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Background
microRNAs (miRNAs) are single-stranded short RNAs (about 20–22 nucleotide) that 
post-transcriptionally regulate gene expression by degradation or translation inhibition 
of their target messenger RNAs (mRNAs). Most of the biological processes have been 
shown to entail the regulation orchestared by miRNAs, such as cell proliferation, differ-
entiation, metabolism, development, and apoptosis [1]. A novel mechanism of miRNA 
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regulation regarding the ability of RNAs to compete for the miRNA binding has recently 
been discovered [2, 3]. Key triggers of this new layer of post-transcriptional regulation 
are the so-called competing endogenous RNAs (ceRNAs)—or miRNA ‘sponges’, involv-
ing both coding and non-coding RNAs, such as pseudogenes [2], circular RNAs [4, 
5], and long non coding RNAs (lncRNAs) [6, 7]. ceRNAs exert their decoy activity by 
recruiting miRNA molecules through base-pairing with miRNA-recognition elements 
(MREs) that they share with a target, consequently determining the target release from 
the miRNA control. The ceRNA cross-talks (i.e., their interactions mediated by miR-
NAs) have been identified as drivers of most of the pathological conditions, including 
human cancers [2, 8–10].

The research field related to ceRNA mechanism has rapidly grown during the last dec-
ade, as observed by looking at the increasing number of published studies over the last 
years (Additional file 1: Figure S1). Meanwhile, the recent years have seen the develop-
ment of several computational methodology to build ceRNA networks. Yet, there remain 
great opportunities as well as challenges to propose computational models helping the 
generation of hypotheses able to drive wet-lab experiments towards the elucidation of 
the roles of ceRNAs in a particular disease [11].

Since considering all types of miRNA sponges can lead to a high computation com-
plexity, in our recent study we focused on lncRNAs given their acknowledged impor-
tance in diverse biological and physiopathological contexts [12] and we developed a 
new methodology suitable to exploring their potential role as ceRNA regulators [13]. 
According to a recent review, comparing the most widespread computational models 
for ceRNA-ceRNA interactions’ identification [11], our method proved to be the best in 
terms of the percentage of predicted RNAs acting as ceRNAs related to breast invasive 
carcinoma. However, the main limitation towards its broader usability is that it was no 
freely distributed so far, and originally written in MATLAB, a proprietary programming 
language requiring a paid license to install, exploit, operate, and run the software. The 
interesting and acknowledged results obtained by applying our model to breast cancer 
and the necessity to spread it to a broader scientific audience created the call to handle 
this issue and to design an open-source version of the model for a universal community 
of non-expert users.

Here, we present SPINNAKER, the implementation of the originally developed 
ceRNA model [13] in a exhaustive collection of R functions. Yet, SPINNAKER comes 
as a simplified and an improved version with respect to the original MATLAB-based 
implementation (Additional file 2), ensuring more efficiency by speeding up the entire 
pipeline of many orders of magnitude (i.e., from many hours to minutes). In particular, 
an additional feature of SPINNAKER is the possibility of choosing among different pools 
of RNAs acting as ceRNAs, as long as the total number of triplets to be tested is within 
the order of magnitude of 106 , otherwise it collides with a huge computation complexity.

Implementation

SPINNAKER (SPongeINteractionNetworkmAKER) is an R-based implementation 
of a methodology for identifying putative ceRNA interactions that we recently pub-
lished along with its application in breast invasive carcinoma [13]. SPINNAKER takes 
as input normalized expression levels of RNAs and miRNAs (e.g., FPKM) and predicts 
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the ceRNA interaction network by implementing two modules: 1) data collection and 
processing, 2) ceRNA network building (Fig. 1). Each module consists of several steps 
detailed in the following.

Module 1: data collection and processing

The goal of this module is to collect and process data for running SPINNAKER.
	(i)	 Selection of RNA molecular biotype

	 To define the molecular entities competing for the miRNA binding, SPINNAKER 
automatically queries NCBI’s Gene database, including information about chromo-
somal localization, nomenclature, gene products, and their attributes (e.g., molec-
ular biotype). Then, SPINNAKER separates the two selected classes of candidate 
ceRNAs to be tested (e.g., protein coding versus long non-coding RNAs).

	(ii)	 Collection of miRNA-target interactions
	 SPINNAKER collects miRNA sequences from miRBase (currently release 22.1, 

October 2018, http://​www.​miRBa​se.​org). Then, it retrieves the predictions of 
miRNA-mRNA target interactions from TargetScan [14] and the predictions of 
miRNA-lncRNA target interactions from miRWalk [15]. TargetScan appears as the 
most up-to-date database for sequence-based predictions of miRNA-target inter-
actions, it predicts miRNAs targets by considering the exact matching between the 
seed region of a miRNA (i.e., positions 2–7 from the miRNA 5′-end) and the 3′ 
UTR of its targets [16]. miRWalk provides the predicted and validated miRNA-
binding sites of known genes of human and other species, most importantly 

Fig. 1  SPINNAKER conceptual organization. [Left] Algorithm steps. [Top right] Comparison of ceRNA 
predictions obtained by SPINNAKER, when applied to breast cancer dataset [13], with respect to other 
statistics-based methods in identifying experimentally confirmed and breast cancer related ceRNA 
interactions, defined as those in which the two interacting ceRNAs are breast cancer related genes [11]. 
[Bottom right] Example of ceRNA interactions predicted by SPINNAKER in breast normal tissues from breast 
cancer dataset [13]. Scatter plots of the ceRNA expression levels (log2-scale) in normal (blue dots) and cancer 
(orange dots) tissues; r = Pearson correlation coefficient, p = p-values

http://www.miRBase.org
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including lncRNAs-miRNA interactions, and it is entirely updated more than once 
a year. miRWalk core is based on TarPmiR [17], a prediction tool that exploits an 
approach based on random-forest algorithm to look for putative miRNA bind-
ing sites within the whole transcript sequence including the 3′-UTR, 5′-UTR, and 
CDS [15].

	(iii)	 Removing missing values and log2 transformation
	 SPINNAKER applies a logarithmic (log2) transformation to the RNAs and miR-

NAs expression levels and conducts a processing analysis to remove those genes 
having too many missing values among the samples (i.e., by default, SPINNAKER 
filters out entries showing missing values for more than ten percentage of samples).

Module 2: ceRNA network building

The goal of this module is to build the ceRNA interaction network.
	(i)	 Computation of Pearson correlation

	 SPINNAKER computes the Pearson correlation coefficients between the expres-
sion profiles of the RNA pairs (ρXY ).

	(ii)	 Selection of highly correlated pairs
	 SPINNAKER selects the RNA pairs with ρXY  greater than a defined threshold 

(by default equal to 99th percentile) on the overall correlation distribution. This 
threshold allows to reduce both the computational effort in evaluating the RNA 
interactions and the number of false positives.

	(iii)	 Computation of Pearson correlation with miRNAs
	 SPINNAKER computes the Pearson correlation coefficient between the expression 

profiles of RNA X and miRNA Z ( ρXZ ) and the expression profiles of RNA Y and 
miRNA Z ( ρYZ).

	(iv)	 Computation of sensitivity correlation
	 To determine if the Pearson correlation between the RNA pairs is direct or medi-

ated by the miRNA, SPINNAKER implements the following metric, called sensitiv-
ity correlation S (Fig. 2):

with ρXY  referring to the Pearson correlation coefficient between RNA X and RNA 
Y, and ρXY |Z referring to the partial correlation between RNA X and RNA Y con-
trolling for the miRNA Z defined as:

with ρXZ ( ρYZ ) referring to the Pearson correlation between RNA X (RNA Y) and 
miRNA Z [18]. The partial correlation ρXY |Z measures how much the correlation 
between two variables X (RNA 1 expression profile) and Y (RNA 2 expression pro-
file) remains after removing a third variable Z (miRNA expression profile). Thus, a 
low value of sensitivity correlation (i.e., partial correlation approaching the Pearson 
correlation) refers to a direct interaction between the two RNAs competing for the 
same miRNA, i.e., whose interaction is not mediated by the miRNA (Fig. 2a); while 

S = ρXY − ρXY |Z

ρXY |Z =
ρXY − ρXZρYZ

√

1− ρ2

XZ

√

1− ρ2

YZ



Page 5 of 13Paci and Fiscon ﻿BMC Bioinformatics          (2022) 23:166 	

a high value of sensitivity correlation (i.e., partial correlation approaching to zero) 
refers to an indirect interaction between the two RNAs competing for the same 
miRNA, i.e., whose interaction is mediated by the miRNA (Fig. 2b).

	 An example of output of this step, which describes the sensitivity correlation 
obtained for normal breast tissues [13], is presented in Fig. 2c. The computed sensi-
tivity matrix is rendered as an heatmap, where rows represent the highly correlated 
RNA pairs, columns refer to all the analysed miRNA, and sensitivity values are color-
coded increasing from red to blue.

Fig. 2  Sketch of sensitivity correlation measure. a, b The sensitivity correlation (S) is the difference between 
the Pearson correlation ( ρXY ) and the partial correlation ( ρXY |Z ). Two extreme situations are reported: a the 
correlation is direct and the miRNA is not mediating the interaction; b the correlation is undirected and 
the miRNA is mediating the interaction. In the first case, ρXY |Z = ρXY , S = 0, and, since Z is not explaining 
anything, the residuals are highly correlated. In the second case ρXY |Z = 0 , S is maximum, and, since Z is 
explaining all the variability, no correlation is found between residuals. (c) Heatmap of S, calculated for the 
top-correlated RNA pairs (i.e., showing ρXY > 0.7) in the normal breast dataset [13]. Bright vertical stripes refer 
to a small set of miRNAs mediating the interactions between the top-correlated RNA pairs; S values increases 
from red (S = 0) to blue (S = 1)
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	 The sensitivity correlation calculated in normal breast samples [13] unveiled a 
general trend of the interactions between RNA pairs marked by highly positive corre-
lations that appear miRNA-independent (S∼0, red background in Fig. 2c), except for 
a small pool of miRNAs for which the sensitivity appears to be pretty different from 
zero (bright vertical stripes in Fig.  2c). This observation highlights the presence of 
particular miRNAs (such as miR-200 family) able of generating a crosstalk through-
out the whole transcriptome. These miRNAs, corresponding to the bright vertical 
stripes in the sensitivity heatmap, represent the links of ceRNA network generated by 
SPINNAKER, whereas the highly correlated RNA pairs with high sensitivity correla-
tion mediated by these miRNAs represent the nodes of the ceRNA network.
	 It is worth noting that the outcome of SPINNAKER might not be rendered as a 
single heatmap, since the size of the picture could exceed the memory limits of com-
puter. To overcome this limitation, SPINNAKER segregates the sensitivity matrix into 
a variable number of heatmaps (depending on the total number of RNA pairs), each 
one composed of a maximum number of 5000 rows (RNA pairs).

	(v)	 Computation of ceRNA interaction network.
	 SPINNAKER selects the XYZ triplets with S greater than a defined threshold (by 

default equal to the 99th percentile) on the overall distribution of the S-values. This 
threshold allows to reduce both the computational effort in evaluating the ceRNA 
interactions and the number of false positives. The X and Y variables correspond 
to the top-correlated RNA pairs. Then, SPINNAKER builds the ceRNA interaction 
network.

	 Nodes in the ceRNA network represent ceRNAs marked by a high correlation 
between their expression profiles; whereas links represent miRNAs that are medi-
ating their interactions. A link between two nodes (ceRNAs) occurs if they fulfilled 
the following conditions (Fig. 3): (1) showing a high Pearson correlation value; (2) 
showing a high sensitivity correlation value.

	(vi)	 [Optional] Search seed-match for all triplets
	 SPINNAKER searches for the seed-match of all the highly correlated pairs with the 

miRNA mediating their interactions, in order to narrow the above selected triplets 
(step v.) to those including only ceRNAs that are targets of the shared miRNA.

	(vii)	[Optional] Computation of statistical analysis
	 For each miRNA, SPINNAKER performs a seed-match enrichment analysis by 

computing the following statistics (i.e., p-value resulting from the hypergeometric 
test) (Fig. 4):

where U is the universe dimension, that is the number of the top-correlated RNA 
pairs; K is the property, that is the number of RNA pairs sharing the binding site 
for the miRNA under test; S is the selection, that is the number of RNA pairs with 
high sensitivity for the miRNA under test; X is the number of RNA pairs with sen-
sitivity correlation exceeding the defined threshold on the S-values distribution 
and sharing the binding site for the miRNA under test.
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	 The output of this step is the ceRNA interaction network with the additional infor-
mation of p-values, and where a link between two nodes (ceRNAs) occurs if they 
fulfilled the following conditions (Fig.  3): (1) showing a high Pearson correlation 
value; (2) showing a high sensitivity correlation value; and (3) sharing the binding 
sites for the miRNAs mediating their interaction.

	 An example of output, which describes the ceRNA network built for normal breast 
tissues [13], is presented in Fig. 5. The ceRNA network released by SPINNAKER 
can be easily uploaded on Cytoscape software [19], an open source tool for com-
plex networks visualization and integration with other types of attribute data. By 
using Cytoscape, the ceRNA network can be visualized by adding a different color 

Fig. 3  Sketch of ceRNA interaction network. Nodes in this network represent ceRNAs competing for the 
miRNA binding (e.g., mRNAs and lncRNAs); whereas links represent miRNAs mediating their interaction

Fig. 4  Sketch of hypergeometric test conducted for the seed-match analysis. For a given miRNA, the figure 
shows how the ensembles are chosen to compute the hypergeometric test
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to each miRNA and analyzed by using several built-in apps, like the “network ana-
lyzer” tool. In this way, the user can obtain the total number of connected com-
ponents of the ceRNA network and other network properties associated to each 
node, such as betweenness, closeness, clustering coefficient, degree, and thus con-
sequently identified the network hubs (i.e., nodes with more than 5 links [20]).

	 In particular, the ceRNA network of normal breast (32,375 links and 1738 nodes) 
is markedly distinguished into two well-connected components: a smaller one (954 
links and 378 nodes) mainly dominated by miR-452 whose mRNAs functioning as 
ceRNAs were functionally enriched in cellular metabolic processes, and a larger 
one (31,417 links and 1354 nodes) mainly controlled by the miR-200 family and 
functionally enriched in cell–cell adhesion functions [13]. Of note, the first hub 
of ceRNA normal breast network was the lncRNA PVT1, revealing a net binding 
preference with the miR-200 family and competing with mRNAs mostly associated 
to cancer development and progression (e.g., CDH1, GATA3, RUNX1, RUNX3, 
TP53, TP63, TP73).

Results
Comparisons with other methods

The widespread computational approaches developed for modelling ceRNA regulatory 
mechanism in human cancers can be grouped into two main classes: (i) statistics-based 
methods, which exploited statistical analyses (e.g., multivariate analysis) to infer putative 
evidences of ceRNA crosstalk and construct ceRNA interaction networks by considering 
miRNA expression levels (Additional file 1: Table S1); (ii) mathematical methods, which 
make use of stochastic or deterministic models to predict and analyze the behavior of 
ceRNA crosstalk (Additional file 1: Table S2). The model implemented by SPINNAKER, 
based on sensitivity metric, is included in the statistics-based methods.

In order to evaluate the effectiveness of SPINNAKER predictions, we exploited the 
comparison study conducted in a recent review article [11], where the authors com-
pared the methodology implemented by SPINNAKER [13] with respect to other 

Fig. 5  Example of ceRNA interaction network. ceRNA network constructed from the gene expression data of 
normal breast tissues in [13] and visualized by using Cytoscape [19]
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computational methods, when applied to breast cancer dataset. In particular, to con-
duct the comparison, they chose to focus on statistics-based methods, since approaches 
based on mathematical modelling only quantitatively describe a minimum number of 
ceRNA interaction network, and hence they can be only used to investigate a small num-
ber of ceRNA interactions. Among the statistics-based methods, they selected as rep-
resentative those which are based on Conditional Mutual Information (CMI), Positive 
Correlation (PC), and Partial Pearson Correlation (PPC) [11]. These methods, as SPIN-
NAKER, encompass two principal parts: computing the candidate ceRNA interactions; 
assessing the ceRNA interactions. The effectiveness of these methods was evaluated in 
terms of their ability to recover breast cancer related and/or confirmed sponge inter-
actions by exploiting publicly available databases of computationally predicted and/or 
experimentally validated ceRNA interactions (Additional file 1: Table S3).

Specifically, the authors considered breast cancer related ceRNA interactions, the ones 
where the two ceRNAs are genes associated to breast cancer, according to the broad 
range of experimentally validated databases. CMI predicted a total of 509,504 sponge 
interactions, among which 20,082 associated to breast cancer and 5 of them experimen-
tally validated. PC method predicted a total of 1,274,708 sponge interactions, among 
which 46,716 associated to breast cancer and 7 of them experimentally validated. PPC 
method predicted a total of 702,029 sponge interactions, with 26,803 interactions asso-
ciated to breast cancer, but no one was experimentally confirmed. The model imple-
mented by SPINNAKER predicted a total of 99,662 sponge interactions, with 4223 
associated to breast cancer and 2 of them experimentally confirmed in breast cancer 
(CNOT6L-PTEN and ZEB2-PTEN). Thus, from this comparative analysis [11], SPIN-
NAKER revealed the highest percentage of identified ceRNA interactions related to 
breast invasive carcinoma, then resulting as the best method (Fig.  1). It is worth not-
ing that the total number of interactions predicted by SPINNAKER is much lower than 
other methods shown in the table of Fig. 1. This due to the fact that the rationale behind 
SPINNAKER methodology is to decrease the number of false positive values as much 
as possible, by using very high thresholds both in the data collection and processing 
and ceRNA network building module. This strategy resulted in the higher percentage 
of disease-specific interactions, as witnessed by the comparison between SPINNAKER 
and other statistical methods when applied to breast carcinoma, and by the compari-
son with other more recently developed methods for studying various diseases [21–27]. 
In Table 1, the comparison between SPINNAKER and two of these methods [21, 22] is 
shown for thyroid carcinoma (thca). Once again, SPINNAKER resulted the best one in 
predicting the higher percentage of thyroid carcinoma related genes acting as ceRNAs 
(Additional file 3).

Experimentally validated interactions

The most significant prediction of the computational model implemented by SPINNA-
KER was the discovery of lncRNA PVT1 acting as ceRNA in breast invasive carcinoma 
(brca) dataset, where it antagonized the miR-200 family to regulate the expression of 
several messenger RNAs [13]. This finding was confirmed by applying SPINNAKER on 
the up-to-date TCGA brca dataset with an increased number of patients as in the origi-
nal paper (Additional file 4) [13]. As further proof of the reliability of our methodology, 
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this result was experimentally validated in a recent research study conducted in non-
small cell lung cancer cells, where the authors showed that PVT1 facilitates the tumor 
invasion functioning as ceRNA to regulate the MMP9 expression via the competitively 
binding of miR-200 family [7].

Performance evaluation

In order to quantify the speed-up reached by SPINNAKER implementation, we com-
pared the elapsed times of running it on MALTAB and R platforms, when applied to brca 
dataset [13]. We observed that SPINNAKER is from 5x (Module 1) up to 100x (Module 
2) faster than its ancestor running on MATLAB (Table 2). Furthermore, we checked that 
all the results obtained by running the original code (MATLAB-based) were confirmed 
by SPINNAKER (R-based), when applied to the original brca dataset (Additional file 5). 
We can conclude that the R-based solution can lead to gain a significant amount of time, 
thus greatly affecting the whole analysis process.

Conclusions
In this study, we presented SPINNAKER (SPongeINteractionNetworkmAKER), the R 
implementation and open-source version of a widely established mathematical model 
that we published for identifying putative competing endogenous RNA (ceRNA) 
interactions. According to a recent review [11], the methodology implemented by 
SPINNAKER resulted as the best one in terms of the percentage of discovered ceRNA 

Table 1  Results comparison among SPINNAKER and other two statistical-based methods when 
applied on thyroid carcinoma (thca) dataset from TCGA​

method player # total # thca associated % thca 
associated

SPINNAKER lncRNA 22 6 27

mRNA 271 39 14

miRNA 57 29 51

Total 350 74 21
Zhao et al., Oncology 
Reports 2018 [21]

lncRNA 45 3 7

mRNA 86 17 20

miRNA 13 8 61

Total 144 28 19
Jiang et al., Medicine 2020
[22]

lncRNA 30 2 7

mRNA 126 15 12

miRNA 11 6 54

Total 167 23 14

Table 2  SPINNAKER elapsed time (in seconds) when running on R (version 4.0.4) and MATLAB 
(R2014a) in Windows 10 Pro 20H2 19042.928, CPU 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00 GHz, 
RAM:16.0 GB

SPINNAKER R (s) MATLAB (s) Ratio

Module 1 25 120 1/5

Module 2 1184 (~ 20 min) 86,400 (~ 24 h) 1/100
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interactions associated with breast invasive carcinoma. However, the main limitation 
towards a broader usability of this methodology is that it was developed in MAT-
LAB®, a proprietary programming environment requiring a paid license for install-
ing, operating, and running the software. To solve this issue, SPINNAKER came as 
an R-based, open-source, simplified, and improved version with respect to the origi-
nal MATLAB-based implementation, ensuring a greater efficiency by speeding up the 
whole process of several orders of magnitude. By comparing SPINNAKER with other 
statistical-based methods, once again it resulted as the best one in terms of higher 
percentage of disease-associated genes acting as ceRNAs when applied to thyroid car-
cinoma dataset.

Availability and requirements
Project name: SPINNAKER
Operating system(s): Windows 10 Pro, Ubuntu 20.04.3 LTS, macOS High Sierra 
10.13.6
Programming language: R
Project page: https://​github.​com/​sport​ingCo​de/​SPINN​AKER.​git
Other requirements: R version 3.5.1, R 4.1.2 or higher
License: GNU AFFERO GENERAL PUBLIC LICENSE
Any restrictions to use by non-academics: license needed
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