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Abstract 
The dysregulation of some solute carrier (SLC) proteins has been linked to a variety of diseases, including diabetes and chronic 
kidney disease. However, SLC-related genes (SLCs) has not been extensively studied in acute myocardial infarction (AMI). The 
GSE66360 and GSE60993 datasets, and SLCs geneset were enrolled in this study. Differentially expressed SLCs (DE-SLCs) 
were screened by overlapping DEGs between the AMI and control groups and SLCs. Next, functional enrichment analysis was 
carried out to research the function of DE-SLCs. Consistent clustering of samples from the GSE66360 dataset was accomplished 
based on DE-SLCs selected. Next, the gene set enrichment analysis (GSEA) was performed on the DEGs-cluster (cluster 1 vs 
cluster 2). Three machine learning models were performed to obtain key genes. Subsequently, biomarkers were obtained through 
receiver operating characteristic (ROC) curves and expression analysis. Then, the immune infiltration analysis was performed. 
Afterwards, single-gene GSEA was carried out, and the biomarker-drug network was established. Finally, quantitative real-time 
fluorescence PCR (qRT-PCR) was performed to verify the expression levels of biomarkers. In this study, 13 DE-SLCs were filtered 
by overlapping 366 SLCs and 448 DEGs. The functional enrichment results indicated that the genes were implicated with amino 
acid transport and TNF signaling pathway. After the consistency clustering analysis, the samples were classified into cluster 1 
and cluster 2 subtypes. The functional enrichment results showed that DEGs-cluster were implicated with chemokine signaling 
pathway and so on. Further, SLC11A1 and SLC2A3 were identified as SLC-related biomarkers, which had the strongest negative 
relationship with resting memory CD4 T cells and the strongest positive association with activated mast cells. In addition, the 
single-gene GSEA results showed that cytosolic ribosome was enriched by the biomarkers. Five drugs targeting SLC2A3 were 
predicted as well. Lastly, the experimental results showed that the biomarkers expression trends were consistent with public 
database. In this study, 2 SLC-related biomarkers (SLC11A1 and SLC2A3) were screened and drug predictions were carried out 
to explore the prediction and treatment of AMI.

Abbreviations: AMI = acute myocardial infarction, AUC = area under the curve, DEGs = differentially expressed genes, DEGs-
cluster = DEGs between subtypes, DE-SLCs = differentially expressed SLCs, GO = Gene Ontology, GSEA = gene set enrichment 
analysis, IPA = ingenuity pathway analysis, KEGG = Kyoto Encyclopedia of Genes and Genomes, LASSO = least absolute 
shrinkage and selection operator, PPI = protein-protein interactions, RF = random forest, ROC = receiver operating characteristic, 
RT-qPCR = reverse transcription quantitative PCR, SLC = solute carrier, SLCs = SLC family-related genes, SVM-RFE = support 
vector machine recursive feature elimination, TF = transcription factor.
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1. Introduction
Acute myocardial infarction (AMI) is the sudden reduction or 
interruption of coronary blood flow, resulting in irreversible 

damage to the myocardial tissue, including ST-elevation myo-
cardial infarction and non-ST-elevation myocardial infarc-
tion.[1] AMI is one of the main causes of disability and death 
from cardiovascular diseases in the world, which seriously 
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threatens human health.[2] The number of patients diagnosed 
with AMI each year exceeds 7 million.[3] Approximately one-
third of patients with cardiovascular disease die of AMI.[4] Early 
rapid and accurate diagnosis of AMI is essential in treating AMI 
patients. AMI is currently diagnosed using a series of biomark-
ers, such as cardiac troponin I, cardiac troponin T, and the MB 
isoenzyme of creatine kinase.[5] However, it cannot be identified 
early and effectively due to the limitations of specificity and high 
sensitivity.[6] In addition, AMI recognized risk factors can also 
affect early diagnosis, including hypertension, smoking, abnor-
mal lipid metabolism, diabetes, obesity, etc.[3] The etiology of 
AMI is complex and affected by many factors. Therefore, it is 
very important to find new diagnostic markers that can accu-
rately identify AMI.

The solute carrier (SLC) super-family encodes the second 
largest membrane transporter group after the G protein- 
coupled receptor, including 65 families, and more than 400 SLC 
transporters have been reported.[7–9] Proteins are mainly found 
in the membranes of cells and organelles, where they promote 
the exchange of various molecular substrates in order to main-
tain the homeostasis of the cell.[10,11] SLC transporters transport 
a variety of substrates, including glucose, amino acids, vita-
mins, nucleotides, neurotransmitters, and drugs, depending on 
the electrochemical gradient or ion gradient.[12,13] Studies have 
found that SLC transporters are also involved in many import-
ant physiological functions, such as nutrients, energy metab-
olism, tissue development, oxidative stress, host defense, and 
neurotransmitter regulation.[14,15] In addition, the disorder of 
the SLC protein is associated with a variety of diseases, includ-
ing diabetes, hypertension, asthma, skin diseases, cancer, men-
tal disorders, and so on.[16,17] At present, the research of the SLC 
family on AMI is rarely reported. Therefore, the study of poten-
tial key genes related to the SLC family in AMI is expected 
to provide a new reference for the diagnosis and treatment of 
AMI.

In this study, 2 biomarkers were screened out by using 
the transcriptome and clinical data of AMI from the Gene 
Expression Omnibus database, and the regulatory network 
of biomarkers in patients with AMI based on solute carrier 
family-related genes and the target small molecule drugs for 
biomarkers was constructed. Afterward, we performed quan-
titative real-time fluorescence PCR (qRT-PCR) on peripheral 
blood samples, and the results were consistent with our ini-
tial predictions. It provides a basis and a new reference for the 
diagnosis of AMI and also provides a basis for new therapeutic 
targets for AMI.

2. Materials and methods

2.1. Data sources

The GSE66360 and GSE60993 datasets were sourced from the 
Gene Expression Omnibus database (https://www.ncbi.nlm.nih.
gov/geo/). The GSE66360 dataset (GPL570) including the RNA-
seq data of whole blood from 49 AMI samples and 50 control 
samples, was used as a training cohort. The GSE60993 dataset 
(GPL6884), including the RNA-seq data of blood from 7 con-
trol samples and 17 AMI cohorts, was regarded as an external 
validation cohort. In addition, the SLC family was used as a 
keyword to obtain 366 SLC family-related genes (SLCs) with 
score > 15 through the Genecards database (https://www.gen-
ecards.org/).

2.2. Identification of DEGs

DEGs between the AMI and control groups were chosen via 
the limma package (v 3.50.1) in the GSE66360 dataset with 
P value < .05 and |log2FC| > 1.[18] The results of the differen-
tial analysis were illustrated by volcano map plotted by the 

ggplot2 package (v 3.3.5).[19] Then, the expression heat map 
was carried out to show the top 10 up- and down-regulated 
DEGs.

2.3. Screening and enrichment analysis of differentially 
expressed SLCs (DE-SLCs)

DE-SLCs were screened by overlapping DEGs and SLCs. Gene 
Ontology (GO) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses of DE-SLCs was exe-
cuted via clusterProfiler package (adjusted P value < .05).[20]

2.4. Ingenuity pathway analysis (IPA)

The IPA functional enrichment analysis was carried out on the 
DE-SLCs. Of these, a z score > 0 denotes that the pathway was 
enabled and a z-score < 0 denotes that the pathway was suppressed.

2.5. Consistency clustering analysis

The consistency clustering analysis was performed on the 
GSE66360 dataset utilizing the ConsensusClusterPlus package 
(v 1.58.0) on the basis of DE-SLCs.[21]

2.6. Screening for DEGs between subtypes (DEGs-cluster) 
and gene set enrichment analysis (GSEA) analysis

DEGs-cluster between the subtypes were selected via the limma 
package (v 3.50.1) with P < .05 and |log2FC| > 1.[18] Then, GSEA 
analysis was performed between subtypes. The top 5 most sig-
nificant results for GO and KEGG were visualized separately.

2.7. Immune microenvironment analysis

The proportions of 22 immune cell subtypes for each sample 
in the GSE66360 dataset were computed via the CIBERSORT 
algorithm (v 1.03).[22] Differences in the abundance of each 
immune cell between subtypes were next evaluated using the 
Wilcoxon test.

2.8. Machine learning screening and performance 
evaluation of key genes

Firstly, the protein-protein interactions (PPI) network was cre-
ated based on DE-SLCs via the STRING database. Then, the 
DE-SLCs were imported into the GeneMANIA database to con-
struct the protein interaction network. Three machine learning 
models were constructed based on DE-SLCs by the least abso-
lute shrinkage and selection operator (LASSO), random forest 
(RF), and support vector machine recursive feature elimina-
tion (SVM-RFE) algorithms to screen feature genes separately. 
LASSO regression profiling was carried out using the glmnet 
package (version 4.1-2) to obtain LASSO-feature genes.[23] RF 
analysis was performed based on DE-SLCs, and genes with Gini 
coefficient greater than or equal to the median were used as 
RF-feature genes. Next, SVM analysis was performed. Finally, 
the genes included in the portfolio with the highest accuracy 
rate were selected as SVM-RFE-feature genes. The key genes 
were screened by overlapping LASSO-feature genes, RF-feature 
genes and SVM-RFE-feature genes.

2.9. Receiver operating characteristic (ROC) curves and 
expression analysis

The pROC package (v 1.18.0) was utilized to compute AUC val-
ues of ROC curves to assess the predictive accuracy of the key  

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://www.genecards.org/
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genes.[24] And then, the key genes were verified with GSE60993 
dataset. The expression analysis of key genes was also performed 
in the GSE66360 and GSE60993 datasets, and box plots of 
expression were plotted. The genes validated by ROC curves and 
expression at the same time were utilized as biomarkers for this 
study.

2.10. Single-gene GSEA analysis

In this study, single-gene GSEA analysis (GO and KEGG) of bio-
markers was carried out. The top 5 most significant results for 
each biomarker were visualized separately.

2.11. Immuno-infiltration analysis

The CIBERSORT algorithm (v 1.03) was utilized to compute 
the abundance of immune infiltrating cells for all samples in the 
GSE66360 dataset.[22] The Wilcoxon test was utilized to com-
pare the difference in abundance of each immune cell between 
the AMI and control groups. Subsequently, the association 
between differential immune cells was analyzed. Finally, the 
correlation between biomarkers and differential immune cells 
was analyzed, and the results were presented by lollipop plots.

2.12. Construction of Transcription factors (TF)- 
mRNA-miRNA network

In this study, miRNet and StarBase databases were utilized to pre-
dict the targeting miRNAs of biomarkers. The co-miRNAs were 
obtained by intersecting the predicted miRNAs targeting biomark-
ers in the 2 databases. The TFs of biomarkers was retrieved using 
the ChEA3 and JASPAR databases. Similarly, co-TFs could be 
obtained by fetching the intersection of the predicted TFs. Lastly, 
the network was visualized using Cytoscape software (v 3.9.1).[25]

2.13. Construction of mRNA-drug interaction network

In order to find potential therapeutic small molecule drugs act-
ing on biomarkers, we performed drug prediction. Medicines 
targeting biomarkers were forecasted through the DrugBank 
database. A mRNA-drug network was constructed based on the 
predicted results.

2.14. RNA isolation and qRT-PCR

This study was approved by the Medical Ethics Committee of 
Chongqing Municipal General Hospital (Ethical Batch No.: KY 
S2022-085-01), in line with the “Helsinki Declaration”. And 
then all subjects signed a written informed consent. Twenty 
blood samples (10 AMI samples and 10 control samples) were 
collected. AMI is diagnosed according to the diagnostic crite-
ria for AMI.[26] Afterwards, the samples were lysed with TRIzol 
reagent to extract total RNA. The concentration of RNA was 
measured with a NanoPhotometer N50. Afterwards, RNA was 
reverse transcribed into cDNA using the SureScript First strand 
cDNA synthesis kit (Servicebio, Wuhan, China). The qRT-PCR 
reaction consisted of 3 µL of reverse transcription product, 5 µL 
of 2xUniversal Blue SYBR Green qPCR Master Mix, and 1 µL 
each of forward and reverse primer. All primer sequence infor-
mation were shown in Table 1. The relative gene expression was 
measured by the 2-ΔΔCT method using the β-actin gene as an 
internal reference.[27] Graphpad Prism 5 was used to make the 
graph and compute the P value.

2.15. Statistical analysis

All bioinformatics analyses were carried out in R language. 
Differences between groups were compared by Wilcoxon test. 

Graphpad Prism 5 was used to compute the statistical differ-
ences of biomarkers expressions between clinical AMI and con-
trol blood samples through unpaired t test. If not specified, P 
value < .05 denoted statistical significance.

3. Results

3.1. Screening and functional enrichment of DE-SLCs

In total, 448 DEGs between the AMI and control groups were 
gained, of which 337 genes were high-expressed and 111 genes 
were low-expressed (Fig. 1A, Table S1, http://links.lww.com/MD/
K964). The top 10 up- and down-regulated DEGs were displayed 
in the heatmap (Fig. 1B). It was evident that there was a significant 
difference in gene expression between the AMI and control groups. 
The 13 DE-SLCs (IL1B, SLC7A7, ICAM1, SLC11A1, VWF, 
SLC15A3, SLC24A4, SLC7A5, XIST, TNF, SLC2A3, SLC31A2, 
and SLC22A4) were acquired after taking intersections of the 
DEGs and SLCs (Fig. 1C). The results of the enrichment analysis 
suggested that the DE-SLCs implicated 522 GO entries and 34 
KEGG pathways. The GO-BP mainly included organic acid trans-
port, amino acid transport and so on; GO-CC mainly involved 
apical part of cell and so on; GO-MF mainly involved active ion 
transmembrane transporter activity and so on (Fig. 1D–F, Table 
S2, http://links.lww.com/MD/K965). KEGG enrichment results 
included TNF signaling pathway, NF-kappa B signaling pathway, 
etc. (Fig. 1G, Table S3, http://links.lww.com/MD/K966).

3.2. IPA Analysis of 13 DE-SLCs

The IPA analysis was carried out to further elucidate the func-
tions of these 13 genes. Results of IPA revealed that DE-SLCs 
were enriched for a total of 83 pathways, of which 78 were sig-
nificant. A total of 8 pathways (antioxidant action of Vitamin C, 
LXR/RXR activation and so on) were inhibited, 70 pathways 
(dendritic cell maturation, S100 family signaling pathway, etc) 
were activated, and 5 pathways were not significant. (Fig. 2).

3.3. Identification of subtypes based on 13 DE-SLCs and 
enrichment analysis

The consistency clustering results revealed that the samples were 
clustered into 2 subtypes (cluster 1 and cluster 2), which had the 
discrimination between subtypes (Fig. 3A, Figure S1, http://links.
lww.com/MD/K973). A total of 247 DEGs between cluster 1 and 
cluster 2 were obtained, of which only 9 genes were up-regulated 
in cluster 1 (Fig.  3B). The up-regulated genes were XIST, TSIX, 
RECQL5, MAP7D2, LINC00883, CPS1, LOC101928620, CCR2, 
and THNSL1, and the top 10 down-regulated genes were RPS4Y1, 
KDM5D, EIF1AY, TXLNGY, IL1B, CHI3L1, VCAN, S100A12, 
SERPINA1, and CCL3 (Fig. 3C). The GSEA results indicated that 
cluster 1 was mainly enriched in GO entries the granulocyte che-
motaxis, neutrophil chemotaxis and so on; cluster 2 was mainly 
enriched in GO entries the negative regulation of synaptic trans-
mission glutamatergic, detection of mechanical stimulus involved 
in sensory perception of sound and so on (Fig. 3D, Table S4, http://

Table 1

The primer informations in the qRT-PCR.

Gene Primer sequences 

SLC11A1 F CCTCCACGACTACGCCAAGA
SLC11A1 R AAGCCCTCCATCACGAACTG
SLC2A3 F GCACATAGCTATCAAGTGTGCTT
SLC2A3 R AGTGAGAAATGGGACCCTGC
β-actin F CTCCATCCTGGCCTCGCTGT
β-actin R GCTGTCACCTTCACCGTTCC

http://links.lww.com/MD/K964
http://links.lww.com/MD/K964
http://links.lww.com/MD/K965
http://links.lww.com/MD/K966
http://links.lww.com/MD/K973
http://links.lww.com/MD/K973
http://links.lww.com/MD/K967
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links.lww.com/MD/K967). The KEGG pathway, such as leishma-
nia infection, toll like receptor signaling pathway, etc, was mainly 
enriched by cluster 1; olfactory transduction was mainly enriched 
by cluster 2 (Fig. 3E, Table S5, http://links.lww.com/MD/K968).

3.4. Immune analysis between 2 subtypes

The bars showed the proportion of 22 immune cells in each sam-
ple (Fig. 4A). Of these, gamma delta T cells and resting memory 
CD4 T cells were the most predominant. The box-plot indicated 
significant differences in the abundance of 9 immune cell types 

(activated mast cells, activated dendritic cells, etc) (Fig.  4B) 
between 2 subtypes. The abundance values of M0 Macrophages 
and M1 Macrophages were 0 in the majority of samples, so they 
could not be considered as differential immune cells.

3.5. Screening and performance evaluation of key genes

To understand the association of these 13 genes, we constructed 
a PPI network. The PPI network had 11 nodes and 14 edges 
(Fig. 5A). SLC22A4 and XIST in DE-SLCs were not associated 
with the remaining 11 genes. The protein interaction network 

Figure 1.  Identification and analysis of differentially expressed solute carrier-related genes (DE-SLCs) in AMI. (A) Volcano plot and (B) Heatmap of 448 differen-
tially expressed genes (DEGs) between the AMI and control groups in GSE66360. (C) Venn diagrams for 13 DE-SLCs shared by DEGs and SLC-related genes 
(SLCs). (D–F) The Gene Ontology (GO) analysis for 13 DE-SLCs, including biological process (BP) (D), cellular component (CC) (E), and molecular function (MF) 
(F). (G) The most enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) terms of 13 DE-SLCs. AMI = acute myocardial infarction.

http://links.lww.com/MD/K967
http://links.lww.com/MD/K968
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constructed using the GeneMANIA database revealed that 
XIST did not interact with the remaining genes, while 20 genes 
co-expressed with DE-SLCs were found, sharing protein struc-
tural domain genes, genetic interaction genes and co-localization  
genes (Fig.  5B). A total of 11 LASSO-feature genes (IL1B, 
SLC7A7, ICAM1, SLC11A1, VWF, SLC24A4, SLC7A5, XIST, 
TNF, SLC2A3, and SLC22A4) were screened by LASSO regres-
sion analysis (Fig. 5C and D). As shown in Figure 5E, it can be 
seen that the error within the model is basically stable at around 
800, and the number of model decision trees is finally cho-
sen to be 800. The Gini coefficient algorithm was then applied 
to the 13 genes in the RF algorithm. 7 genes (SLC2A3, VWF, 
SLC11A1, SLC7A7, ICAM1, IL1B, and SLC7A5) with Gini 
coefficients greater than or equal to above the median were 
selected (Fig.  5F). The accuracy rate was computed and found 
that the SVM model had the highest accuracy rate when it con-
tained 7 genes (Fig. 5G). Therefore, these 7 genes were selected 
as SVM-RFE-feature genes (SLC2A3, VWF, SLC11A1, IL1B, IC 
AM1, SLC7A7, and SLC7A5) for further analysis. Hence, a total 
of 7 key genes (SLC2A3, VWF, SLC11A1, IL1B, ICAM1, SLC7A7, 
and SLC7A5) were screened by overlapping LASSO-feature genes, 
RF-feature genes and SVM-RFE-feature genes (Fig. 5H).

3.6. Screening for biomarkers

To verify the judgmental value of each hub gene, ROC curves 
were plotted for the 7 hub genes screened in the previous section. 
The AUC values for key genes in the GSE66360 dataset were all 

>0.7 and had diagnostic value (Fig. 6A). In the GSE60993 data-
set, the AUC values for IL1B, SLC11A1 and SLC2A3 were >0.7, 
with higher diagnostic accuracy (Fig.  6B). In the GSE66360 
and GSE60993 datasets, the expression analysis revealed that 
SLC11A1 and SLC2A3 were expressed in both datasets with 
consistent trends and significant differences (Fig.  6C and D). 
Therefore, SLC11A1 and SLC2A3 were utilized as biomarkers 
for follow-up analysis in this study.

3.7. Single-gene GSEA analysis of biomarkers

In quick succession, single-gene GSEA was performed to explore 
the enriched regulatory pathways and molecular functions of 
each biomarkers. SLC11A1 and SLC2A3 were mainly enriched 
to GO terms such as cytosolic ribosome, tertiary granule, etc 
(Fig. 7A and B, Table S6 and 7, http://links.lww.com/MD/K969, 
http://links.lww.com/MD/K970). KEGG pathways such as ribo-
some, spliceosome were enriched by SLC11A1 and SLC2A3 
(Fig. 7C and D, Table S8 and 9, http://links.lww.com/MD/K971, 
http://links.lww.com/MD/K972).

3.8. Immune analysis between AMI and control groups

The results showed that the abundance of 11 immune infil-
tration cells was significantly different from the control sam-
ples based on disease (Fig. 8A), but the abundance values of 
resting mast cells and M1 Macrophages were 0 in the major-
ity of samples, so they could not be considered as differential 

Figure 2.  Ingenuity pathway analysis (IPA) of 13 DE-SLCs was exhibited using a bar chart. The vertical coordinate is the Z-score, blue indicates pathway acti-
vation, green indicates pathway inhibition, and gray indicates that this pathway is not significant.

http://links.lww.com/MD/K969
http://links.lww.com/MD/K970
http://links.lww.com/MD/K971
http://links.lww.com/MD/K972
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immune cells. The correlation between the abundance values 
of the 9 differential immune cells is shown in Figure 8B. The 
correlation analysis revealed that activated mast cells had the 
strongest positive correlation with neutrophils and the stron-
gest negative association with resting memory CD4 T cells. 
Immediately after, the correlation between the 9 differential 

immune infiltrating cells and the diagnostic genes was then 
analyzed based on the immune infiltrating cell abundance val-
ues and the expression matrices of the 2 diagnostic genes. The 
results showed that the biomarkers had the strongest negative 
association with resting memory CD4 T cells and the strongest 
positive relationship with activated mast cells (Fig. 8C and D).

Figure 3.  Consistency clustering analysis to obtain 2 SLC-related subtypes. (A) Clustering matrix for AMI cohorts in GSE66360 when k = 2. (B) Volcano plot 
and (C) Heatmap of 247 DEGs between cluster 1 and cluster 2. (D, E) Gene set enrichment analysis (GSEA) results of 247 DEGs based on the (D) GO and (E) 
KEGG gene sets. AMI = acute myocardial infarction. DEGs = differentially expressed genes, KEGG = Kyoto Encyclopedia of Genes and Genomes.
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3.9. The TF-mRNA-miRNA and mRNA-drug network of 
biomarkers

The miRNAs of the 2 diagnostic genes were predicted by the 
online miRNet and StarBase databases. 265 miRNAs were pre-
dicted by the StarBase database and 142 miRNAs were predicted 

by the miRNet database, and the intersection of the 2 databases 
yielded 70 miRNAs. The JASPAR and ChEA databases of the 
NetworkAnalyst platform were used to predict the TF of the 2 
diagnostic genes, in which 11 TFs were predicted by the JASPAR 
database and 54 TFs were predicted by the ChEA database, and 
the intersection of the predictions of the 2 databases yielded 2 

Figure 4.  Immune infiltration analysis between 2 clusters. (A) Histogram and (B) boxplot for 22 immune cells proportions in 2 clusters (Wilcoxon Test) of 
GSE66360. ns: not significant, *P < .05, **P < .01, ***P < .001, ****P < .0001.
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TFs (GATA2 and KLF5) (Fig. 9A). Among them, more miRNAs 
and TFs were predicted by SLC2A3. The specific mRNA-miRNA 
pairs were SLC2A3-hsa-mir-497-5p, etc, and the mRNA-TFs 
pairs were SLC2A3-KLF5 and so on. Through DrugBank data-
base, 1 biomarker (SLC2A3) were found to be the target of 5 
therapeutic drugs (Fludeoxyglucose (18F), Dextrose, unspecified 
form, D-glucose, Ascorbic acid, and Glucosamine) (Fig. 9B).

3.10. Expression analysis of biomarkers

To validate the expression of biomarkers, 10 pairs of AMI 
and control blood samples were gathered and qRT-PCR was 

performed to elucidate the changes in expression of biomark-
ers in the AMI and control groups. The expression levels of 
SLC11A1 and SLC2A3 were significantly lower in control sam-
ples than in AMI groups, which was consistent with results from 
public database (Fig. 10A and B).

4. Discussion
Despite the continuous improvement of medical standards, cor-
onary artery disease (CAD) is still an important cause of human 
death worldwide, especially in patients with AMI.[1] There has 
been a substantial amount of research conducted in recent years 

Figure 5.  Screening of 7 key genes in AMI. (A) Protein-protein interaction (PPI) networks of 13 DE-SLCs using STRING. (B) PPI networks of 13 DE-SLCs using 
GeneMANIA. (C) Cross-validation for tuning parameter selection in the least absolute shrinkage and selection operator (LASSO) model. (D) LASSO coefficients 
diagram to select 11 feature genes. (E) The measurement error rate with different number of decision tree within RandomForest (RF). (F) The Mean Decrease in 
Gini of 13 DE-SLCs in the RF model. (G) The classification accuracy rates with different feature selection in support vector machine recursive feature elimination 
(SVM-RFE). (H) Seven shared key genes were screened in a venn diagram. AMI = acute myocardial infarction.
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on screening related biomarkers to improve the early diagnosis 
of AMI. The SLC transporter family is the second-largest mem-
brane protein involved in the physiological functions of many 
cells,[14] including cardiomyocytes, suggesting its potential as 
the diagnostic biomarker. We combined bioinformatics analysis 
with machine learning to screen out 2 SLC-related biomarkers 
(SLC11A1 and SLC2A3) and predict drugs.

SLC2A3, also known as glucose transporter 3 (GLUT3), pro-
motes the diffusion of glucose through the cell membrane and 
is highly expressed in cardiomyocytes.[28,29] Some studies suggest 
that abnormal glucose metabolism may affect cardiac growth 
and development. Studies have found that high expression of 
SLC2A3 cells are highly sensitive to glucose absorption, and 
increased glucose metabolism can lead to rapid cell growth.[30] 
It was found that hypoxia can promote the expression and 
activity of hypoxia-inducible factor (HIF-1), thereby up- 
regulating the expression of the SLC2A3 gene to promote glu-
cose utilization.[31,32] These previous studies have shown that 
hypoxia may promote the expression and activity of HIF-1, up- 
regulate SLC2A3 gene expression, and promote the utilization 
of glucose during the onset of AMI. This suggests that SLC2A3 
plays a very important role in providing energy for the heart. 

In addition, SLC2A3 gene mutation and duplication may also 
accelerate the progression of AMI. The results of SLC2A3 gene 
mutation, deletion, and duplication are not the same. SLC2A3 
mutations have been found to be associated with congenital 
heart disease, including Turner syndrome (TS) and 22q11.2 
deletion syndrome.[33,34] Ma et al showed that the mutation of 
the SLC2A3 gene was associated with increased susceptibility to 
coronary heart disease.[35] Mlynarski et al found that the pres-
ence of SLC2A3 duplication and 22q11.2 deletion increased the 
risk of coronary heart disease.[33] Through the above studies, we 
speculate that the expression of SLC2A3 is closely related to the 
development of cardiovascular disease. Therefore, SLC2A3 may 
have the potential and ability to diagnosis AMI early.

The SLC family 11 member a1 protein (SLC11A1) has been 
the subject of several cardiovascular disease-related studies in 
recent years. In order to predict cardiovascular disease, some 
scholars have used genes including SLC11A1 to construct prog-
nostic models. In a study, Zhang et al found that iron metabolism- 
related genes (HBB, SLC25A37, SLC11A1, and HMOX1) 
were involved in the immune response and used the differential 
expressed iron metabolism-related genes (HIF1A, SLC25A37) 
of septic myocardium and blood monocytes to construct a sepsis 

Figure 6.  Two out of 7 key genes were screened as diagnostic genes. Receiver operating characteristic (ROC) curves of 7 key genes in the (A) GSE66360 and 
(B) GSE60993 datasets. Boxplots for the expressions levels of 7 key genes in the (C) GSE66360 and (D) GSE60993 datasets.
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prognosis model to better help diagnose septic cardiomyopa-
thy.[36] In the study of key biomarkers and immune infiltration 
in acute thoracic aortic dissection (TAAD) based on bioinfor-
matics, Luo et al found that the expression of a key biomarker 
(SLC11A1) may aggravate the inflammatory injury of TAAD by 
promoting the infiltration of neutrophils and macrophages.[37] 
This study suggests that SLC11A1 may be involved in the 
immune inflammatory response to AMI. In addition, a meta-
study found that SLC11A1 plays an important role in anti- 
neutrophil cytoplasmic antibody-associated vasculitis.[38] 
However, little is known about the role of SLC11A1 in AMI. 
This study found that the expression of SLC11A1 in the 

peripheral blood of patients with AMI was up-regulated. The 
over-expression of SLC11A1 may suggest that the inflammatory 
injury of AMI is caused by promoting the infiltration of neu-
trophils and macrophages, which needs further study. We will 
continue to pay attention to its mechanism, which is also our 
future research direction.

In this study, we analyzed the relationship between SLC11A1, 
SLC2A3, and their expression levels in public datasets and 
clinical parameters. We found that SLC11A1 and SLC2A3 
were expressed in the training set and the validation set, and 
the performance of the training set was more prominent. The 
ROC curve of the 2 biomarkers had good diagnostic value for 

Figure 7.  GSEA results based on the diagnostic genes expression. (A) SLC11A1-GO. (B) SLC2A3-GO. (C) SLC11A1-KEGG. (D) SLC2A3-KEGG. GSEA = gene 
set enrichment analysis. KEGG = Kyoto Encyclopedia of Genes and Genomes.
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AMI (AUC value > 0.7). The results of single-gene GSEA analy-
sis showed that SLC11A1 and SLC2A3 were mainly enriched in 
GO terms such as cytoplasmic ribosomes and tertiary granules. 
SLC11A1 is highly expressed in the lysosomes of macrophages 
and the tertiary granules of neutrophils and plays an important 
role in resisting intracellular microbial infection.[39] KEGG path-
ways such as oxidative phosphorylation and glucose metabolism 
were enriched by SLC11A1 and SLC2A3. Pyruvate is oxidized 
and phosphorylated to produce adenosine triphosphate (ATP), 
and SLC is involved in the regulation of energy metabolism.[40] 
Chen et al found that the MAPK signaling pathway is involved 
in the miR-129-5p/SLC2A3 axis, thereby regulating cell glu-
cose metabolism and growth.[41] In addition, phosphorylation- 
activated MAPK14 during starvation increased the expression 
levels of SLC2A3 mRNA, resulting in higher intracellular glucose 
utilization.[42] Previous studies have shown that SLC2A3 can reg-
ulate glucose utilization through the MAPK signaling pathway, 
thereby reducing myocardial injury. Therefore, we speculate that 
SLC2A3 regulates the progression of AMI by regulating glucose 
metabolism through the MAPK signaling pathway.

In order to further explore the correlation between the 2 
biomarkers and immunity we performed a correlation analysis. 

The results revealed the presence of 9 differential immune cells 
between the AMI and control groups, and correlation analy-
ses showed that the biomarkers were positively correlated with 
activated mast cells, monocytes, neutrophils, etc. Studies have 
found that SLC11A1 is involved in the coding of endosomal 
multi-channel membrane proteins and is expressed in mac-
rophages and neutrophils.[43] Another study also confirmed 
that the expression of the SLC11A1 gene in macrophages of 
patients with atherosclerosis was much higher than that in mac-
rophages of control patients.[44] Macrophages and neutrophils 
are also expressed in other diseases, including arthritis, colitis, 
and anti-neutrophil cytoplasmic antibody-associated vasculi-
tis.[38,45,46] Based on the above research, we speculate that the 
SLC11A1 and SLC2A3 genes could promote the treatment of 
AMI by changing the immune inflammatory response of AMI. 
However, further research is needed to confirm this.

In addition, the mRNA-drug network results predicted that 
SLC2A3 might be an AMI drug target for Fludeoxyglucose 
(18F), Dextrose, unspecified form, D-glucose, Ascorbic acid, and 
Glucosamine. Fludeoxyglucose 18F (FDG) is a glucose analogue 
that can identify left ventricular myocardium with residual glu-
cose metabolism, observe atherosclerosis caused by macrophage 

Figure 8.  Immune related analyses of diagnostic genes in AMI. (A) The boxplot for 22 immune cells proportions between the AMI and control samples (Wilcoxon 
Test) of GSE66360. ns: not significant, * P < .05, ** P < .01, **** P < .0001. (B) Pearson correlation heatmap among 9 differential immune cells in AMI. (C, D) 
Pearson correlation lollipops between diagnostic genes and 9 differential immune cells, including (C) SLC2A3 and (D) SLC11A1. AMI = acute myocardial 
infarction.
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accumulation, and evaluate left ventricular function during myo-
cardial perfusion imaging.[47] Ascorbic acid is transported across 
the cell membrane through sodium vitamin C cotransporters and 
glucose transporters.[48] Rodrigo et al found that intravenous infu-
sion of ascorbic acid before PCI in patients with AMI can reduce 
the production of cardiac injury biomarkers, inflammatory bio-
markers, and reactive oxygen species, thereby improving the clin-
ical outcome events of patients.[49] Combined with the results of 
this study, we speculate that multiple targeted drugs of SLC2A3 
can be used for preoperative diagnosis of AMI, evaluation of dis-
ease severity, and improvement of prognosis. Therefore, these 5 
drugs can be used as candidate drugs for the treatment of AMI.

There are some limitations in this study. Firstly, SLC11A1 
and SLC2A3 are less frequently reported in cardiovascular dis-
eases. Therefore, their mechanism of action in AMI needs fur-
ther study. Secondly, there is no way to completely eliminate the 
batch effect between data sets. In addition, the clinical sample 
size may not be large enough. Finally, the research data are from 
the public database. This study only verified the expression of 
these genes by PCR, and more specific mechanisms need to be 
further verified in vitro or in vivo to explore their function.

5. Conclusions
In this study, LASSO, SVM-RFE, and RF algorithms were used 
to identify SLC11A1 and SLC2A3 as potential biomarkers for 
AMI, relying on high sensitivity and accuracy to predict the 
risk of AMI. The results of qRT-PCR showed the potential 
association between AMI and infiltrating immune cells, which 
provided a new research idea for their role in AMI. At the same 
time, it was worth noting that the results of single-gene GSEA 
analysis showed that SLC2A3 was regulated by MAPK signal-
ing pathway and had an effect on AMI. It is speculated that the 
high expression of SLC11A1 and SLC2A3 in AMI is related 
to immune inflammatory response and energy metabolism. In 
addition, we also look for potential therapeutic small-molecule 
drugs for diagnostic genes. These findings may have implica-
tions for the diagnosis and treatment of AMI patients.

Acknowledgments
Thanks to the work platform provided by the North Sichuan 
Medical College Innovation Center for Science and Technology.

Figure 9.  The regulatory network prediction for diagnostic genes. (A) Transcription factors (TF)-mRNA-miRNA network of 2 diagnostic genes. Orange repre-
sent TFs, green represent miRNA, and pink represent diagnostic genes. (B) Drug prediction network targeting SLC2A3. Blue represent drugs targets, and pink 
represent diagnostic genes.

Figure 10.  Verifying the mRNA levels of 2 diagnostic genes using quantitative real-time PCR (qRT-PCR). (A) SLC11A1, (B) SLC2A3. **P < .01, ****P < .0001.



13

Qi et al.  •  Medicine (2023) 102:49� www.md-journal.com

Author contributions
Conceptualization: Zhirui Qi.
Project administration: Zhirui Qi, Boli Ran.
Writing – original draft: Zhirui Qi.
Writing – review & editing: Zhirui Qi, Yunfei Pu.
Funding acquisition: Yunfei Pu.
Methodology: Yunfei Pu, Boli Ran.
Supervision: Yunfei Pu, Haiyang Guo.
Validation: Yunfei Pu, Wenwu Tang.
Investigation: Haiyang Guo, Yilin Xiong.
Software: Haiyang Guo, Wenwu Tang.
Visualization: Haiyang Guo.
Resources: Wenwu Tang, Yilin Xiong.
Data curation: Yilin Xiong.

References
	 [1]	 Xue J, Chen L, Cheng H, et al. The identification and validation of hub 

genes associated with acute myocardial infarction using weighted gene 
co-expression network analysis. J Cardiovasc Dev Dis. 2022;9:30.

	 [2]	 Guo J, Liu HB, Sun C, et al. MicroRNA-155 promotes myocardial 
infarction-induced apoptosis by targeting RNA-binding protein QKI. 
Oxid Med Cell Longev. 2019;2019:4579806.

	 [3]	 Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke 
statistics-2023 update: a report from the American Heart Association. 
Circulation. 2023;147:e93–e621.

	 [4]	 Roth GA, Huffman MD, Moran AE, et al. Global and regional pat-
terns in cardiovascular mortality from 1990 to 2013. Circulation. 
2015;132:1667–78.

	 [5]	 Hartikainen T, Westermann D. Advances in rapid diagnostic tests for myo-
cardial infarction patients. Expert Rev Mol Diagn. 2023;23:391–403.

	 [6]	 Braunwald E. Unstable angina and non-ST elevation myocardial infarc-
tion. Am J Respir Crit Care Med. 2012;185:924–32.

	 [7]	 Schlessinger A, Matsson P, Shima JE, et al. Comparison of human sol-
ute carriers. Protein Sci. 2010;19:412–28.

	 [8]	 Schumann T, König J, Henke C, et al. Solute carrier transporters as 
potential targets for the treatment of metabolic disease. Pharmacol Rev. 
2020;72:343–79.

	 [9]	 Pizzagalli MD, Bensimon A, Superti-Furga G. A guide to plasma mem-
brane solute carrier proteins. FEBS J. 2021;288:2784–835.

	[10]	 Fredriksson R, Nordström KJ, Stephansson O, et al. The solute carrier 
(SLC) complement of the human genome: phylogenetic classification 
reveals four major families. FEBS Lett. 2008;582:3811–6.

	[11]	 Panda S, Banerjee N, Chatterjee S. Solute carrier proteins and c-Myc: 
a strong connection in cancer progression. Drug Discov Today. 
2020;25:891–900.

	[12]	 Hediger MA, Clémençon B, Burrier RE, et al. The ABCs of membrane 
transporters in health and disease (SLC series): introduction. Mol 
Aspects Med. 2013;34:95–107.

	[13]	 Ferrada E, Superti-Furga G. A structure and evolutionary-based classi-
fication of solute carriers. iScience. 2022;25:105096.

	[14]	 César-Razquin A, Snijder B, Frappier-Brinton T, et al. A call for system-
atic research on solute carriers. Cell. 2015;162:478–87.

	[15]	 Ayka A, Şehirli A. The role of the SLC transporters protein in the neurode-
generative disorders. Clin Psychopharmacol Neurosci. 2020;18:174–87.

	[16]	 Hediger MA, Romero MF, Peng JB, et al. The ABCs of solute carriers: 
physiological, pathological and therapeutic implications of human mem-
brane transport proteinsIntroduction. Pflugers Arch. 2004;447:465–8.

	[17]	 Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters 
in drug development. Nat Rev Drug Discov. 2010;9:215–36.

	[18]	 Ritchie ME, Phipson B, Wu D, et al. limma powers differential expres-
sion analyses for RNA-sequencing and microarray studies. Nucleic 
Acids Res. 2015;43:e47.

	[19]	 Ito K, Murphy D. Application of ggplot2 to Pharmacometric Graphics. 
CPT Pharmacometrics Syst Pharmacol. 2013;2:e79.

	[20]	 Wu T, Hu E, Xu S, et al. clusterProfiler 40: a universal enrichment tool 
for interpreting omics data. Innovation (Camb). 2021;2:100141.

	[21]	 Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery 
tool with confidence assessments and item tracking. Bioinformatics. 
2010;26:1572–3.

	[22]	 Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell 
subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

	[23]	 Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized 
linear models via coordinate descent. J Stat Softw. 2010;33:1–22.

	[24]	 Robin X, Turck N, Hainard A, et al. pROC: an open-source pack-
age for R and S+ to analyze and compare ROC curves. BMC Bioinf. 
2011;12:77.

	[25]	 Su G, Morris JH, Demchak B, et al. Biological network exploration 
with Cytoscape 3. Curr Protoc Bioinformatics. 2014;47:8.13.11–24.

	[26]	 Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of 
myocardial infarction (2018). Circulation. 2018;138:e618–51.

	[27]	 Livak KJ, Schmittgen TD. Analysis of relative gene expression data 
using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. 
Methods. 2001;25:402–8.

	[28]	 Ziegler GC, Almos P, McNeill RV, et al. Cellular effects and clini-
cal implications of SLC2A3 copy number variation. J Cell Physiol. 
2020;235:9021–36.

	[29]	 Men L, Hui W, Guan X, et al. Cardiac transcriptome analysis reveals 
Nr4a1 mediated glucose metabolism dysregulation in response to high-
fat diet. Genes (Basel). 2020;11:720.

	[30]	 Yao X, He Z, Qin C, et al. SLC2A3 promotes macrophage infiltra-
tion by glycolysis reprogramming in gastric cancer. Cancer Cell Int. 
2020;20:503.

	[31]	 Zhang FJ, Luo W, Lei GH. Role of HIF-1α and HIF-2α in osteoarthritis. 
Joint Bone Spine. 2015;82:144–7.

	[32]	 Lauer V, Grampp S, Platt J, et al. Hypoxia drives glucose transporter 
3 expression through hypoxia-inducible transcription factor (HIF)-
mediated induction of the long noncoding RNA NICI. J Biol Chem. 
2020;295:4065–78.

	[33]	 Mlynarski EE, Sheridan MB, Xie M, et al. Copy-number variation of 
the glucose transporter gene SLC2A3 and congenital heart defects in 
the 22q112 deletion syndrome. Am J Hum Genet. 2015;96:753–64.

	[34]	 Prakash SK, Bondy CA, Maslen CL, et al. Autosomal and X chromo-
some structural variants are associated with congenital heart defects in 
Turner syndrome: the NHLBI GenTAC registry. Am J Med Genet A. 
2016;170:3157–64.

	[35]	 Ma L, Xu J, Tang Q, et al. SLC2A3 variants in familial and sporadic 
congenital heart diseases in a Chinese Yunnan population. J Clin Lab 
Anal. 2022;36:e24456.

	[36]	 Zhang R, Di C, Gao H, et al. Identification of iron metabolism-related 
genes in the circulation and myocardium of patients with sepsis via applied 
bioinformatics analysis. Front Cardiovasc Med. 2023;10:1018422.

	[37]	 Luo J, Shi H, Ran H, et al. Identification of key biomarkers and immune 
infiltration in the thoracic acute aortic dissection by bioinformatics 
analysis. BMC Cardiovasc Disord. 2023;23:75.

	[38]	 Friedman MA, Choi D, Planck SR, et al. Gene expression pathways across 
multiple tissues in antineutrophil cytoplasmic antibody-associated  
vasculitis reveal core pathways of disease pathology. J Rheumatol. 
2019;46:609–15.

	[39]	 Montalbetti N, Simonin A, Kovacs G, et al. Mammalian iron transport-
ers: families SLC11 and SLC40. Mol Aspects Med. 2013;34:270–87.

	[40]	 Ruiz-Iglesias A, Mañes S. The importance of mitochondrial pyruvate 
carrier in cancer cell metabolism and tumorigenesis. Cancers (Basel). 
2021;13:1488.

	[41]	 Chen D, Wang H, Chen J, et al. MicroRNA-129-5p regulates glycolysis 
and cell proliferation by targeting the glucose transporter SLC2A3 in 
gastric cancer cells. Front Pharmacol. 2018;9:502.

	[42]	 Desideri E, Vegliante R, Cardaci S, et al. MAPK14/p38α-dependent 
modulation of glucose metabolism affects ROS levels and autophagy 
during starvation. Autophagy. 2014;10:1652–65.

	[43]	 Hu L, Zhao T, Sun Y, et al. Bioinformatic identification of hub genes 
and key pathways in neutrophils of patients with acute respiratory dis-
tress syndrome. Medicine (Baltim). 2020;99:e19820.

	[44]	 Hägg DA, Jernås M, Wiklund O, et al. Expression profiling of macro-
phages from subjects with atherosclerosis to identify novel susceptibil-
ity genes. Int J Mol Med. 2008;21:697–704.

	[45]	 De Franco M, Peters LC, Correa MA, et al. Pristane-induced arthritis 
loci interact with the Slc11a1 gene to determine susceptibility in mice 
selected for high inflammation. PLoS One. 2014;9:e88302.

	[46]	 Valdez Y, Grassl GA, Guttman JA, et al. Nramp1 drives an accelerated 
inflammatory response during Salmonella-induced colitis in mice. Cell 
Microbiol. 2009;11:351–62.

	[47]	 Ashraf MA, Goyal A. Fludeoxyglucose (18F) [Updated 2023 Aug 28]. In: 
StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

	[48]	 Liu J, Hong J, Han H, et al. Decreased vitamin C uptake mediated 
by SLC2A3 promotes leukaemia progression and impedes TET2 resto-
ration. Br J Cancer. 2020;122:1445–52.

	[49]	 Rodrigo R, Prieto JC, Aguayo R, et al. Joint cardioprotective effect of 
vitamin C and other antioxidants against reperfusion injury in patients 
with acute myocardial infarction undergoing percutaneous coronary 
intervention. Molecules. 2021;26:5702.


