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Abstract

The availability of genomes of many closely related bacteria with diverse metabolic capabilities offers the possibility of
tracing metabolic evolution on a phylogeny relating the genomes to understand the evolutionary processes and constraints
that affect the evolution of metabolic networks. Using simple (independent loss/gain of reactions) or complex
(incorporating dependencies among reactions) stochastic models of metabolic evolution, it is possible to study how
metabolic networks evolve over time. Here, we describe a model that takes the reaction neighborhood into account when
modeling metabolic evolution. The model also allows estimation of the strength of the neighborhood effect during the
course of evolution. We present Gibbs samplers for sampling networks at the internal node of a phylogeny and for
estimating the parameters of evolution over a phylogeny without exploring the whole search space by iteratively sampling
from the conditional distributions of the internal networks and parameters. The samplers are used to estimate the
parameters of evolution of metabolic networks of bacteria in the genus Pseudomonas and to infer the metabolic networks
of the ancestral pseudomonads. The results suggest that pathway maps that are conserved across the Pseudomonas
phylogeny have a stronger neighborhood structure than those which have a variable distribution of reactions across the
phylogeny, and that some Pseudomonas lineages are going through genome reduction resulting in the loss of a number of
reactions from their metabolic networks.
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Introduction

Biological networks are under continuous evolution and their

evolution is one of the major areas of research today [1–6]. The

evolution of biological networks can be studied using various

approaches such as maximum likelihood and parsimony [7,8].

The maximum likelihood approach calculates the likelihood of

evolution of one network into another by summing over all

possible networks that can occur during the course of evolution

under the given model. Parsimony, on the other hand, assumes

minimum evolution and only considers those networks that

correspond to the minimum number of changes between the

two networks. However, the problem with these approaches is that

enumeration of networks potentially occurring during evolution

becomes impractical in the case of biological networks as the

number of networks grows exponentially with the network size.

Recently, the evolution of biological networks has been studied

using stochastic approaches where efficient sampling techniques

makes the problem computationally tractable. For example, Wiuf

et al. [5] used importance sampling to approximate the likelihood

and estimate parameters for the growth of protein networks under

a duplicate attachment model. Similarly, Ratmann et al. [6] used

approximate Bayesian computation to summarize key features of

protein networks. The authors also approximated the posterior

distribution of the model parameters for network growth using a

Markov Chain Monte Carlo algorithm.

In this work, we focus on metabolic networks. The evolution of

metabolic networks is characterized by gain and loss of reactions

(or enzymes) connecting two or more metabolites and can be

described as a discrete space continuous time Markov process

where at each step of the network evolution a reaction is either

added or deleted until the desired network is obtained [9]. To give

a biologically relevant picture of evolution some reactions may be

defined as core (reactions that cannot be deleted during the course

of evolution) or prohibited (reactions that cannot be added) in the

given networks. The evolution of metabolic networks can then be

studied using simple (independent loss/gain of reactions) or

complex (incorporating dependencies among reactions) stochastic

models of metabolic evolution. We previously presented a

neighbor-dependent model for the insertion and deletion of edges

from a network where the rates with which reactions are added or

removed from a network depend on the fraction of neighboring

reactions present in the network [9]. In this model, two reactions

were considered to be neighbors if they shared at least one

metabolite. The model is summarized in Section ‘Neighbor-

dependent model’ below. The neighbor-dependent model depicts

a biologically relevant picture of metabolic evolution by taking the

network structure into account when calculating the rates of

insertion and deletion of reactions from a network. The model is,

however, limited in the sense that it does not allow one to measure

the strength of the neighborhood structure affecting network

evolution.
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Here, we present an extended model called the hybrid model

that combines an independent edge model, where edges are

gained or lost independently, and a neighbor-dependent model of

network evolution [9] such that the rate of going from one network

to another is a sum of the rates under the two models based on a

parameter, which measures the probability of being in the

neighbor dependent model. This allows estimation of the

neighborhood effect during metabolic evolution. When modeling

network evolution, we represent metabolic networks as directed

hypergraphs [9–11], where an edge called a hyperedge represents

a reaction and may connect any number of vertices or metabolites.

Representing metabolic networks as hypergraphs not only

captures the relationship between multiple metabolites involved

in a reaction but also provides an intuitive approach to study

evolution since loss or gain of reactions can be regarded as loss or

gain of hyperedges.

We use the hybrid model to study the evolution of a set of

metabolic networks connected over a phylogeny. Previous

attempts to study the evolution of metabolic networks in a

phylogenetic context include Dandekar et al. [12] and Peregrin

et al. [13]. However, to our knowledge, the stochastic treatment of

metabolic evolution over a phylogeny is an unexplored area. Here,

the phylogenetic relationship between the networks is established

using sequence data since the metabolic annotations available for

the majority of genome-sequenced organisms are generated using

automated annotation tools based on the similarity of predicted

genes to genes of known function and, therefore, contain a huge

amount of noise. In addition, we treat the branch lengths obtained

using the sequence data as certain. The advantage of fixing branch

lengths is that the calculations do not require summing over all

branch lengths for the given tree. Calculating the likelihood over a

phylogeny then requires a sum, over all possible networks that may

have existed at the interior nodes of the tree, of the probabilities of

each scenario of events. This is similar to the idea introduced by

Felsenstein [14] for observing DNA sequences over a phylogeny.

To sample the networks at internal nodes of the tree a Gibbs

sampler [15,16] is presented that samples a network conditioned

on its three neighbors, including a parent and two children

networks, for given parameter values. A Gibbs sampler for

estimating the parameters of evolution that encases the Gibbs

sampler for internal networks sampling is also presented. The

sampler estimates the evolution parameters without exploring the

whole search space by iteratively sampling from the conditional

distributions of the trees and parameters. We demonstrate the

Gibbs sampler by estimating and comparing the evolution

parameters for the metabolic networks of bacteria belonging to

the genus Pseudomonas. The Gibbs sampler can also be used to infer

the ancestral networks of a given phylogeny. This is shown by

inferring the metabolic networks of Pseudomonas spp. ancestors.

Methods

Neighbor-dependent model
In the neighbor-dependent for the evolution of metabolic

networks [9] hyperedges are inserted or deleted from a network

depending on the fraction of neighboring hyperedges present in

the network. Two hyperedges are considered as neighbors if they

share a node. The model assumes that the number of nodes in a

network remains fixed and there is a set E such that DED~M of

hyperedges connecting these nodes. The model also assumes the

existence of a network called Reference Network which contains all

these hyperedges. If the hyperedges in the reference network are

labeled 1 to M then any given network x can be represented as a

sequence of 0s and 1s such that the i-th entry (0viƒM) in the

sequence is 1 if and only if the hyperedge labeled i is present in the

network x, and 0 otherwise. Let the rate matrix describing the

evolution under the neighbor-dependent model be denoted by C.

An entry c(x’i; xi) in this rate matrix corresponds to the rate of

going from a network x to a network x’, which differs from x at

position i. In the neighbor-dependent model, the rate c(x’i; xi) of

going from x to x’ depends on xi, x’i and the neighboring

hyperedges Y(xi) present in the network x, and is given as follows:

c(x’i; xi)~q(xi, x’i)F (xi, Y(xi)) ð1Þ

where the function F corresponds to the neighborhood compo-

nent and q(xi, x’i) is the appropriate entry from the 2|2 rate

matrix Qi for the hyperedge i. The rate matrix Qi is given as

Qi~
{l l

m {m

� �
ð2Þ

where l is the insertion rate and m is the deletion rate.

The neighborhood component F (xi, Y(xi)) weights the inser-

tion and deletion rates by the proportion of neighbors present in

the network and is given as follows:

F (xi, Y(xi))~

DY(xi)DP
i=j xj

, DY(xi)Dw0,

1

Mz1
, Otherwise:

8>><
>>: ð3Þ

The denominator
P

i=j xj in Equation 3 gives the number of

hyperedges present in the current network.

Hybrid model of network evolution
Although the neighbor-dependent model summarized above

produces a biologically relevant behavior whereby highly con-

nected reactions are toggled more frequently than the poorly

connected counterparts, it does not allow one to determine the

Author Summary

Metabolic networks correspond to one of the most
complex cellular processes. Most organisms have a
common set of reactions as a part of their metabolic
networks that relate to essential processes such as
generation of energy and the synthesis of important
biological molecules, which are required for their survival.
However, a large proportion of the reactions present in
different organisms are specific to the needs of individual
organisms. The regions of metabolic networks correspond-
ing to these non-essential reactions are under continuous
evolution. Using different models of evolution, we can ask
important biological questions about the ways in which
the metabolic networks of different organisms enable
them to be well-adapted to the environments in which
they live, and how these metabolic adaptations have
evolved. We use a stochastic approach to study the
evolution of metabolic networks and show that evolution-
ary inferences can be made using the structure of these
networks. Our results indicate that plant pathogenic
Pseudomonas are going through genome reduction
resulting in the loss of metabolic functionalities. We also
show the potential of stochastic approaches to infer the
networks present at ancestral levels of a given phylogeny
compared to deterministic methods such as parsimony.

Metabolic Evolution on a Phylogeny
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strength of the neighborhood structure effecting the evolution of

metabolic networks. To overcome this limitation, a parameter can

be introduced in the model that corresponds to the neighborhood

effect during the course of metabolic network evolution.

Consider two networks x and x’ which differ at position xi. The

hybrid model combines the independent edge model where edges

are added or deleted independently, and the neighbor-dependent

model summarized above such that the rate of going from xi to x’i
is the sum of the rates under the two models based on a parameter

d, 0ƒdƒ1, which specifies the probability of being in the

neighbor-dependent model. The rate from xi to x’i is given as

v(x’i; xi)~d:c(x’i; xi)z(1{d):q(xi, x’i )

where the term c(x’i; xi, Y(xi)) is the rate under the neighbor-

dependent model given by Equation 1 and the term q(xi, x’i ) is the

rate under the independent edge model corresponding to the

appropriate entry from the rate matrix Q given by Equation 2.

Substituting the value of c(x’i; xi) from Equation 1, the above

equation can be simplified as follows.

v(x’i; xi)~dq(xi, x’i)F (xi, Y(xi))z(1{d)q(xi, x’i )

~q(xi, x’i)½dF (xi, Y(xi))z(1{d)�
ð4Þ

where the term F (xi, Y(xi)) corresponds to the neighborhood

component given by Equation 3.

It can been seen from (4) that the model behaves under the

independent edge model when d equals 0 and under the neighbor-

dependent model described in the previous section when d equals

1. For example, consider the toy network H1 shown in Figure 1A.

The reference network H containing all allowed hyperedges for

this example system is also shown in the figure. The system

behavior for different values of d is illustrated in Figure S1 for the

toy network H1 when simulated under the hybrid model along

with the number of neighbors for each hyperedge. The rates were

calculated at each step using (4). An edge was then selected based

on these rates and was inserted if absent from the current network

and deleted otherwise. As expected, hyperedges evolve indepen-

dently when d~0, resulting in similar insertion frequencies for all

hyperedges and increasingly reflecting their neighborhood as the

value of d goes up to unity. The fitness of the model is discussed in

the Section ‘Fitness of the hybrid model’ below.

Evolution on a phylogeny
Biological networks are connected over a phylogenetic tree

which is known through sequence analysis. Calculating the

likelihood over a phylogeny requires a sum, over all possible

networks that may have existed at the interior nodes of the tree, of

the probabilities of each scenario of events. For example, Figure 1A

shows an example system containing three networks H1, H2 and

H3 with a phylogeny connecting the three networks shown in

Figure 1B. Let the phylogenetic tree be denoted by T . The

likelihood of the tree T is given as follows.

LH(T )~
X

H1,2,3

fPH(H1,2,3)PH,t3
(H3DH1,2,3):

X
H1,2

fPH,t1,2
(H1,2DH1,2,3)PH,t1

(H1DH1,2)PH,t2
(H3DH1,2)gg

ð5Þ

Here H denotes the parameters of the model, which is (l, m) in

the case of the neighbor-dependent model and (l, m, d) in the case

of the hybrid model. PH(H1,2,3) is the marginal probability of

observing the root and PH,t(Hj DHi) denotes the pairwise likelihood

of evolving from the network Hi to the network Hj conditioned on

Hi in time t for the given parameters.

In general, the likelihood of a tree with more than three

networks can be calculated using the recursion described by

Felsenstein [17]. The likelihood at an internal node N of the tree is

given by the following recurrence relation

LH(N)~
X
Nl

PH,tl
(Nl DN)LH(Nl)

X
Nr

PH,tr (NrDN)LH(Nr) ð6Þ

where Nl and Nr are left and right descendants of the node N.

The likelihood of the complete tree T is then given as

LH(T )~
X

Nroot

PH(Nroot)LH(Nroot) ð7Þ

where PH(Nroot) is the marginal probability of observing the root

and LH(Nroot) is given by Equation 6.

Evaluating Equations 5 and 7 requires an algorithm to

systematically and efficiently sample networks at the internal

nodes of a tree and a method to calculate the pairwise likelihood of

network evolution. A Metropolis-Hastings algorithm to calculate

the pairwise likelihood based on sampling paths between network

pairs was described by Mithani et al. [9], which calculates the

likelihood by summing over paths between the given network

pairs. To sample networks at the internal node of a tree, a Markov

chain can be constructed where states correspond to networks at

the internal nodes. The networks can then be sampled using a

Gibbs sampler [15,16] as described in the next section.

Figure 1. Toy networks connected by a phylogeny. (A) Toy
networks consisting of 13 nodes. The nodes are labeled from A to M
(blue) and the hyperedges are labeled from 1 to 10 (red). The reference
network consists of all allowed hyperedges for this example system.
Networks H1 , H2 and H3 consist of subsets of the hyperedges from the
reference network. (B) A phylogeny connecting the networks H1 , H2

and H3 .
doi:10.1371/journal.pcbi.1000868.g001
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Sampling internal nodes
Given a set of networks related by a phylogenetic tree, the

networks at the internal nodes of the tree can be sampled using a

Gibbs sampler. The general idea is to sample each internal

network by conditioning on its three neighbors (one parent and

two children). This approach for sampling internal networks is

similar to the one used by Holmes and Bruno [18] for DNA

sequence alignment. However, instead of using linear sequences,

the sampler takes into account the network structure when

calculating the new state. The procedure is described below.

Consider a network X with its three neighbors Yk with branch

lengths tk, k~1 . . . 3. The new network X ’ is selected as follows.

1. For each hyperedge i, calculate the 2|2 rate matrix

VX ~QX d:FX (i,Y(i))z(1{d)½ �

where d is the neighbor-dependence probability, Q is the rate

matrix given by Equation 2 and the function F corresponds to

the neighborhood component given by Equation 3.

2. Calculate, for each neighbor Yk(k~1, . . . , 3), the transition

probabilities PH,tk
(Yk(i)DX (i))~exp(tkVX ).

3. Sample the new state s’i~ 0,1f g for hyperedge i from the

distribution

P(si)!p(si) P
3

k~1
PH,tk

(Yk(i)Dsi) ð8Þ

where p is the vector equilibrium probabilities and can be

obtained by solving the equation pVX ~0.

Example Consider the network H1,2 in Figure 2 for which new

state is to be calculated. Denote the network by X . The three

neighboring networks of the network H1,2 are the networks H1,

H2 and H1,2,3 labeled as Y1, Y2 and Y3 respectively. If fi denotes

the neighborhood component for hyperedge i then for the given

rate parameters l (insertion) and m (deletion), and the neighbor-

dependence probability d the rate matrix VX is written as

VX ~
{l l

m {m

� �
dfiz(1{d)ð Þ:

For simplicity, assume that d~1. The system then behaves under

the neighbor-dependent model and the rate matrix simplifies to

VX ~fi

{l l

m {m

� �

The transition probability matrix of transforming X (i) to Y1(i) is

then given as

PH,t1
(Y1(i)DX (i))~exp(t1CX ),

~
1

lzm

mzl exp({t1fi(lzm)) l(1{exp({t1fi(lzm)))

m(1{exp({t1fi(lzm))) lzm exp({t1fi(lzm))

" #
:

The transition probability matrices PH,t2
(Y2(i)DX (i)) and

PH,t3
(Y3(i)DX (i)) can be calculated in the similar fashion.

Once the transition probability matrices have been obtained,

the sample for the new network X ’ can be drawn using Equation

8. For example, if the current configuration of the networks are

taken as shown in Figure 2, then the sample for the new state s1,

for hyperedge 1 is drawn from the following distribution:

P(s1) ! p(s1) P
3

k~1
PH,tk

(Yk(1)Ds1),

~ p(s1)PH,t1
(1Ds1)PH,t2

(1Ds1)PH,t3
(0Ds1):

The samples for hyperedges labeled 2 to 10 can be drawn in a

similar fashion to obtain the new network.

Estimation of parameters
The Gibbs sampler described above samples the internal

networks on a phylogenetic tree for given parameter values. This

can be extended to estimate the parameters H of evolution where

H equals (l, m) in case of the neighbor-dependent model and

(l, m, d) in case of the hybrid model. One way is to nest it within

another Gibbs Sampler which iteratively samples internal

networks and parameters from the distributions P(T DH) and

P(HDT ) respectively. The general outline of the Gibbs sampler is

as follows:

N Choose initial values for the parameters H(0).

N Generate T (0) by using the procedure described in Section

‘Sampling internal nodes’ using H(0).

N Use T (0) to generate H(1) by drawing from the distribution

P(HDT ).

N Repeat n times to get subset of points (T (i),H(i)), where

1ƒiƒn, are the simulated estimates from the joint distribution

P(T ,H).

The samples for parameters can be drawn using a Metropolis-

Hastings algorithm [19,20] as described next. Since the Metrop-

olis-Hastings algorithm is a well-established method, it suffices

here to give details about how a proposal for new parameters can

Figure 2. A sample phylogenetic tree for the toy networks
shown in Figure 1. The tree contains arbitrary networks assigned at
the internal nodes. Also shown are the proportion of insertion and
deletion events and the proportion of allowed insertion and deletion
events while going from various ancestral networks to descendant
networks.
doi:10.1371/journal.pcbi.1000868.g002

Metabolic Evolution on a Phylogeny
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be generated. Readers interested in the general details of the

algorithm are referred to Chapter 1 of Gilks et al. [21]. The

performance of the Gibbs sampler is discussed in Text S1.

Parameter proposal
Rates proposal. For a given tree T , a proposal for the rate

parameters can be generated from a gamma distribution

c*C(k, h); c~l, m

where k is the shape parameter and h is the scale parameter. The

hyper-parameters k and h can be calculated from the given tree as

described next.

Starting from root, calculate the proportion of insertion events

IHi[Hj
and the proportion of deletion events DHi[Hj

between the

parent network Hi and the child network Hj in the given tree T by

dividing the number of insertion and deletion events by the total

number of alterable hyperedges DE’D in the system. Also, calculate

the proportion of allowed insertion and deletion events between

these pairs. Let these be denoted by �IIHi[Hj
and �DDHi[Hj

. The

hyper-parameters kl and hl for sampling insertion rate can then

be given as

kl~
X

i,j

IHi[Hj
z1, ð9Þ

hl~
X

i,j

�IIHi[Hj
ð10Þ

Similarly, the hyper-parameters km and hm for sampling deletion

rate are given as

km~
X

i,j

DHi[Hj
z1, ð11Þ

hm~
X

i,j

�DDHi[Hj
: ð12Þ

Example. The calculation of hyper-parameters k and h is

demonstrated on the tree shown in Figure 2 connecting the toy

networks shown in Figure 1. The number of hyperedges in the

reference network is 10. If no core or prohibited hyperedges are

assumed, then the number of alterable hyperedges E’ is also 10, i.e.

DE’D~10. Going from the network H1,2 to the network H1 there is

one insertion event and one deletion event out of 2 and 8 allowed

insertion and deletion events respectively resulting in the following

values:

IH1,2[H1
~

1

10
~0:1 DH1,2[H1

~
1

10
~0:1

�IIH1,2[H1
~

2

10
~0:2 �DDH1,2[H1

~
8

10
~0:8:

The same is true for going from the network pair H1,2[H2. Values

for other network pairs can be calculated in a similar fashion. The

values for I , �II , D and �DD for all parent-child pairs in the example tree

are listed in Figure 2. Using Equations 9 and 10, the hyper-

parameters for sampling the insertion rate are calculated as

kl~0:3z1~1:3

and

hl~1:0:

Similarly, using Equations 11 and 12 the hyper-parameters for

sampling the deletion rate become

km~0:3z1~1:3

and

hm~3:0:

Dependence probability proposal. The hybrid model for

metabolic network evolution described above allows estimation of

the neighborhood effect shaping the evolution of given set of

networks. The proposal for the parameter d measuring the

probability of being in the neighbor-dependent model can be

generated from a beta distribution

d*beta(a,b)

where the hyper-parameters a and b are the shape parameters and

are calculated as follows.

Calculate the average number of neighbors present in the

networks present at the leaves of the phylogeny. For example, if

the network x(j) is a leaf network, i.e. it occurs at the tip of the

given phylogenetic tree, then calculate

Nx(j)~
1

M

X
i

DY(xi(j))D

The parameter a is then given as the mean of the average number

of neighbors present in all the networks present at the leaves of the

given phylogenetic tree. For a tree T with l leaves, this can be

written as follows.

a~
1

l

X
j

Nx(j), j [ leaves(T ) ð13Þ

The shape parameter b corresponds to the average number of

neighbors in the reference network (REF) and is given as

b~
1

M

X
i

DY(xi(REF ))D: ð14Þ

Proposal probability
Rates proposal. The proposal probability q(l’, m’Dl, m) for

the rate parameters is given as

q(l’, m’Dl, m)~ P
c~l,m

q(c’Dc)

such that

Metabolic Evolution on a Phylogeny
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q(c’Dc)!ckc{1exp {chc

� �
where k and h are the hyper-parameters of the gamma distribution

given by Equations 9 and 10 respectively when c~l and by

Equations 11 and 12 otherwise.

Dependence probability proposal. The proposal proba-

bility q(d’Dd) for the dependence probability parameters is given

as

q(d’Dd)!da(1{d)b

where a and b are the shape parameters of the beta distribution

calculated using Equations 13 and 14 respectively.

Pairwise likelihood
The Metropolis-Hastings procedure described above to sample

parameters requires the likelihood of the tree when moving in the

parameter space. The likelihood can be calculated using Equation

5 which in turn requires calculation of the pairwise likelihood

between network pairs. The pairwise likelihood can be calculated

using the Metropolis-Hastings algorithm described in Mithani et al.

[9] which calculates the likelihood by summing over all paths

between the given network pair. However, for the Gibbs sampler

described above in Section ‘Estimation of parameters’ this seems

impractical since it will require running the Metropolis-Hastings

sampler for all network pairs. An alternate way is to use a pseudo-

likelihood value when calculating the acceptance probability for

parameters. We calculate the pseudo-likelihood for a given

network pair by dividing the network into smaller sub-networks

and multiplying the pairwise likelihoods of the individual sub-

networks.

Let P�H,t(Hj DHi) denote the pseudo-likelihood from the network

Hi to the network Hj in time t for the given parameter values. This

is given as

P�H,t(Hj DHi)~P
k

PH,t(H
k
j DHk

i )

where PH,t(H
k
j DHk

i ) is the pairwise likelihood of evolving sub-

network Hk
i into Hk

j calculated by solving the exponential

exp(tQ). The procedure to obtain sub-networks Hk
i containing

at most N hyperedges is outlined below.

1. Initialize k~1.

2. Select the hyperedge e with highest number of neighbors and

add it to the network Hk
i .

3. Add the top K neighbors of hyperedge e based on the number of

neighbors to the network Hk
i where K~min(N{1,N{DHk

i D).
4. Remove the hyperedges present in Hk

i from Hi and calculate

the number of neighbors based on the remaining hyperedges in

the network.

5. Repeat steps 2–4 until DHk
i DvN.

6. Increment k and repeat steps 2–5 until the network Hi is

exhausted.

An example is given in Figure S2, which shows the sub-networks

for the toy network H1 shown in Figure 1 for different values of N.

The above procedure was used to calculate the pseudo-likelihood

of evolution of the toy network H1 to the network H2 (Figure 1A)

for different subnetwork sizes, and the results were compared

against the likelihood obtained by the MCMC approach described

in Mithani et al. [9] and the true likelihood values obtained by

evaluating exp(tQ). All likelihood values were conditioned on the

starting network. The average CPU time taken by different

approaches is shown in Figure 3 and the pseudo-likelihood values

are listed in Table S1. The sub-network approach provides a

reasonable approximation of the likelihood with a significant time

advantage over the MCMC approach.

Results

Fitness of the hybrid model
To see if the hybrid model fitted the metabolic network data

better than the neighbor-dependent model, a likelihood ratio test

was performed using the metabolic data for the bacteria

belonging to the genus Pseudomonas. The results show that the

hybrid model fits the metabolic data better than the neighbor-

dependent model. For example, consider the metabolic networks

in Pseudomonas fluorescens Pf0-1. The maximum likelihood estimates

(MLEs) for the evolution of glycolysis/gluconeogenesis map [22]

from Pseudomonas fluorescens Pf-5 to P. fluorescens Pf0-1 obtained

using the Gibbs sampler described by Mithani et al. [9] were

(l̂l, m̂m)~(2:6177, 0:4229) under the neighbor-dependent model

and (l̂l, m̂m, d̂d)~(0:4989, 0:1598, 0:2152) under the hybrid model.

Using the MLEs, the likelihood of observing the data under each

model was calculated. Assuming that evolution has been taking

place for a long time, it is reasonable to use the equilibrium

probability of a network to approximate the probability of observing

the network. The equilibrium probabilities were calculated using

the procedure described by Mithani et al. [9]. The maximum log

likelihood obtained under the neighbor-dependent model equaled

276.53 whereas the maximum log likelihood obtained under the

hybrid model equaled 263.47. The likelihood ratio test statistic X 2

was calculated as 2(76:53{63:47)~26:13 under 3{2~1 degree

of freedom. The p-value P(x2
§X 2)~3:19|10{7 on 1 degree of

freedom suggests that the hybrid model fits the data better than the

Figure 3. Average CPU time taken for calculating the pseudo-
likelihood on toy networks. The pseudo-likelihood of going from
the network H1 to the network H2 (Figure 1) was calculated
conditioned on H1 for different sub-network sizes. The times taken
for calculating the pseudo-likelihood averaged across three runs are
shown in red. The horizontal lines show the average CPU time taken
using the MCMC approach based on path sampling described in
Mithani et al. [9] with 11,000 iterations including first 1,000 iteration as
burn-in period (blue dashed line) and by exponentiating the full
network (brown dotted line).
doi:10.1371/journal.pcbi.1000868.g003

Metabolic Evolution on a Phylogeny

PLoS Computational Biology | www.ploscompbiol.org 6 August 2010 | Volume 6 | Issue 8 | e1000868



neighbor-dependent model. The MLEs, maximum log-likelihoods

and the p-values for different pathway maps in P. fluorescens Pf0-1

used in this analysis are listed in Table 1. The low p-values for all the

pathway maps suggest a better fit for the hybrid model compared to

the neighbor-dependent model. Likelihood ratio tests for other

genome-sequenced Pseudomonas strains used in this analysiss showed

similar results (data not shown).

The fit of the data was further tested by comparing the degree

distributions of the nodes obtained by simulating network

evolution under the neighbor-dependent and hybrid models.

The MLEs for the evolution of networks obtained under the two

models were used as the simulation parameters. For example,

when evolving the pathway maps in P. fluorescens Pf0-1, the

parameter values listed in Table 1 were used. A total of 60,000

iterations were run with the first 10,000 iteration regarded as

burn-in period. Samples were collected every 10th iteration and

degree distributions were calculated. The results for the six

pathway maps used in this analysis are shown in Figure 4 for P.

fluorescens Pf0-1 as an example which suggest a better fit for the

hybrid model than the neighbor-dependent model. Similar results

(data not shown) were obtained for the other genome sequenced

Pseudomonas strains used in this analysis.

Toy networks
To test the Gibbs sampler described in Section ‘Sampling

internal nodes’, the three network phylogeny shown in Figure 1

was used. The networks were sampled at the internal nodes for

different rate combinations with the neighbor-dependence prob-

ability d kept constant at 1. The likelihood value was then

calculated using Equation 5 by summing over the networks visited

by the sampler at each internal node for each rate combination.

When calculating the likelihood over the phylogeny, the pairwise

likelihood was calculated using matrix exponentiation. A total of

25,000 iterations were run for each rate combination with the first

10,000 iterations regarded as burn-in period. The exact likelihood

of the phylogeny was also calculated by matrix exponentiation

using all 1024(~210) networks at each internal node. The

likelihood values estimated using the networks visited by the

Gibbs sampler were comparable to those obtained by summing

over all 1024 networks. The true and estimated likelihood surfaces

for a range of parameter values are shown in Figure S3.

We also ran the Gibbs sampler for parameter estimation for the

toy networks. The sampler was run from a random starting value

for 60,000 iterations with the first 10,000 iterations regarded as

burn-in period. The samples were collected every 10th iteration to

reduce computational overhead relating to storage as well as the

correlation between samples. A sample MCMC trace for the first

1,000 iterations of the sampler for the rate parameters is shown in

Figure S4. The autocorrelation of parameters is plotted in Figure 5

suggesting an exponential decrease in the correlation as the lag

between the samples increases. To test the performance of the

sampler, the likelihood of evolution for different rate combinations

visited by the sampler was also calculated using Equation 5 by

summing over networks visited by the sampler with d~1. As

before, the pairwise likelihood was evaluated by calculating the

exponential of the rate matrix. The maximum likelihood averaged

over three runs was found to be 3:6583|10{8+1:0307|10{12

for parameters (l,m)~(0:8259,0:4066) which is very close to the

true likelihood obtained by matrix exponentiation (Figure S3).

Parameter estimation for metabolic networks in
Pseudomonas

To study the metabolic evolution in bacteria, we used the Gibbs

sampler to estimate the evolution parameters for the metabolic

networks of bacteria belonging to the genus Pseudomonas. The

diversity of pseudomonads, and the availability of genome-

sequence data for multiple plant-associated Pseudomonas fluorescens,

Pseudomonas mendocina, Pseudomonas putida, Pseudomonas stutzeri and

Pseudomonas syringae strains, along with genome data for clinical

isolates of Pseudomonas aeruginosa and for the insect pathogen

Pseudomonas entomophila provide an excellent opportunity to use

comparative genomic approaches to develop insight into the

evolution of metabolic networks. The phylogeny connecting the

seventeen genome-sequenced strains of Pseudomonas is shown in

Figure 6A. The phylogeny was generated using multilocus

sequencing analysis of conserved housekeeping genes ( gltA, gapA,

rpoD, gyrB) [23]. The metabolic network data was extracted from

the KEGG database [22] on 31st January 2010 for pathway maps

across the seventeen Pseudomonas strains shown in Figure 6A using

the Rahnuma tool [24]. The evolution parameters were also

compared between two Pseudomonas species: P. fluorescens, a

saprotroph that colonizes the soil environment, and P. syringae, a

plant-pathogen that is found on leaf surfaces and in plant tissues.

The phylogenetic relationships between these species is shown in

Figures 6B and C. The results are discussed here for the six

pathway maps listed in Table 2 as they provide a representative set

of different neighborhood characteristics observed across the

Pseudomonas strains used in this analysis. The basic information for

Table 1. Likelihood ratio test between the neighbor-dependent and hybrid models of metabolic evolution.

Pathway map Neighbor-dependent model Hybrid model LH ratio P((x2
§§X2))

(l̂, m̂) Log LH (l̂, m̂, d̂) Log LH

Glycolysis/Gluconeogenesis (2.6177, 0.4229) 276.53 (0.4989, 0.1598, 0.2152) 263.47 26.13 3:19|10{7

Pentose phosphate pathway (0.5680, 0.7144) 260.13 (0.4762, 0.2953, 0.4259) 253.42 13.41 2:50|10{4

Lysine degradation (0.0127, 1.0780) 259.43 (0.0063, 0.2926, 0.0159) 252.40 14.05 1:78|10{4

Histidine metabolism (0.7669, 0.3895) 254.22 (0.1852, 0.1643, 0.1370) 247.28 13.89 1:94|10{4

Phenylalanine metabolism (1.1035, 0.6856) 262.40 (1.0299, 1.0297, 0.0038) 249.91 24.97 5:81|10{7

Pyruvate metabolism (0.1648, 0.5656) 288.64 (0.0897, 0.1913, 0.1194) 281.74 13.81 2:02|10{4

The maximum likelihood estimates (MLEs) of the parameter values (l: insertion rate, m: deletion rate and d: neighbor dependence probability), maximum log-likelihoods,
likelihood (LH) ratios, and the p-values for different pathway maps in P. fluorescens Pf0-1 used in this analysis. The MLEs were obtained using the Gibbs sampler
described by Mithani et al. [9] by evolving the networks from P. fluorescens Pf-5 to P. fluorescens Pf0-1. The equilibrium probability of a network was used as the
likelihood of observing the network. The low p-values for all the pathway maps suggest a better fit for the hybrid model compared to the neighbor-dependent model.
doi:10.1371/journal.pcbi.1000868.t001
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each network across the seventeen Pseudomonas strains is given in

Table S2.

When estimating the parameters, the hyperedges corresponding

to the reactions that were common to all seventeen Pseudomonas

strains were defined as core edges and the hyperedges corre-

sponding to the reactions not present in any of these seventeen

species were defined as prohibited edges. Three independent

replicates of the sampler were run from random starting values for

60,000 iterations for P. fluorescens and P. syringae phylogenies, and

110,000 iterations for the phylogeny connecting the seventeen

Figure 4. Degree distributions of nodes under the neighbor-dependent and hybrid models. Boxplots showing the degree distributions of
nodes obtained by simulating the evolution for the pentose phosphate pathway, lysine degradation and phenylalanine metabolism maps in P.
fluorescens Pf0-1 under (A) the neighbor-dependent model and (B) the hybrid model. The red line plots the actual degree distributions observed in
the corresponding pathway map in P. fluorescens Pf0-1.
doi:10.1371/journal.pcbi.1000868.g004
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Pseudomonas strains with the first 10,000 iterations regarded as

burn-in period in each case. The samples were collected every 10th

iteration to calculate the posterior expectations and variances of

the parameters. These are listed in Table 2 and the ESS used for

parameter estimation are listed in Table S3. The convergence of

the algorithm was tested by checking the trace of the MCMC runs

initiated from different starting values. An example is shown in

Figure S5, which shows the trace for the sampler run on P.

fluorescens phylogeny (Figure 6B). The running times and the

acceptance percentages of the algorithm are listed in Table S4 for

all three phylogenies. We also calculated the number of insertion

and deletion events for each reaction as well as at each branch of

the Pseudomonas phylogeny for all six pathway maps. These are

shown in Figures S6 and S7.

The high insertion to deletion ratio (Table 2) for all three

phylogenies for the glycolysis/gluconeogenesis map, pentose

phosphate pathway map and pyruvate metabolism map, which

are defined as a part of the carbohydrate metabolism of the

bacteria in KEGG [22] and for the histidine metabolism map,

which is a part of amino acid metabolism, suggests that very few

reactions are missing from these networks in one or more

Pseudomonas strains used in the analysis, resulting in a highly

conserved network. Lysine and phenylalanine pathway maps, on

the other hand, have higher deletion rates compared to the

insertion rates suggesting a variable reaction distribution across the

Pseudomonas phylogeny and instability of these functionalities. The

results obtained in this study are consistent with the previous

observation that the histidine metabolism map shows conservation

of reactions across pseudomonads (Mithani, Hein and Preston,

submitted) and that many Pseudomonas strains are able to use

histidine as sole carbon and nitrogen source [25] whereas lysine

and phenylalanine pathway maps have few conserved reactions

across pseudomonads (Mithani, Hein and Preston, submitted) and

are poor nutrient sources for these bacteria [25]. The results also

indicate that the pathway maps which are highly conserved across

the seventeen Pseudomonas strains, i.e. glycolysis/gluconeogenesis

map, pentose phosphate pathway map, pyruvate metabolism map

and histidine metabolism map, also have higher neighbor

dependence probabilities compared to the other two pathway

maps, which have variable reaction distribution across the

Pseudomonas phylogeny. This might suggest a relationship between

the neighborhood structure and the conservation of networks.

The comparison of the evolution parameters between P.

fluorescens and P. syringae provides interesting insights into the

evolution of the metabolic networks of these bacteria. For

example, the insertion and deletion rates are generally higher in

P. fluorescens than those in P. syringae suggesting a higher number of

insertion and deletion events in P. fluorescens networks compared to

P. syringae networks. This was expected since the evolutionary

distance between the P. fluorescens strains is greater as compared to

P. syringae strains (Figure 6) allowing more time for the networks in

P. fluorescens to evolve. A higher deletion rate for lysine and

phenylalanine pathway maps in P. syringae compared to P.

fluorescens, however, suggests that P. syringae have had a higher

number of deletion events than P. fluorescens during the course of

evolution. This supports the finding that P. syringae have gone

through a high number of deletion events than expected based on

the comparison between observed and expected distribution of

reactions across the Pseudomonas phylogeny, and the identification

of reactions that are uniquely present or absent from a single

lineage (Mithani, Hein and Preston, submitted). In addition, a very

low insertion to deletion ratio (l=m~0:2564) for lysine metabolism

in P. syringae suggests a high number of deletion events in the

lineage and consequently the loss of the ability of these bacteria to

assimilate lysine. This is in agreement with nutrient utilization

assays, which have reported that bacteria belonging to the species

P. syringae do not assimilate lysine as a nutrient source [25].

Phenylalanine metabolism also has a higher deletion rate as

compared to insertion rate in both P. fluorescens and P. syringae

lineages. This in conjunction with experimental data reporting the

weak ability of these bacteria to utilize phenylalanine as a nutrient

source might lead to a hypothesis that both P. fluorescens and P.

syringae are drifting towards losing their ability to assimilate

phenylalanine. Overall, the results show that genome reduction is

taking place in plant pathogenic bacteria belonging to the species

P. syringae at a higher rate than their non-pathogenic counterparts

in the species P. fluorescens.

Figure 5. Autocorrelation of rate parameters. Parameters were
estimated for the toy network phylogeny shown in Figure 1 using the
Gibbs sampler described in Section ‘Estimation of parameters’. The
values are averaged across three runs containing 60,000 iterations each.
doi:10.1371/journal.pcbi.1000868.g005

Figure 6. Phylogenies connecting bacteria belonging to the
genus Pseudomonas. The phylogenies were generated using multi-
locus sequence analysis of conserved housekeeping genes (gapA, gltA,
rpoD and gyrB). (A) Phylogeny relating the seventeen genome-
sequenced Pseudomonas strains. (B) Phylogeny relating the three
strains of non pathogenic P. fluorescens. (C) Phylogeny relating the
three strains of plant pathogenic P. syringae. Strain abbreviations: pae:
P. aeruginosa PAO1, pap: P. aeruginosa PA7, pau: P. aeruginosa PA14,
pag: P. aeruginosa LESB58, pen: P. entomophila L48, pfl: P. fluorescens Pf-
5, pfo: P. fluorescens Pf0-1, pfs: P. fluorescens SBW25, pmy: P. mendocina
ymp, ppf: P. putida F1, ppg: P. putida GB-1 ppu: P. putida KT2440, ppw:
P. putida W619, psa: P. stutzeri A1501, psb: P. syringae pv. syringae
B728a, psp: P. syringae pv. phaseolicola 1448A, and pst: P. syringae pv.
tomato DC3000.
doi:10.1371/journal.pcbi.1000868.g006
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Ancestral network reconstruction
The final aim of this study was to infer reactions present in the

common ancestor of Pseudomonas spp. and of individual species of

Pseudomonas. One way to address this is to predict that the common

ancestor contained all the reactions that are common to existing

Pseudomonas. The variable reactions can then be assigned using a

parsimonious approach which generates a conservative model of

network evolution in which a minimum number of events occur.

However, the results above suggest that some lineages, particularly

P. syringae, have undergone deletion events relative to the common

ancestor and that some reactions absent in one or more modern

pseudomonads might be present in the ancestral strain. To take

this into account, stochastic approaches such as the Gibbs sampler

described in Section ‘Estimation of parameters’ can be used to

sample ancestral networks from the posterior distribution of

networks and the likelihood of reactions being present at various

levels of the phylogeny can be calculated.

To demonstrate this, the Gibbs sampler was run on the pathway

maps listed in Table 2. The Gibbs sampler was run with the same

settings that were used for parameter estimation and samples for

the networks at internal nodes of the Pseudomonas phylogeny

(Figure 6A) were collected. The degree distributions of nodes at

the ancestral levels of the phylogeny are given in Figures S8, S9,

S10, S11, S12, S13. The likelihood of reactions being present at

each level was obtained by calculating the proportion of times

each hyperedge was present in the sampled networks. The results

are shown in Figures 7A–12A. Only alterable reactions, that is the

reactions which were neither defined as core nor were defined as

prohibited in the networks, are shown.

The ancestral network reconstruction using the Gibbs sampler

reported high likelihood values for reactions which are present in

all the networks down a lineage and low likelihood values for

reactions which show variable distributions across the Pseudomonas

phylogeny. For example, in the pentose phosphate pathway map

(Figure 8A), the reaction R01066, which is present only in the

three P. syringae strains, was assigned a very high likelihood of being

present in the common ancestor of P. syringae pv. phaseolicola

1448A and P. syringae pv. syringae B728a as well as in the common

ancestor for all the tree P. syringae strains but a very low likelihood

of being present for all other internal networks. In contrast,

R06836, which is present in sixteen out of the seventeen

Pseudomonas strains (absent in P. fluorescens Pf-5), is reported to

have high likelihood values of being present in all internal

networks of the phylogeny.

Ancestral predictions were also generated under the parsimo-

ny model for these networks using the Fitch Algorithm [26].

When assigning the reactions at the ancestral nodes the ties were

resolved in favor of presence of reactions. The results are shown

in Figures 7B–12B. Reactions for which parsimony failed to

resolve ancestral predictions at the root are marked with

asterisks (*). Predictions generated for the Pseudomonas common

ancestor using parsimony analysis are nearly identical to

predictions generated for the P. aeruginosa common ancestor,

which would be expected as parsimony assumes minimum

evolution. In addition, parsimony generated a conservative

model of network evolution in which a minimum number of

events occur, but the stochastic approach takes network

information into account when predicting ancestral networks.

Table 2. Posterior expectation and variance of evolution parameters estimated using the Gibbs sampler under the hybrid model.

Pathway Map Phylogeny EE(d) var(d) EE(l) var(l) EE(m) var(m) l==m

Glycolysis/Gluconeogenesis ((pfs,pfo),pfl) 0.2276 0.0054 2.0552 1.0280 1.2228 0.2653 1.6807

(MAP00010) (pst,(psb,psp)) 0.2404 0.0070 1.8645 3.3775 0.7280 0.2891 2.5611

17 pseudomonads 0.1506 0.0034 0.7610 0.0117 0.7329 0.0114 1.0383

Pentose phosphate pathway ((pfs,pfo),pfl) 0.2785 0.0057 2.1103 0.5582 1.7194 0.3227 1.2273

(MAP00030) (pst,(psb,psp)) 0.3251 0.0071 1.8490 1.6921 1.0172 0.3212 1.8178

17 pseudomonads 0.1863 0.0042 0.6762 0.0029 0.7462 0.0126 0.9062

Lysine degradation ((pfs,pfo),pfl) 0.0802 0.0032 0.9662 0.2795 1.6567 1.5943 0.5832

(MAP00310) (pst,(psb,psp)) 0.0637 0.0025 0.6986 0.1030 2.7245 2.8663 0.2564

17 pseudomonads 0.0473 0.0030 0.4706 0.3492 0.6443 0.7188 0.7304

Histidine metabolism ((pfs,pfo),pfl) 0.1833 0.0065 1.6829 1.2133 1.0507 0.3456 1.6017

(MAP00340) (pst,(psb,psp)) 0.1749 0.0064 1.5321 0.9479 1.0735 0.3082 1.4272

17 pseudomonads 0.0986 0.0022 0.8685 0.0203 0.6795 0.0057 1.2781

Phenylalanine metabolism ((pfs,pfo),pfl) 0.0783 0.0029 1.1686 0.2072 1.8255 0.9345 0.6402

(MAP00360) (pst,(psb,psp)) 0.0678 0.0024 1.0573 0.1448 2.2334 1.1112 0.4734

17 pseudomonads 0.0617 0.0017 0.6004 0.0061 1.0723 0.0682 0.5599

Pyruvate metabolism ((pfs,pfo),pfl) 0.1413 0.0018 1.6497 0.3362 1.7913 0.4424 0.9210

(MAP00620) (pst,(psb,psp)) 0.1559 0.0020 1.5542 0.5376 1.2840 0.2888 1.2105

17 pseudomonads 0.1119 0.0007 0.7668 0.0099 0.6838 0.0142 1.1213

Posterior expectation and variance of parameter values (d: neighbor dependence probability, l: insertion rate and m: deletion rate) estimated using the Gibbs sampler
under the hybrid model for the phylogenies relating the bacteria belonging to genus Pseudomonas (Figure 6). Hyperedges common to all seventeen genome-
sequenced strains were defined as core and hyperedges missing in all seventeen strains were defined as prohibited hyperedges. The values are averaged over three
runs of 60,000 iterations for P. fluorescens and P. syringae phylogenies, and 110,000 iterations for the phylogeny connecting the seventeen Pseudomonas strains with the
first 10,000 iterations regarded as burn-in period in each case. Samples were collected every 10th iteration. The codes MAPxxxxx correspond to the respective KEGG
pathway codes [22]. Strain abbreviations: pfl: P. fluorescens Pf-5, pfo: P. fluorescens Pf0-1, pfs: P. fluorescens SBW25, psb: P. syringae pv. syringae B728a, psp: P. syringae pv.
phaseolicola 1448A, and pst: P. syringae pv. tomato DC3000.
doi:10.1371/journal.pcbi.1000868.t002
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For example, in the case of the lysine degradation map (Figure 9),

six out of the ten variable reactions are reported to be absent

from all the ancestral networks of the Pseudomonas phylogeny

using the parsimony approach whereas the stochastic approach

taking the reaction neighborhood data into account assigns non-

zero likelihood values to these reactions for being present in the

ancestral pseudomonads. Similarly, all four reactions which are

predicted to be absent from all ancestral pseudomonads in

the histidine metabolism map under the parsimony model have

non-zero likelihoods of being present in the ancestral networks

using the stochastic approach (Figure 10). The results for

ancestral network reconstruction for phenylalanine metabolism

(Figure 11), on the other hand, suggested a very low level of

conservation of reactions across the Pseudomonas phylogeny using

both approaches and most of the variable reactions were

predicted to be absent from the common ancestor. The variable

distribution of these reactions across the seventeen Pseudomonas

strains along with the results of ancestral network reconstruction

suggests that these reactions might have been gained indepen-

dently at organism level.

Figure 7. Ancestral network reconstruction for the glycolysis/gluconeogenesis map. The ancestral networks were reconstructed over the
Pseudomonas phylogeny shown in Figure 6A. Also shown in the bottom panel is the distribution of reactions across different Pseudomonas strains. (A)
Likelihood of being present for alterable reactions at various levels of Pseudomonas phylogeny obtained by calculating the proportion of times each
hyperedge was present in the networks sampled by the Gibbs sampler. (B) Reaction status obtained under maximum parsimony calculated using the
Fitch algorithm [26]. When assigning the reactions at the ancestral nodes the ties were resolved in favor of presence of reactions. Reactions for which
parsimony failed to resolve ancestral predictions at the root are marked with an asterisk (*). Strain abbreviations: pae: P. aeruginosa PAO1, pap:
P. aeruginosa PA7, pau: P. aeruginosa PA14, pag: P. aeruginosa LESB58, pen: P. entomophila L48, pfl: P. fluorescens Pf-5, pfo: P. fluorescens Pf0-1, pfs:
P. fluorescens SBW25, pmy: P. mendocina ymp, ppf: P. putida F1, ppg: P. putida GB-1 ppu: P. putida KT2440, ppw: P. putida W619, psa: P. stutzeri A1501,
psb: P. syringae pv. syringae B728a, psp: P. syringae pv. phaseolicola 1448A, and pst: P. syringae pv. tomato DC3000.
doi:10.1371/journal.pcbi.1000868.g007
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Discussion

In this study, we have used a Bayesian approach to study the

evolution of metabolic networks. We extended the neighbor-

dependent model described by Mithani et al. [9] by introducing a

parameter that estimates the probability of being present in the

neighbor-dependent model. This not only provides a better fit for

the data but also has an advantage over the existing model since it

allows one to estimate the strength of neighborhood structure

affecting the evolution of given networks. It must, however, be kept

in mind that inferring the neighborhood effect solely on the basis

of the neighbor-dependence probability might bias the results due

to the fact that a high proportion of reactions involved in central

metabolism of an organism will always be present due to their

functional importance. Using ortholog and synteny data in

conjunction with neighbor-dependence probability would lead to

better inference of the role of network structure on metabolic

evolution. The idea being that if a reaction is present in most of the

species that are evolutionarily close to the one being considered

then it has a higher chance of being added, and if it is genetically

Figure 8. Ancestral network reconstruction for the pentose phosphate pathway map. The ancestral networks were reconstructed over the
Pseudomonas phylogeny shown in Figure 6A. Also shown in the bottom panel is the distribution of reactions across different Pseudomonas strains. (A)
Likelihood of being present for alterable reactions at various levels of Pseudomonas phylogeny obtained by calculating the proportion of times each
hyperedge was present in the networks sampled by the Gibbs sampler. (B) Reaction status obtained under maximum parsimony calculated using the
Fitch algorithm [26]. When assigning the reactions at the ancestral nodes the ties were resolved in favor of presence of reactions. Reactions for which
parsimony failed to resolve ancestral predictions at the root are marked with an asterisk (*). Strain abbreviations: pae: P. aeruginosa PAO1, pap:
P. aeruginosa PA7, pau: P. aeruginosa PA14, pag: P. aeruginosa LESB58, pen: P. entomophila L48, pfl: P. fluorescens Pf-5, pfo: P. fluorescens Pf0-1, pfs:
P. fluorescens SBW25, pmy: P. mendocina ymp, ppf: P. putida F1, ppg: P. putida GB-1 ppu: P. putida KT2440, ppw: P. putida W619, psa: P. stutzeri A1501,
psb: P. syringae pv. syringae B728a, psp: P. syringae pv. phaseolicola 1448A, and pst: P. syringae pv. tomato DC3000.
doi:10.1371/journal.pcbi.1000868.g008
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linked to other reactions then they have a greater chance of being

consecutively added or deleted.

The neighbor-dependent model [9] and the hybrid model

described here define reaction neighborhood as reactions sharing

at least one metabolite. Alternate definitions of reaction neigh-

borhood are also possible. For example, one possible alternate is to

consider the reaction directions when calculating the neighbor-

hood and to regard two reactions as neighbors only if the

metabolite connecting the two reactions is a substrate of one and

the product of the other. Similarly, it is also possible to use other

measures such as sequence similarity [27–29] or network distance

measures [30,31] in conjunction with the network structure to

model the evolution of metabolic networks. There are, however,

limitations associated with the models of metabolic evolution solely

based on network structure and sequence similarity. There are a

number of other factors affecting metabolic evolution. These

include substrate availability (for example, availability of a new

nutrient in the environment may favor the insertion of reactions

which bring this new metabolite into the mainstream metabolism),

gene expression (for example, a decrease in the gene expression

Figure 9. Ancestral network reconstruction for the lysine degradation map. The ancestral networks were reconstructed over the
Pseudomonas phylogeny shown in Figure 6A. Also shown in the bottom panel is the distribution of reactions across different Pseudomonas strains. (A)
Likelihood of being present for alterable reactions at various levels of Pseudomonas phylogeny obtained by calculating the proportion of times each
hyperedge was present in the networks sampled by the Gibbs sampler. (B) Reaction status obtained under maximum parsimony calculated using the
Fitch algorithm [26]. When assigning the reactions at the ancestral nodes the ties were resolved in favor of presence of reactions. Strain abbreviations:
pae: P. aeruginosa PAO1, pap: P. aeruginosa PA7, pau: P. aeruginosa PA14, pag: P. aeruginosa LESB58, pen: P. entomophila L48, pfl: P. fluorescens Pf-5,
pfo: P. fluorescens Pf0-1, pfs: P. fluorescens SBW25, pmy: P. mendocina ymp, ppf: P. putida F1, ppg: P. putida GB-1 ppu: P. putida KT2440, ppw: P. putida
W619, psa: P. stutzeri A1501, psb: P. syringae pv. syringae B728a, psp: P. syringae pv. phaseolicola 1448A, and pst: P. syringae pv. tomato DC3000.
doi:10.1371/journal.pcbi.1000868.g009
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relating to an enzyme catalyzing a reaction may force the

metabolic network to find alternate routes) and reaction

mechanism (for example, a reaction which is chemically inefficient

may be favored for deletion compared to an efficient reaction).

Factors such as these must be taken into account when modeling

the evolution of metabolic networks to depict a more realistic

picture of evolution.

We also presented a Gibbs sampler to sample the networks at

internal nodes of a phylogenetic tree where the internal networks

were sampled by conditioning on three neighbors (one parent and

two children) in an approach similar to the one used by Holmes

and Bruno [18] for DNA sequence alignment. The sampler

considered the network structure surrounding the hyperedge being

sampled in addition to the state of the hyperedge in the three

neighboring networks when calculating the new state thus resulting

in an informed sampling procedure. When sampling ancestral

networks, it was assumed that all sampled networks were valid

networks. However, not all networks may be functionally viable.

For example, a network might not be able to produce a key

metabolite which is required or may result in disconnected

Figure 10. Ancestral network reconstruction for the histidine metabolism map. The ancestral networks were reconstructed over the
Pseudomonas phylogeny shown in Figure 6A. Also shown in the bottom panel is the distribution of reactions across different Pseudomonas strains. (A)
Likelihood of being present for alterable reactions at various levels of Pseudomonas phylogeny obtained by calculating the proportion of times each
hyperedge was present in the networks sampled by the Gibbs sampler. (B) Reaction status obtained under maximum parsimony calculated using the
Fitch algorithm [26]. When assigning the reactions at the ancestral nodes the ties were resolved in favor of presence of reactions. Strain abbreviations:
pae: P. aeruginosa PAO1, pap: P. aeruginosa PA7, pau: P. aeruginosa PA14, pag: P. aeruginosa LESB58, pen: P. entomophila L48, pfl: P. fluorescens Pf-5,
pfo: P. fluorescens Pf0-1, pfs: P. fluorescens SBW25, pmy: P. mendocina ymp, ppf: P. putida F1, ppg: P. putida GB-1 ppu: P. putida KT2440, ppw: P. putida
W619, psa: P. stutzeri A1501, psb: P. syringae pv. syringae B728a, psp: P. syringae pv. phaseolicola 1448A, and pst: P. syringae pv. tomato DC3000.
doi:10.1371/journal.pcbi.1000868.g010
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components that compromise network functionality. Checking for

validity of networks occurring at ancestral nodes is an important

area for further research.

A Gibbs sampler to estimate the evolution parameters was also

presented. Standard distributions were used to generate proposals

for parameters. The standard distributions provide satisfactory

mixing of the MCMC sampler with appropriate scaling [32]. The

rate parameters were sampled from a gamma distribution where

scale and shape parameters were calculated from the current

network and the proposals for neighbor dependence probability

were generated using a beta distribution with its scale parameters

calculated from the networks present at the leaves of the given

phylogenetic tree. A uniform prior was used when estimating the

parameters, which assigns equal probability to each point in the

parameter space. It might be useful to explore the dependence

between the number of insertions and deletions on the given

phylogeny and to investigate the use of other prior distributions.

Besides this, when calculating the likelihood of evolution, it was

assumed that the phylogenetic tree was known through sequence

analysis. This simplified the problem by not requiring a sum over

Figure 11. Ancestral network reconstruction for the phenylalanine metabolism map. The ancestral networks were reconstructed over the
Pseudomonas phylogeny shown in Figure 6A. Also shown in the bottom panel is the distribution of reactions across different Pseudomonas strains. (A)
Likelihood of being present for alterable reactions at various levels of Pseudomonas phylogeny obtained by calculating the proportion of times each
hyperedge was present in the networks sampled by the Gibbs sampler. (B) Reaction status obtained under maximum parsimony calculated using the
Fitch algorithm [26]. When assigning the reactions at the ancestral nodes the ties were resolved in favor of presence of reactions. Strain abbreviations:
pae: P. aeruginosa PAO1, pap: P. aeruginosa PA7, pau: P. aeruginosa PA14, pag: P. aeruginosa LESB58, pen: P. entomophila L48, pfl: P. fluorescens Pf-5,
pfo: P. fluorescens Pf0-1, pfs: P. fluorescens SBW25, pmy: P. mendocina ymp, ppf: P. putida F1, ppg: P. putida GB-1 ppu: P. putida KT2440, ppw: P. putida
W619, psa: P. stutzeri A1501, psb: P. syringae pv. syringae B728a, psp: P. syringae pv. phaseolicola 1448A, and pst: P. syringae pv. tomato DC3000.
doi:10.1371/journal.pcbi.1000868.g011
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all possible branch lengths. However, when calculating the tree

using sequence data, the branch lengths depend on the set of genes

used for generating the tree and their evolutionary distances.

Thus, different set of genes used could result in different branch

lengths. To be able to make useful inferences using an evolutionary

model such as the one described here, this uncertainty in the tree

must be taken into account by summing over all possible branch

lengths. In addition, the effects of using a phylogenetic tree

constructed de novo from metabolic networks [30,31] on the model

need to be further explored.

The evolution parameters were estimated on a phylogeny

connecting the metabolic networks of bacteria belonging to the

genus Pseudomonas using the Gibbs sampler. The likelihood values

for reactions to be present at various levels of the Pseudomonas

phylogeny were also calculated using the networks visited by the

Gibbs sampler and the results were compared to those obtained

using parsimony. The stochastic assignment of reactions in

ancestral networks offers an edge over deterministic approaches

like parsimony which provides the minimum number of

transformations required to explain the evolution of a reaction

Figure 12. Ancestral network reconstruction for the pyruvate metabolism map. The ancestral networks were reconstructed over the
Pseudomonas phylogeny shown in Figure 6A. Also shown in the bottom panel is the distribution of reactions across different Pseudomonas strains. (A)
Likelihood of being present for alterable reactions at various levels of Pseudomonas phylogeny obtained by calculating the proportion of times each
hyperedge was present in the networks sampled by the Gibbs sampler. (B) Reaction status obtained under maximum parsimony calculated using the
Fitch algorithm [26]. When assigning the reactions at the ancestral nodes the ties were resolved in favor of presence of reactions. Strain abbreviations:
pae: P. aeruginosa PAO1, pap: P. aeruginosa PA7, pau: P. aeruginosa PA14, pag: P. aeruginosa LESB58, pen: P. entomophila L48, pfl: P. fluorescens Pf-5,
pfo: P. fluorescens Pf0-1, pfs: P. fluorescens SBW25, pmy: P. mendocina ymp, ppf: P. putida F1, ppg: P. putida GB-1 ppu: P. putida KT2440, ppw: P. putida
W619, psa: P. stutzeri A1501, psb: P. syringae pv. syringae B728a, psp: P. syringae pv. phaseolicola 1448A, and pst: P. syringae pv. tomato DC3000.
doi:10.1371/journal.pcbi.1000868.g012

Metabolic Evolution on a Phylogeny

PLoS Computational Biology | www.ploscompbiol.org 16 August 2010 | Volume 6 | Issue 8 | e1000868



of the tree and can, therefore, underestimate the total number of

changes. In addition, using the MCMC approach based on

neighbor dependence takes network structure into account, and

may be particularly useful in resolving ancestral predictions at the

root of phylogenies, or in situations where parsimony is unable to

assign states unambiguously (see Figures 7 and 8).

An important factor affecting the results when estimating the

evolution parameters and reconstructing the ancestral networks

relates to the use of individual pathway maps. Although

computationally tractable, individual pathway maps do not take

a complete network perspective and may, therefore, lead to

incorrect results by ignoring a part of the reaction neighborhood,

the so-called border effect. This is particularly true for reactions

which occur at the boundary of a metabolic pathway map, which

may have a large number of their neighbors not included in that

pathway map. The calculation of reaction neighborhood solely

using the pathway map under consideration ignores all

neighboring reactions that are not present in the pathway map

thus affecting the likelihood values. For example, consider

R01424 in phenylalanine metabolism. This reaction is present

in thirteen out of seventeen pseudomonads including all three

P. syringae strains, all four P. putida strains and two out of the three

P. fluorescens strains. It was, therefore, expected that the reaction

would have a high likelihood of being present in the common

ancestor of P. fluorescens, P. syringae and P. putida but, on contrary,

was reported to have a relatively low likelihood at this level

(Figure 11). Closer inspection of the reaction revealed that it links

the phenylalanine metabolism to the pathway map relating to

benzoate degradation via coenzyme A and has neighbors

spanning across multiple pathway maps. Phenylalanine pathway

map contains only 2 neighboring reactions of the reaction

R01424 whereas using the data from all pathway maps relating to

metabolism results in 53 neighbors. Thus, evaluating the

likelihood of R01424 at ancestral levels of the Pseudomonas

phylogeny solely on the basis of reactions involved in phenylal-

anine metabolism leads to a very poor neighborhood surrounding

the reaction and, consequently, weights down the presence of the

reaction in the common ancestor resulting in a low likelihood

value. A possible solution to overcome this border effect is to use

the full network structure when calculating reaction neighbor-

hoods. However, the computational feasibility of using full

network structure when calculating reaction neighborhoods

requires further investigation.

When performing the analyses the hyperedges present in all

seventeen Pseudomonas strains were defined as core and the

hyperedges missing from all the strains were defined as prohibited

hyperedges. However, the results presented in this analysis suggest

that pathogenic bacteria belonging to species P. syringae have gone

through a high number of deletion events compared to other

species. Assigning core edges solely on the basis of intersection

model may, therefore, bias the results towards the loss of reactions

which might be essential in non-pathogenic bacteria. Similarly,

prohibiting reactions that are not present in any one of the

seventeen genome-sequenced strains would prevent the common

ancestor from having reactions which might have been lost very

early during the course of evolution. To model scenarios like these

the provision of having a lineage specific core and prohibited

hyperedges must be explored. Alternatively, it might be useful to

assign core and prohibited hyperedges using the ortholog data

from closely related bacteria, or by incorporating metabolic

information from organisms sharing the same environment in the

set of permitted reactions. Comparing ancestral network predic-

tions generated using different set of core and prohibited

hyperedges might provide clues about the functionality of the

common ancestors of the bacteria and the environment the

ancestors might have colonized.

Finally, the analysis presented here uses data from the

KEGG database. The metabolic annotations available for the

majority of genome-sequenced organisms are generated using

automated annotation tools based on the similarity of predicted

genes to genes of known function and therefore contain a

substantial amount of noise. For example, some genes predicted

to have a broad enzymatic function are linked to multiple

reactions, while others fail to meet the detection threshold for

annotation and are therefore recorded as absent. Nevertheless,

networks deposited in databases like KEGG are commonly

treated as if they are as certain as sequence data, which is a

serious error that undermines many present investigations. It

would be desirable to take this noise into account while

modeling the evolution of metabolic networks. One way would

be to use hidden states to model experimentally validate

metabolisms which are observed though predicted metabolisms.

This will not only enable one to model the noise in the data but

also allow correct prediction of a metabolism for an organism

using homologous information similar to comparative genome

annotation [33].

In summary, evolutionary modeling of metabolic network is an

important area. Using statistical models of network evolution such

as the one described here not only allow one to investigate how the

metabolic networks evolve in closely related organisms but also

enable testing of biological hypotheses such as specialization of

genomes and identification of regions of metabolic networks that

are under high selection.

Supporting Information

Figure S1 Simulation results for insertion frequencies for the toy

network H1 shown in Figure 1 using hybrid model for different

values of d. Also shown in the top panel are the number of

neighbors for each hyperedge based on the reference network.

Found at: doi:10.1371/journal.pcbi.1000868.s001 (0.02 MB PDF)

Figure S2 Sub-networks of the toy network H1 shown in Figure 1

for different sub-network sizes (N) obtained by iteratively dividing

the network on the basis of neighborhood. The hyperedges which

were originally absent from H1 but present in the sub-network are

shown in gray.

Found at: doi:10.1371/journal.pcbi.1000868.s002 (0.05 MB PDF)

Figure S3 Likelihood surfaces calculated by matrix exponenti-

ation using all 1024 networks (True Likelihood) and using the

networks visited by the Gibbs sampler (Estimated Likelihood) for

different insertion and deletion rates for the toy networks

phylogeny shown in Figure 1. The true and estimated maximum

likelihood values are marked with asterisks. The maximum

likelihood value was estimated using the Gibbs sampler for

parameter estimation.

Found at: doi:10.1371/journal.pcbi.1000868.s003 (0.11 MB PDF)

Figure S4 An example MCMC trace showing the rate

parameters for the first 1,000 iterations of the Gibbs sampler for

the toy networks phylogeny shown in Figure 1.

Found at: doi:10.1371/journal.pcbi.1000868.s004 (0.04 MB PDF)

Figure S5 Example MCMC traces showing the rate parameters

for the first 1,000 iterations of the Gibbs sampler initiated from

different starting values. The sampler was run on the Pseudomonas

fluorescens phylogeny shown in Figure 6B for different metabolic

networks.

Found at: doi:10.1371/journal.pcbi.1000868.s005 (0.22 MB PDF)
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Figure S6 Number of insertion and deletion events for the

alterable reactions, that is the reactions which were neither defined

as core nor were defined as prohibited in the network obtained

using the Gibbs sampler run under the hybrid model. The sampler

was run for the six pathway maps used in this analysis over the

phylogeny connecting the seventeen Pseudomonas strains shown in

Figure 6A for 110,000 iterations with the first 10,000 iterations

regarded as burn-in period. Samples were collected every 10th

iteration.

Found at: doi:10.1371/journal.pcbi.1000868.s006 (0.02 MB PDF)

Figure S7 Number of insertion and deletion events at each

branch of the phylogeny connecting the seventeen Pseudomonas

strains shown in Figure 6A obtained using the Gibbs sampler run

under the hybrid model. The sampler was run for 110,000

iterations with the first 10,000 iterations regarded as burn-in

period. Samples were collected every 10th iteration. Strain

abbreviations: pae: P. aeruginosa PAO1, pap: P. aeruginosa PA7,

pau: P. aeruginosa PA14, pag: P. aeruginosa LESB58, pen:

P. entomophila L48, pfl: P. fluorescens Pf-5, pfo: P. fluorescens Pf0-1, pfs:

P. fluorescens SBW25, pmy: P. mendocina ymp, ppf: P. putida F1, ppg:

P. putida GB-1 ppu: P. putida KT2440, ppw: P. putida W619, psa:

P. stutzeri A1501, psb: P. syringae pv. syringae B728a, psp: P. syringae

pv. phaseolicola 1448A, and pst: P. syringae pv. tomato DC3000.

Found at: doi:10.1371/journal.pcbi.1000868.s007 (0.02 MB PDF)

Figure S8 Degree distributions of nodes at the ancestral levels of

the Pseudomonas phylogney shown in Figure 6A for the glycolysis/

gluconeogenesis map obtained using the Gibbs sampler. The

actual degree distributions observed for the seventeen genome-

sequenced Pseudomonas strains are shown in red. Strain abbrevi-

ations: pae: P. aeruginosa PAO1, pap: P. aeruginosa PA7, pau:

P. aeruginosa PA14, pag: P. aeruginosa LESB58, pen: P. entomophila

L48, pfl: P. fluorescens Pf-5, pfo: P. fluorescens Pf0-1, pfs: P. fluorescens

SBW25, pmy: P. mendocina ymp, ppf: P. putida F1, ppg: P. putida

GB-1 ppu: P. putida KT2440, ppw: P. putida W619, psa: P. stutzeri

A1501, psb: P. syringae pv. syringae B728a, psp: P. syringae pv.

phaseolicola 1448A, and pst: P. syringae pv. tomato DC3000.

Found at: doi:10.1371/journal.pcbi.1000868.s008 (0.04 MB PDF)

Figure S9 Degree distributions of nodes at the ancestral levels of

the Pseudomonas phylogney shown in Figure 6A for the pentose

phosphate pathway map obtained using the Gibbs sampler. The

actual degree distributions observed for the seventeen genome-

sequenced Pseudomonas strains are shown in red. Strain abbrevi-

ations: pae: P. aeruginosa PAO1, pap: P. aeruginosa PA7, pau: P.

aeruginosa PA14, pag: P. aeruginosa LESB58, pen: P. entomophila L48,

pfl: P. fluorescens Pf-5, pfo: P. fluorescens Pf0-1, pfs: P. fluorescens

SBW25, pmy: P. mendocina ymp, ppf: P. putida F1, ppg: P. putida

GB-1 ppu: P. putida KT2440, ppw: P. putida W619, psa: P. stutzeri

A1501, psb: P. syringae pv. syringae B728a, psp: P. syringae pv.

phaseolicola 1448A, and pst: P. syringae pv. tomato DC3000.

Found at: doi:10.1371/journal.pcbi.1000868.s009 (0.07 MB PDF)

Figure S10 Degree distributions of nodes at the ancestral levels

of the Pseudomonas phylogney shown in Figure 6A for the lysine

degradation map obtained using the Gibbs sampler. The actual

degree distributions observed for the seventeen genome-sequenced

Pseudomonas strains are shown in red. Strain abbreviations: pae:

P. aeruginosa PAO1, pap: P. aeruginosa PA7, pau: P. aeruginosa PA14,

pag: P. aeruginosa LESB58, pen: P. entomophila L48, pfl: P. fluorescens

Pf-5, pfo: P. fluorescens Pf0-1, pfs: P. fluorescens SBW25, pmy:

P. mendocina ymp, ppf: P. putida F1, ppg: P. putida GB-1 ppu:

P. putida KT2440, ppw: P. putida W619, psa: P. stutzeri A1501, psb:

P. syringae pv. syringae B728a, psp: P. syringae pv. phaseolicola

1448A, and pst: P. syringae pv. tomato DC3000.

Found at: doi:10.1371/journal.pcbi.1000868.s010 (0.08 MB PDF)

Figure S11 Degree distributions of nodes at the ancestral levels

of the Pseudomonas phylogney shown in Figure 6A for the histidine

metabolism map obtained using the Gibbs sampler. The actual

degree distributions observed for the seventeen genome-sequenced

Pseudomonas strains are shown in red. Strain abbreviations: pae:

P. aeruginosa PAO1, pap: P. aeruginosa PA7, pau: P. aeruginosa PA14,

pag: P. aeruginosa LESB58, pen: P. entomophila L48, pfl: P. fluorescens

Pf-5, pfo: P. fluorescens Pf0-1, pfs: P. fluorescens SBW25, pmy:

P. mendocina ymp, ppf: P. putida F1, ppg: P. putida GB-1 ppu:

P. putida KT2440, ppw: P. putida W619, psa: P. stutzeri A1501, psb:

P. syringae pv. syringae B728a, psp: P. syringae pv. phaseolicola

1448A, and pst: P. syringae pv. tomato DC3000.

Found at: doi:10.1371/journal.pcbi.1000868.s011 (0.04 MB PDF)

Figure S12 Degree distributions of nodes at the ancestral levels

of the Pseudomonas phylogney shown in Figure 6A for the

phenylalanine metabolism map obtained using the Gibbssampler.

The actual degree distributions observed for the seventeen

genome-sequenced Pseudomonas strains are shown in red. Strain

abbreviations: pae: P. aeruginosa PAO1, pap: P. aeruginosa PA7, pau:

P. aeruginosa PA14, pag: P. aeruginosa LESB58, pen: P. entomophila

L48, pfl: P. fluorescens Pf-5, pfo: P. fluorescens Pf0-1, pfs: P. fluorescens

SBW25, pmy: P. mendocina ymp, ppf: P. putida F1, ppg: P. putida

GB-1 ppu: P. putida KT2440, ppw: P. putida W619, psa: P. stutzeri

A1501, psb: P. syringae pv. syringae B728a, psp: P. syringae pv.

phaseolicola 1448A, and pst: P. syringae pv. tomato DC3000.

Found at: doi:10.1371/journal.pcbi.1000868.s012 (0.03 MB PDF)

Figure S13 Degree distributions of nodes at the ancestral levels

of the Pseudomonas phylogney shown in Figure 6A for the pyruvate

metabolism map obtained using the Gibbs sampler. The actual

degree distributions observed for the seventeen genome-sequenced

Pseudomonas strains are shown in red. Strain abbreviations: pae:

P. aeruginosa PAO1, pap: P. aeruginosa PA7, pau: P. aeruginosa PA14,

pag: P. aeruginosa LESB58, pen: P. entomophila L48, pfl: P. fluorescens

Pf-5, pfo: P. fluorescens Pf0-1, pfs: P. fluorescens SBW25, pmy:

P. mendocina ymp, ppf: P. putida F1, ppg: P. putida GB-1 ppu:

P. putida KT2440, ppw: P. putida W619, psa: P. stutzeri A1501, psb:

P. syringae pv. syringae B728a, psp: P. syringae pv. phaseolicola

1448A, and pst: P. syringae pv. tomato DC3000.

Found at: doi:10.1371/journal.pcbi.1000868.s013 (0.08 MB PDF)

Table S1 Pseudo-likelihood P*(H2|H1) conditioned on H for the

toy networks shown in Figure 1 using different sub-network sizes.

Also shown are the exact values calculated by full network

exponentiation and by using the MCMC approach based on path

sampling described in Mithani et al. [9] with 11,000 iterations

including the first 1,000 iteration as burn-in period.

Found at: doi:10.1371/journal.pcbi.1000868.s014 (0.03 MB PDF)

Table S2 Basic information of the metabolic networks for the

seventeen genome-sequenced strains of Pseudomonas used in this

study. A reversible reaction was represented by two hyperedges

(one in either direction) in this study. The codes MAPxxxxx

correspond to the respective KEGG pathway codes [22].

Found at: doi:10.1371/journal.pcbi.1000868.s015 (0.04 MB PDF)

Table S3 Effective sample sizes (ESS) for the estimated

parameters (d: neighbor dependence probability, l: insertion rate

and m: deletion rate) using the Gibbs sampler run under the hybrid

model for the evolution of metabolic networks over the phylogeny

connecting different Pseudomonas strains (Figure 6). Hyperedges

that were common to all seventeen strains were regarded as core

edges and hyperedges missing in all seventeen strains were

regarded as prohibited edges. The values are averaged across
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three runs of 60,000 iterations for P. fluorescens and P. syringae

phylogenies, and 110,000 iterations for the phylogeny connecting

the seventeen Pseudomonas strains with the first 10,000 iterations

regarded as burn-in period in each case. Samples were collected

every 10th iteration. Strain abbreviations: pfl: Pseudomonas fluorescens

Pf-5, pfo: Pseudomonas fluorescens Pf0-1, pfs: Pseudomonas fluorescens

SBW25, psb: Pseudomonas syringae pv. syringae B728a, psp:

Pseudomonas syringae pv. phaseolicola 1448A, and pst: Pseudomonas

syringae pv. tomato DC3000.

Found at: doi:10.1371/journal.pcbi.1000868.s016 (0.03 MB PDF)

Table S4 Running time and the acceptance percentage of the

Gibbs sampler for the estimation of evolution parameters (d:

neighbor dependence probability, l: insertion rate and m: deletion

rate) run under the hybrid model for different metabolic networks

over the phylogeny connecting different Pseudomonas strains

(Figure 6). Hyperedges that were common to all seventeen strains

were regarded as core edges and hyperedges missing in all

seventeen strains were regarded as prohibited edges. The values

are averaged across three runs of 60,000 iterations for P. fluorescens

and P. syringae phylogenies, and 110,000 iterations for the

phylogeny connecting the seventeen Pseudomonas strains with the

first 10,000 iterations regarded as burn-in period in each case.

Samples were collected every 10th iteration. Strain abbreviations:

pfl: Pseudomonas fluorescens Pf-5, pfo: Pseudomonas fluorescens Pf0-1, pfs:

Pseudomonas fluorescens SBW25, psb: Pseudomonas syringae pv. syringae

B728a, psp: Pseudomonas syringae pv. phaseolicola 1448A, and pst:

Pseudomonas syringae pv. tomato DC3000.

Found at: doi:10.1371/journal.pcbi.1000868.s017 (0.03 MB PDF)

Text S1 Testing of the Gibbs sampler for parameter estimation.

Found at: doi:10.1371/journal.pcbi.1000868.s018 (0.04 MB PDF)
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