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Semiconductor-inspired design principles
for superconducting quantum computing

Yun-Pil Shim"2 & Charles Tahan!

Superconducting circuits offer tremendous design flexibility in the quantum regime culmi-
nating most recently in the demonstration of few qubit systems supposedly approaching the
threshold for fault-tolerant quantum information processing. Competition in the solid-state
comes from semiconductor qubits, where nature has bestowed some very useful properties
which can be utilized for spin qubit-based quantum computing. Here we begin to explore how
selective design principles deduced from spin-based systems could be used to advance
superconducting qubit science. We take an initial step along this path proposing an encoded
qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results
show that this design philosophy holds promise, enables microwave-free control, and offers a
pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps,
operation at higher temperature. The approach is also especially suited to qubits on the basis
of variable super-semi junctions.
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pin qubits' are based on the fundamental and intrinsic

properties of semiconductor systems, such as electron spins

tragped in the potential of a quantum dot? or a chemical
impurity”. Spins can be naturally protected from charge noise due
to weak spin-orbit coupling. In fact, the tiny matrix element
between spin qubit states can allow spin qubits to operate at
temperatures above the Zeeman splitting®>. While a benefit to
qubit coherence, this property of spins also leads to relatively slow
single-qubit gates via, for example, a microwave pulse. It turns
out that nature provides a solution: a very fast and robust
two-qubit gate via the exchange interaction. This has led to
“encoded” qubit schemes where the qubit is embedded logically
in two to four physical spin qubits®3. The fact that electrons are
real particles can be used for fast initialization and readout
techniques. ~Exchange-only —qubits”® allow all electrical
implementation of qubit-gate operations, and enable universal
quantum computation (QC) while providing some immunity to
global field and timing fluctuations via a decoherence free
subsystem, at the cost of more physical qubits and extra
operations per encoded gate.

This work investigates how superconducting Josephson junc-
tion quantum circuits'?, whose properties can be engineered, can
be improved by mimicking some of best properties of spin qubit
systems. We propose a first step: an encoded superconducting
qubit approach, which does not require microwave control, and
thus divorces qubit frequency from control electronics. In analogy
to the exchange-only qubit in semiconductor spin qubit systems,
encoded qubits enable microwave-free control of the qubit states
via fast DC-like voltage or flux pulses. In contrast to the
exchange-only qubits, logical gate operations of this encoded
superconducting (SC) qubit can be done with minimal overhead
(zero overhead in physical two-qubit gates) in terms of control
operations, a surprising result. We describe how to initialize the
encoded qubit and implement single- and two-qubit logical gates
using only z-control pulse sequences (via tunable frequency
qubits). In the process we also lay out possible opportunities for
future research on the basis of other insights from spin-based QC.
To encourage implementation, we give an explicit protocol on the
basis of qubits in operation today.

Small systems of superconducting qubits based on variations of
the transmon qubit' 12 have already demonstrated gates with
fidelities approaching 99.99% along with rudimentary quantum
algorithms including error correction cycles!3~!°. Note that
because these architectures rely on single-qubit gates via
microwaves, the future design space is constrained by the
availability and convenience of microwave generators.

An alternative approach to combining the best properties of
semiconductor and superconducting quantum systems is to take
advantage of true superconducting-semiconductor systems. The
appearance of superconductivity in conventional semiconduc-
tors?%2! such as silicon??~2> or germanium?%%’ could potentiall
allow for a new type of fully epitaxial super-semi devices®®%°,
And epitaxial super-semi Josephson juction devices based on the
proximity effect have already led to new superconducting
circuits3%31, Epitaxial super-semi systems may improve noise
properties, but perhaps more importantly they enable gate-
tunable Josephson junctions, which we can also take advantage of
in our proposal introduced below.

Results

From encoded spins to tunable qubits. Spins in quantum dots,
say in silicon, are typically assumed to have equivalent g-factors,
so that in a magnetic field the frequency of each qubit is the same.
Thus, to achieve universal QC (an ability to do arbitrary rotations
around the Bloch sphere plus a two-qubit entangling gate), one
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needs at minimum three spins. In this case, an encoded one-qubit
gate requires around 3 pulses and a CNOT gate requires roughly
20 pulses’, a hefty overhead. Two-qubit encodings are possible,
but require the complication of a magnetic field gradient (via for
example a micromagnet). Superconducting qubits, on the other
hand, can be man-made such that the qubit frequency is tunable.
This allows arbitrary one-qubit rotations with just two-physical
qubits, in theory.

In this work, we consider a qubit encoded in a system of two
capacitively coupled-SC qubits. We take tunable transmons!®32
like xmons'® or gatemons®® as our prototypical SC qubits
(see Fig. 1a) and suggest one possible implementation following
the capacitively-coupled xmon architecture of Martinis et al.'* to
encourage near-term realization. Although we explicitly chose
the xmon geometry to be more specific about our proposed
protocol, the general idea can easily be applied to other types of
SC qubits, such as traditional transmons or capacitively-shunted
flux qubits®>34, which we will discuss later. A transmon qubit!! is
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Figure 1 | Encoded superconducting qubits and tunable Josephson
junctions. (a) Schematic diagram of a possible encoded superconducting
qubit scheme as described in the text. An encoded qubit consists of two
tunable physical SC qubits (for example, tunable transmons such as the
xmon depicted here), with the encoded qubit states [0)q=]01) and
[1)q=110). In this picture, two encoded qubits are shown (for example,
physical qubits 1a and 1b form an encoded qubit) and more encoded qubits
can be introduced in a straightforward manner. Each SC qubit has a
z-control line which tunes the Josephson energy Ej, and there are no
additional microwave xy-control lines. All manipulation of the qubit states
are done by the z-control pulses. Each transmon is capacitively-coupled to
neighbouring transmons and also coupled to, as an example, a transmission
line resonator for readout. (b) Double JJs in a loop act as a tunable JJ,
controlled by an externally applied magnetic flux. In the SQUID tunable
approach, one of the transmons in each encoded qubit needs a separate
voltage control to tune the gate charge number ng which may be needed to
initialize the encoded qubit state. (¢) electrostatically tunable JJ on the
basis of a proximitized superconducting-semiconductor nanowire
connecting two superconductors3© used for gatemons. The nanowire is
coated with SC and a portion is lifted off to form a semiconductor nanowire
weak link. The JJ energy E; is tuned by a side-gate voltage Vg, which can
also serve as a capacitive tuning for initialization.
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described by the charge qubit Hamiltonian:
Hx :4Ec(f1—ng)2—E] cos 0), (1)

where Ec=e%/2Cs is the electron charging energy for total
capacitance Cs and Ej is the Josephson energy. 71 and 0 are the
number and phase operators, respectively, and n, is the gate
charge number that can be tuned by a capacitively-coupled
external voltage. The qubit frequency fo=2¢/h, where ¢ is the
energy difference between the first excited state and the ground
state, and fq ~ /8ECEj/h in the transmon regime, E; > Ec.
The Josephson energy of a JJ is determined by the material
properties and geometry of the JJ, but a double JJ can be
considered as a tunable JJ>> where an externally applied magnetic
flux through the double JJ loop can tune the effective coupling
energy Ej=Ejy cos(n®e,/DPy) (see Fig. 1b). Dy is the external
magnetic flux and @, is the SC flux quantum. Individual
transmon qubits are typically controlled by tuning the qubit
frequency with tunable E; for z-control and by applying
microwaves for x control.

Recently, there has been progress in an alternative approach for
a tunable JJ using a superconductor proximitized semiconductor
weak-link junction®®3!. In ref. 30, an InAs nanowire was used to
connect two superconductors (Al). The nanowire was epitaxially
coated with Al and a small portion of the wire was etched off to
form a semiconductor nanowire bridging two SCs (Fig. 1c). A
side-gate voltage was used to tune the carrier density under the
exposed portion of the wire and thus the Josephson energy of this
SNS JJ. The gatemon, a tunable transmon based on this gate-
tunable JJ, has several advantages. It requires only a single
JJ that can be quickly tuned by a electrostatic voltage. It removes
the need for external flux and hence reduces dissipation by a
resistive control line and allows the device to operate in a
magnetic field. The epitaxial 7grow‘[h of the nanowire JJ and its
clean material properties’®3” demonstrate the potential of a
bottom-up approach for SC quantum devices?®2°.

Our encoded qubit is defined in a two-transmon system.
The Hamiltonian for two transmons with the capacitive xx
coupling is:

Hx = Y
k=ab
+ E.. (Na — néa)> (Nb — nl(gb)

= 8,07 87 4855 @ 5,

R 2 R
[4E(Ck> (Nk - nék)) - E](k) cos Bk]

) (2)

where E. is the capacitive coupling energy and 6} (i=x, y, 2) is
the Pauli operator for k-th transmon in a reduced subspace of
transmon qubit states. & is the qubit energy of the k-th transmon,
and ¢ = E_.o,0n, with op=(1|Ni|0) where |0) and |1) are the two
lowest energy states of individual transmons. In transmon qubit
systems the capacitive coupling is usually turned on (off) by
tuning the qubit frequencies to on (off) resonance. The capacitive
xx coupling conserves the parity 62 ® 67 of the two-transmon
system and the Hamiltonian (equation (2)) is block-diagonal in
the basis of {|00), |01), |10), |11)}. We define our encoded qubit in
the subspace of ({|01), |10}}), since the other subspace ({|00),
|11)}) has states with a very large energy difference (much larger
than the capacitive coupling), effectively turning off the capacitive
coupling all the time.
In the encoded qubit basis {|0)q, |1)q} where

|0>Q: ‘01>7 |1>Q: |10>7 (3)
the single qubit Hamiltonian is

o —aates € _&tate iz, dax
HQ_( o Sa—Sb)_ 5 1+ Ae® +¢€'6*, (4)

where Ae = (g, — €,)/2 and 6’ (i==x, y, 2) is the Pauli operator for
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Figure 2 | Encoded single qubit operations. (a) Possible rotation axes in xz
plane. The shaded grey region depicts the range of the direction of the
possible rotation axis. The two red directions indicate a set of two
orthogonal rotation axes, which can be used to implement any arbitrary
single qubit gates in three steps. (b-d) Schematically shows an
implementation of some logical gates in terms of rotations around

n; =n,/|ny| and A, =ny/|ny|. (b) Pulse shape for Hadamard gate.

(c) Pulse shape for X gate. (d) Pulse shape for Z gate.

the encoded qubit. The qubit energies ¢, and &, can be controlled
by the tunable JJ of each tunable transmon or gatemon, enabling
logical gate operations with only fast DC-like voltage or flux
pulses. In the following we will describe the logical gate
operations, initialization and measurement schemes for this
encoded qubit architecture.

Single-qubit operations. The Hamiltonian for an encoded qubit
is given by equation (4). For a fixed capacitive coupling between
SC qubits, ¢ is fixed, and the single-qubit operations can be
implemented by pulsing the qubit energy & through the
z-control of individual transmons, in at most three rotations.
Since the tunable range of A¢ (order of GHz) is much greater than
¢ (tens or hundreds of MHz), the rotation axis can be in almost
any direction in the right half of the xz plane (see Fig. 2a), and
most lo%ical single-qubit gates can be implemented in two
rotations®8, In general, all single-qubit-gate operations can be
implemented as a three-step Euler angle rotations around two
orthogonal rotation axes (for example, see the two red axes in
Fig. 2a).

We now provide implementations for a few representative
single-qubit gates. The Hadamard gate, H=((1,1), (1, — 1))/v/2,
is a single-qubit gate that is almost ubiquitous in quantum
circuits. Figure 2b shows an implementation of H gate as a single
rotation H=iR(f,,7) around fi,=(1,0,1)//2. It can be achieved
by tuning de =¢'. Here R(fi, ¢b) is a rotation by angle ¢ around n
axis. Pauli X gate can be realized as a single rotation by tuning the
two xmons on resonance (A¢ = 0), or three-step rotations such as
X=iR(fy, m/2)R(f;, m/2)R(fy,7/2), where f;=(1,0, —1)/v/2
and n,=(1,0,1)/+/2, as was shown in Fig. 2c. Z gate requires
three-step rotations: Z= —iR(fp,7/2)R(fy,37/2)R(fy,7/2).
The above examples are for ideal systems with precise control
over the system parameters. In real systems with fluctuating
parameters, recently developed dynamical error-cancelling pulse
sequences>®40 could be useful for gate operations with higher
fidelity.

Given that single-qubit gates in transmon systems through
z-control have already demonstrated fidelities better than 0.999
(ref. 14), we expect the logical single-qubit gates (which require at
most three rotation steps through z-control of transmons) will be

| 7:11059 | DOI: 10.1038/ncomms11059 | www.nature.com/naturecommunications 3


http://www.nature.com/naturecommunications

ARTICLE

a b
f
a -20.6
0020
\ [ f1a) —
a P
\ ]fga) C} 2000
< —21.0 [ 001+
"""""""""""""""""""" = oi10]
20 _01.4 [ 1001
/] \ Q {100
| 1l 1] ; 85 9.0 95 10.0
7 T o EJ(1b)

Figure 3 | Two-qubit gate operation. (a) Pulse scheme for two-qubit gate
operations. y axis (fg) is the qubit frequencies of each transmon in Fig. 1a.

féo) is the idle qubit frequency of k-th transmon. The two blue curves
(transmons 1a and 1b) form an encoded qubit, and the two green curves
(transmons 2a and 2b) form the other encoded qubit. The transmons 1b
and 2a are brought close to resonance while still far from being resonant
with other transmons (transmon 1a and 2b), then are brought back to
respective idle frequencies. (b) Energy spectrum for the process. The
system is brought to the shaded area where (0110) and (0020) states are
mixed. (0110) state accumulates non-trivial phase during this process,
which leads to a CPHASE gate between transmon 1b and transmon 2a. This
provides a non-trivial encoded two-qubit gate necessary for universal QC.

able to reach a fidelity better than F; > F2=0.999°= 0.997 using
currently available experimental techniques.

Two-qubit operations. For a scalable qubit architecture, we need
to plan for the transmon qubit frequencies such that unnecessary
resonances are avoided, especially if the two-qubit interaction
cannot be completely shut off via, for example, a tunable
coupler’!. An encoded qubit has two transmons with idle
frequency difference much larger than the capacitive coupling, so
we can effectively turn the coupling off. In the two-encoded qubit
system (four transmon system), we set the idle frequencies of
next-nearest neighbour transmons to be different by more than
the direct capacitive coupling between them, which is order of
MHz!®. We also set the encoded qubit frequencies Ae of the
neighbouring encoded qubits to be different so we can mitigate
some unintended resonances. For the calculations in this section,
we set the four transmon qubit idle frequencies f, ¥ as 5.6, 4.6, 5.9,
4.8 GHz for k=1a, 1b, 2a, 2b, respectivel?rk (see Fig. la. In this
section and the following, we set EC) /h=375MHz and
E..=30MHz for all transmons. Transmon qubit frequencies
are controlled by tuning El(k).

Two-qubit operations can be implemented by adopting
the adiabatic two-qubit CPHASE operations!**? between two-
transmon qubits. By tuning the qubit frequencies of two-
transmon qubits such that (11) and (02) states become
resonant and then bringing them back to their idle frequencies,
a unitary gate equivalent to the CPHASE gate between two qubits
up to single-qubit unitary gates can be achieved*>. This scheme
has already been used in experiments and achieved reported
fidelity better than 0.99 (ref. 14). In a similar manner, we can
implement the CPHASE gate between two encoded qubits up to
single-qubit unitary gates. Figure 3a shows schematically the
pulse sequence of the transmon qubit frequencies, changing the
qubit frequencies of transmon 1b and transmon 2a in Fig. la.
First, we bring the transmons 1b and 2a closer during time 7,
such that (0110) and (0020) states are on resonance in step (I).
Then, in step (II), they stay there for a time period t,,=1, — 71,
and finally we bring them back to initial point at time 13=1, + 1,
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in step (III). The (0110) state gets mixed with (0020) due to the
capacitive coupling during the pulse sequence with strength v/2¢'.
During this process the (0110) state obtains some non-trivial
phase due to the interaction with (0020) while the other qubit
states, (0101), (1001) and (1010), obtain only trivial phases since
they do not get close to any other states that can mix. This process
results in a unitary operation in the encoded qubit space, up to a
global phase,

%2 0 0 0

B 0 ¢lhtds+0¢) o o
U= 0 0 1 0 | (5)

0 0 0 eits

This is equivalent to the CPHASE gate (1, 1, 1, 0P up to single-
qubit operations.

st~ [(,% 2o (4 9)
6
xeK(l) é)@(é ef)i(/)})], (6)

Note that, unlike refs 14,42, we tune both transmons 1b and 2a
instead of tuning only one of them. If we only tuned transmon 2a
to bring the (0110) state close to the (0020) state, then transmon
2a and transmon 2b would be close to resonance. Because the
transmon-transmon interaction through capacitive coupling can
be turned on and off by bringing the transmons on and off
resonance, this will result in a complicated, unintended operation
as well as leakage. So it is necessary to tune transmons 1b and 2a
simultaneously so that transmons la and 2b do not come into
play during the process. The resonance between next-nearest
neighbours can also lead to some small anti-crossing, but these
resonances only occur during the fast ramping up and down steps
and thus can be negligible. This scheme is preferable to directly
using the xx coupling between transmons 1b and 2a, since xx
coupling drives the system outside of the encoded qubit space and
hence leads to leakage, requiring a rather long sequence of pulse
gates to implement a two-qubit logical operation””. The physical
CPHASE gate has been successfully implemented for xmon
qubits with gate time of ~40ns (ref. 14), which can be directly
applied for logical two-qubit gate here, too.

Figure 4 shows simulated numerical results of this physical
two-qubit interaction between transmons 1b and 2a. We use an
error function shape ramping up and down, similar to ref. 44,

b
™ (1)
(1b) | E —E” —u/2
E{} +%(l+erf(%)> (1) .
_ (1b)
= ¢ BN (1)

(1b) _ (1b)
Effd) — =t (1 +erf (;4\1//52; m)) (1)

and El(za)(t):Eféb> + E]%a) - E;lb) (t). Ejo is the idle value and E,,

is for resonant (11) and (02) states. To find optimal solutions of
this form, we change t; and choose 0211/4\/§. T12=Tp — 11 18
calculated analytically using a perturbative expression such that
the whole process will result in the U with desired d¢. Figure 4a
shows 71, and the total time 73 needed to implement a CZ gate
(0p=m).

Due to the mixing with higher energy states which are out of
the encoded qubit space, leakage error could pose a problem. We
can compute the leakage error as follows. The full unitary
operation matrix U can be written in a block-form

Uaa Uas
U= 8
(0 o). (®

Usa
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Figure 4 | Fidelity of adiabatic CZ interaction operation. (a) Operation
time. The red curve is the staying time 11,=1, — 77 and the black curve is
the total time 13. (b) Leakage error during the process. (¢) Gate fidelity in
terms of Makhlin invariants. This gives a measure of how close the unitary
gate is to the CZ gate up to single qubit operations. (d) Pulse shape for

71 =10 ns. We used error function to model a smooth pulse shapes for EJ(1b>
and £/%).

where A is the encoded qubit subspace and B is the
complementary subspace. For any qubit state |J,) in the
encoded qubit space, the leaked portion is Ugalty,) and
1UsalW o) 1P = WAl UbUsalya) = WalWaalba).  Waa=Uf,Usa
is positive definite and the leakage error Ej., can be defined as
max(y , | Waa | )= max,{w;} where w; are the eigenvalues of
Waa. The leakage error (Fig. 4b) can be a few percent, but if we
choose optimal 7y, it can be significantly reduced, well below 1%.
Note too that leakage can be dealt with algorithmically*>46; such
circuit-based leakage reduction algorithms will likely be required
in any quantum computing implementation.

Figure 4c shows the fidelity of this two-qubit unitary gate U
from numerical simulation of the procedure. The fidelity of the
unitary gate was defined as:

Fy =1~ [fi(Ucz) =A(U)]* = [a(Ucz) (O (9)

where f; and f, are the two Makhlin invariants?” for two-qubit
gates. Makhlin invariants are identical for different two-qubit
unitary gates if they are equivalent up to single-qubit operations.
We find that fidelity better than 99% is achievable for t; ~ 10ns,
which also leads to very small leakage. Figure 4d shows the pulse
shape of El(lb and E](za) for 7; =10 ns. The total time duration for
the whole process is about 30 ns. In real devices, the fidelity can
be lower due to other sources of noise, but here we use only a
simple form for the pulse shapes which are not fully optimized as
in refs 44,48, so there is some room for improvement. We also
considered Gaussian shape pulses and obtained similar results.
We can estimate the realistic fidelity of the encoded CPHASE
gate constructed here from the fidelities of the z-control pulses
and the adiabatic process. Since any single-qubit logical gate
involves at most three rotations (that is, three pulse steps), the
encoded CPHASE gate requires at most 12 pulse steps. Assuming

fc(]wa) T— ;

| - ’
£10)
Q J ﬂ t
£a) \ / [
@ t
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Figure 5 | Pulse sequence for encoded CPHASE gate. This schematically
shows a sequence for CPHASE gate in equation (6). Single qubit phase gate
is implemented with three-step Euler rotations, and Pauli X and identity
gates are implemented as a single rotation. The two vertical dashed lines
separate single qubit gates and two-qubit adiabatic operation.

the z-pulse fidelity of 0.999 and a fidelity of the adiabatic gate U in
equation (6) betweeen two transmons of about 0.99, the fidelity
of the total process can be estimated to be better than
F,>0.999'2x0.99 ~ 0.978. Better optimization or different
sequences may improve the fidelity. Of critical comparison, the
already demonstrated physical CPHASE gate fidelity of 0.99
(ref. 14) also includes a single-adiabatic operation and single-
qubit corrective operations, so the encoded CPHASE gate should
be achievable with a similar fidelity. The encoded CNOT gate can
be implemented with CPHASE gate and single-qubit gates, and
we can expect similar fidelity for CNOT gate.

Figure 5 schematically depicts a sequence of DC pulses for the
logical CPHASE gate, using the expression in equation (6).
The first three pulses in encoded qubit 1 implement a phase gate
and the next resonant pulse realizes a Pauli X gate. The second
encoded qubit is pulsed to qubit frequencies such that the
encoded qubit 2 rotates by 2xnm to implement the identity
operation. Then the two-qubit adiabatic gate between transmons
1b and 2a is applied. After that, an X gate is applied to encoded
qubit 1 as a single-resonant pulse step and a phase gate is
applied to encoded qubit 2 in three rotations. This particular
implementation of CPHASE contains only 9 single-qubit
operations, better than the general 12 single-qubit gates we
discussed above.

Our choice of encoded qubit is for the sake of simplicity and
straightforward incorporation of physical qubit operations into
logical gate operations. We also considered an alternative choice,
(J01) + [10))/4/2 in the same subspace, which more closely
resembles choice for encoded spin qubits. With this encoded
qubit, the constant capacitive coupling leads to a constant energy
gap between encoded qubit states and the z-control of each
physical qubit allows tunable 6* operation. Single-qubit logical
gates can be implemented in a similar way, and the adiabatic two-
qubit operation will need additional single-qubit unitary gates to
transform to the CPHASE gate due to the basis change of the
encoded qubit.

The capacitive coupling between transmons is typically
constant and determined solely by the geometry of the SC
islands. This coupling is effectively turned on and off by the qubit
frequency differences. With more complicated control circuits as
in the gmon architecture*"#°, the capacitive coupling can also be
tunable and completely turned off, giving a very large on/off ratio.
The tunable capacitive coupling removes the need to detune each
transmon to avoid unwanted resonances, hence significantly
simplifying the qubit frequency controls during the CPHASE
operation. This also allows rotating the encoded qubit around any
axis in the full xz plane, reducing the necessary rotation steps to
two for any single-qubit logical gates>®.
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Figure 6 | Initialization scheme for the encoded qubit. (a) The energy
spectrum of an encoded qubit with the second transmon in the charge qubit

regime. After thermalizing the qubit into the ground state (black dot), n(gb) is
tuned from O to some value between 0.5 and 1. If this change is done fast
enough, the qubit is in the first excited state (blue triangle). Then the qubit
is adiabatically moved into the transmon regime (green square) by

increasing Ejb> as shown in (b). (c,d) Fidelity of these processes as a
function of total time duration.

Initialization. In spin systems the encoded qubit can be initi-
alized fast and with high fidelity by loading pairs of electrons in
the singlet state directly from the Fermi sea provided by the leads
supplying the quantum dots, then adiabatically separating
the singlet into two dots®. Electrons’ fermionic and particle
nature enables this—a quantum property that may be emulated
with engineered many-body photonic systems (for example,
(refs 50,51)), but which is in no way practical in the near-term.
One could also engineer a two-qubit system where the ground
state is a singlet, for example, by making the coupling between the
two qubits much greater than the qubit splittings (and, for
example, waiting for relaxation to the ground state). Here,
although, one would want to quickly move out of this regime to
do gates at an implementable speed in addition to turning off as
much as possible qubit-qubit couplings, which would be very
challenging. Here, we provide an alternative initialization scheme
that only requires fast DC pulses.

The ground state of the two-transmon system is |00), which is
not in the encoded qubit subspace defined by equation (3). To
initialize the system into |0)q=]01) without microwave control,
we propose using a process analogous to the Landau-Zener (LZ)
tunnelling®>>3, For this procedure, we need tunability of the
gate charge ngb) of the second transmon, which can be provided
by connecting a capacitor with a voltage control to the transmon
(see Fig. 1b) or by using the side-gate for gatemons. The
initialization procedure is as follows. First, we tune the transmon
qubit irgto the charge qubit regime where E]<b> is much smaller
than E;’ by tuning @ (or V, for a variable super-semi JJ) with
ng’ =~ 0. Then, via thermalization (by waiting the relaxation
time or by coupling to a dissipative reservoir) the qubit reaches
the ground state (black dot in Fig. 6a). (The thermalization could
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instead be done before tuning to the charge qubit regime.) In this
charge qubit regime, the two lowest energy states anti-cross at the
sweet spot néb) =0.5. By changing the gate charge ng’) from0Otoa
value larger than 0.5, we can induce the LZ tunnelling to prepare
the charge qubit in the first excited state (blue triangle). Then, we
can tune FE; back to the operating transmon regime
(E;b> > Eéb >) (green square in Fig. 6b). If we tune E§b> exactly
to be zero, then there is a crossing instead of anti-crossing, and
the fidelity will be much better. But some finite value will be
allowable as long as we can change ngb fast enough.

Figure 6¢ shows the calculated fidelity of the LZ tunnelling
in the charge qubit regime of Fig. 6a as a function of the total
time 7t taken to change ng’'. Here fidelity is defined as

—|<“Ptarget|‘{lﬁna]>| We have used system parameters
easily available in real systems, E /h E® /h =375 MHz,
E" /h=12GHz, E /h =50 MHz, E..= 30 MHz. n*) was chan-
ged from 0 to 0.8. As is the case for typical LZ tunnelings, the
fidelity is better with faster change of the parameter. We expect to
see fidelity better than 99% for a LZ process of a few nanoseconds.
Tuning back to the transmon regime is essentially an adiabatic
process, and the fidelity increases with slower change (Fig. 6d).
We changed E< /h from 50 MHz to 8.33 GHz, and the fidelity is
better than 99% for a process of a few tens of nanoseconds. So this
initialization process will take ~ 20 ns to prepare the logical qubit
state with fidelity of ~99%. The effect of charge and quasiparticle
noise during this process is a concern that should be investigated
experimentally, but charge qubits have been shown to have T
times up to 0.2ms (ref. 54). Variants of the flux qubit are
especially stable to quas1part1cle and charge noise fluctuations
even at small qubit splittings>*.

Measurement of the qubit states. Since an encoded qubit is in a
state

(10)

the encoded qubit can be measured by measuring either of the
physical qubits using a standard method, such as dispersive
measurement®>~>® (which can be multiplexed). The choice of our
encoded qubit in equation (3) allows us to translate the single-
qubit state into the encoded qubit states. With a choice of a
singlet-triplet-like encoded qubit states, (|01) & [10))/v/2, the
encoded qubit state can also be measured after some single-qubit
gates are applied to turn them into the encoded qubit states as
above, or they could be measured directly by dispersive
measurement since these states correspond to different
resonator frequencies®®,

Unlike the spin system where measurement of a singlet can be
done electrostatically using a projective measurement®, the
dispersive measurement of SC qubits using a transmission line
resonator still requires a microwave carrier, which is fine as a proof
of concept. We would prefer a measurement approach that takes
full advantage of our encoded qubit architecture, with qubit energy
completely separated from microwave source. One possibility
is to convert the encoded qubit to another quantum system
(or measurement qubit) that is long-lived classically, but can be
read out digitally or with fast base band pulses (in other words a
latched readout), for example,°!. A compromise option is to do
dispersive measurement but still utilize lower bandwidth lines: we
can either tune Ej directly or swap the qubit with another one with
a different frequency such that it can be readily measured.

V) = &]0)q + Bl1)q= 2[01) + B[10),

Discussion

We proposed a scheme for a “dual rail” superconducting
quantum computer where each qubit consists of two tunable-
physical qubits. Encoded two-qubit operations are found to
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require only a single physical two-qubit gate and single-qubit
pulses. Since physical two-qubit gates are typically much more
costly in time and fidelity, this means that the overhead of
encoded operations as proposed here is not significant, especially
compared to spin qubits.

In this encoded qubit architecture all qubit manipulations are
achieved solely by the z-control pulse sequences of individual
qubits. This removes the requirement of microwave xy-control
lines necessary in conventional transmon or similar qubit
devices, simplifying classical control circuitry significantly. In
addition, the encoded approach may allow lower requirements
for available bandwidth per line, the potential for less crosstalk,
and a reduction in needed timing accuracy as the encoded
qubit states are nearly degenerate. Removing the need for
microwave control frees the choice of qubit frequency from the
cost and availability of microwave electronics. One is then able
to design physical qubits with higher (or much lower) frequency
that might enable higher temperature qubit operation (which
may benefit from work already underway to enable high
magnetic field compatible circuits for Majorana experiments®?
in higher-T, materials) or qubits made from degenerate
quantum circuits as in symmetry protected approaches63’65,
of which there is a natural connection to how spin qubits are
inherently protected.

Encoding a qubit in a two-dimensional subspace in a larger
Hilbert space introduces leakage error. For our encoded qubits,
the relaxation process of individual transmons will lead to leakage
out of the encoded qubit space. For a single-gate operation
such as CNOT of duration 7, the leakage error due to the T;
process would be 1 —exp(—1/T;) ~ 0.04 % for T=40ns and
T, =100 us, which would slightly reduce the error threshold for
quantum error correction®. While a single-gate operation of a
few tens of ns does not lead to significant leakage errors, a long
sequence of gate operations in a large system can be a problem.
Particularly, a single-logical qubit for fault-tolerant quantum
computing such as the surface code will consist of many encoded
qubits and a logical operation will be a sequence of operations on
those encoded qubits. Therefore, leakage reduction units®” will
likely be essential. For example, a full-leakage reduction unit on
the basis of one-bit teleportation®® would require an ancilla qubit
for each encoded qubit and additional CNOT operations,
and measurements after each logical CNOT operation. Qubits
especially designed for large relaxation times, such as variants
of fluxonium®, may be particularly promising for our approach
(for example, a T, time of 1 ms would lead to a leakage error per
CNOT of 4 x 10~ >) and would reduce the overhead for leakage
mitigation dramatically.

The recently demonstrated capacitively-shunted flux qubits
(or “fluxmon”) may also provide a promising alternative.
They have comparable coherence times and a larger anhar-
monicity than transmons. Qubit-qubit coupling through mutual
inductance would also provide transversal xx coupling like
the capacitive coupling between transmon qubits, so the
formalism used in this work should be applicable as well.
They also offer benefits for initialization as they can be tuned to
the flux qubit regime down to very small qubit splitting while
being protected to T; processes that flux qubits offer, and
readout can also be done by using a DC SQUID®*7? without a
transmission line.

In the next phase of this design philosophy one can
consider how to mimic other beneficial properties of spin
qubits: very weak coupling between qubit states to charge noise
and phonons, a fast and selective two-qubit gate via a Pauli
exclusion like mechanism or an interaction that mimics it, very
large ON/OFF ratios and fast initialization via some as yet
unknown method.
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