, the effective population size of Lineage C increased
rapidly during February to March, whereas there was only a
small increase estimated for Lineage A and a decline in Lineage
B (Fig. 2). Real-time phylogenetic reconstruction in Nextstrain
(Hadfield et al. 2018), as well as results from intensively sam-
pled populations in the UK (The COVID-19 Genomics UK
Consortium 2020), have subsequently shown that this lineage
has further expanded and is the most frequently sampled
across the globe.

1.2 The growth and decline of SARS-CoV-2 lineages

We were able to identify three lineages that were not only ge-
netically distinctive but also had unique demographic signa-
tures, revealing insights into the underlying epidemiology of
this pandemic. There is also increasing evidence that Lineage C
is more transmissible than the other lineages (Korber et al. 2020;

The COVID-19 Genomics UK Consortium 2020), revealing that
our approach can detect important phenotypic changes to the
virus. The number of cases increases day-by-day, as does the ef-
fective population size of the virus overall (Fig. 3b); both to be
expected by their linear relationship in the early phase of a
susceptible-infected-removed (SIR) compartmental model (Volz
2012). It appears that this increase is not distributed evenly
across the phylogeny, with all lineages showing some evidence
of decline at different times. However, there is bias in countries
represented in the GISAID dataset we accessed, with, for exam-
ple, no sequences in our dataset from the Middle East even
though there was a significant (and ongoing) outbreak in this re-
gion. Further, our approach to identify non-random coalescent
patterns does not account for phylogenetic uncertainty and fu-
ture work is needed to address this limitation. Even though the
outbreak is only months old at the time of writing, there is al-
ready sufficient genetic diversity to track the demographic tra-
jectories of each lineage. Approaches such as the one presented
here, combined with workflows quantifying geographical line-
age dispersal (Dellicour et al. 2020), will be even more useful in
the coming months to assess the longer-term impacts on SARS-
CoV-2 control measures across the globe.

2. Methods

We downloaded 779 complete ‘high coverage only’ SARS-CoV-2
genome sequences from GISAID (Global Initiative on Sharing All
Influenza Data; https://www.gisaid.org/, see Supplementary
Appendix S1 for the acknowledgment information) (Elbe and
Buckland-Merrett 2017) on the 24 March 2020. We aligned these
sequences with MAFFT (Katoh and Standley 2013) using the

Figure 1. Treedater maximum likelihood tree (a) and Bayesian time-scale phylogeny (b) revealing the three SARS-CoV-2 lineages we identified with unique demographic

signatures (Lineages A, B, and C). Branches in both trees are coloured by lineage (see Section 2 for details). Most recent common ancestor estimates from the treedater

analysis are also provided. Density bars are shown representing the 95 per cent highest posterior density (HPD) intervals for the dating of each lineage. Node posterior

support values and bootstrap support values are shown for internal nodes not leading to leaves with values >0.8 or 80 percent posterior or bootstrap support, respec-

tively. See Supplementary Fig. S1 for the Bayesian tree with all posterior support values. Stacked bar plots show the proportion of sequences from each country classi-

fied in each lineage.
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CIPRES (Miller, Pfeiffer, and Schwartz, 2010) server and visually
checked the results. We trimmed the first 130bp and last 50bp
of the aligned sequences to remove potential sequencing arte-
facts in line with Nextstrain protocol (Hadfield et al. 2018). We
tested for recombination in our alignment using RDP4 (Martin
et al. 2015). We removed all duplicate sequences and sequences
with more than 10 per cent missing data. We then constructed
a Maximum Likelihood tree using IQ tree with 1000 ultrafast
bootstraps (Nguyen, 2015) using the inbuilt model selection al-
gorithm (‘ModelFinder’; Kalyaanamoorthy et al. 2017). We con-
firmed that there was a significant temporal signal in the
dataset using root to tip regressions in TempEst (Rambaut, et al.
2016) (R2 ¼ 0.19, correlation coefficient ¼ 0.42). We removed
sequences from Washington State and China that likely had
some sequence error as they were strong outliers in the
TempEst analysis. Removing sequence error, identical sequen-
ces and sequences with missing data reduced the dataset to 587
complete SARS-CoV-2 genomes.

We used both the maximum likelihood-based treedater
method (Volz and Frost 2017) and a Bayesian approach to recon-
struct the timing and spread of SARS-CoV-2. We employed the
computationally intensive Bayesian methodology [BEAST ver-
sion 1.10.4 (Suchard et al. 2018) with BEAGLE (Ayres et al. 2019)
computational enhancement] to validate our maximum likeli-
hood MRCA estimates and to provide dating estimates for inter-
nal nodes of interest. For the BEAST analysis, as there is strong
evidence that the pandemic is growing, we assumed an expo-
nential growth coalescent model. To estimate evolutionary rate,
we compared runs using a strict and relaxed molecular clock.
While we found some minor rate variation and very similar
MRCA estimates, our ML results supported a relaxed clock
model (see below), so subsequently we present results from
that model. We performed each BEAST analysis in duplicate
and ran the MCMC chains for 200 million iterations sampling
every 20 000 steps. We visualized these results using Tracer
(Rambaut et al. 2018) and ensured that all parameter estimates

Figure 2. Effective population size (left panels) and growth rate of the effective population size per year (right panels) estimated through time for the three identified

SARS-CoV-2 Lineages from our skygrowth models. The coloured 95 percent high probability density (HPD) intervals reflects lineages identified in Fig. 1. Dashed lines in

the left panels indicate a growth rate of zero.
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had converged with an effective sample size (ESS) > 200. We
generated an MCC tree using TreeAnnotator, discarding 20 per
cent as burn-in.

Our previously described ML tree was used as input of the
treedater method (Volz and Frost 2017) to produce an ML time-
scaled phylogeny. Treedater is an efficient maximum likelihood
method that implements both a strict clock model using a
Poisson process and a relaxed clock model using a Gamma-
Poisson mixture. We compared the fit of relaxed and strict clock
models using a parametric bootstrap test to compare the coeffi-
cient of variation of rates (Volz and Frost 2017) and used the
best fitting model to construct the phylogeny as well. We esti-
mated the confidence intervals for the dates of ancestors in this
tree using parametric bootstraps.

We then used this time-stamped ML tree to test for structure
within the tree using the non-parametric treestructure approach
(Volz et al. 2020). Briefly, this method partitions the tips and in-
ternal nodes of a tree into discrete sets characterized by compa-
rable coalescent patterns. See Volz et al. (2020) for analytical
details. Given the relatively low levels of genetic diversity, we
constrained our structure analysis to be able to identify a

maximum of four lineages by making the minimum clade size
145 sequences and performed 100 000 tree simulations (with a
significance threshold of 0.05). We then tested the hypothesis
that each pair of identified clades within a tree were generated
by the same coalescent process using the treestructure rank-sum
test. We also performed the same analysis on the Bayesian MCC
tree as well as 1000 trees from the posterior. To test if the identi-
fied lineages were a product of the founder effect, we modelled
the geographic origin for each sequence as a trait across our
phylogeny and measured the phylogenetic signal (the K statis-
tic, Blomberg, Garland, and Ives 2003) of each trait using phylo-
genetic independent contrasts using the R package Picante

(Kembel et al. 2010). We calculated K for both country of origin
and continent of origin, and we tested the significance of K us-
ing 9999 randomizations. K¼ 0 represents little phylogenetic
clustering by country or continent whereas K¼ 1 represents
strong phylogenetic clustering.

For the complete dataset and each lineage subset, we mod-
elled the effective population size growth rate through time us-
ing the skygrowth package (Volz and Didelot 2018). Skygrowth is a
non-parametric Bayesian approach that applies a first-order

Figure 3. Growth rate (a) and effective population size (b) estimates through time from our skygrowth model using the complete dataset (all lineages of SARS-CoV-2).

Light blue shading represents the 95% HPD of the estimates.
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autoregressive stochastic process on the growth rate of the ef-
fective population size. We parameterized our skygrowth models
assuming that SARS-CoV-2 effective population size could
change every three days. We used an exponential distribution
with a mean of 0.1 to estimate the precision parameter (Tau).
We ran the MCMC for 20 million generations thinning every
1000th sample and considered each analysis to be converged if
the ESS >200. We compared our skygrowth models to Skygrid
models using the R package ‘phylodyn’ (Karcher et al. 2017) us-
ing the default settings.

Data availability statement

The ML tree and code used to perform these analyses are avail-
able here: https://github.com/nfj1380/covid19_evolution. BEAST
log files are available upon request.

Supplementary data

Supplementary data are available at Virus Evolution online.
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