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Abstract: A continuum damage model is proposed to predict the intralaminar progressive failure
of CFRP laminates based on the modified Puck’s theory. Puck’s failure criteria, with consideration
of the in situ strength effect, are employed to evaluate the onset of intralaminar failure including
fiber fracture and inter-fiber fracture. After damage initiation, a bilinear constitutive relation is used
to describe the damage evolution process. In strict accordance with Puck’s concept of action plane,
the extent of damage is quantified by the damage variables defined in the fracture plane coordinate
system, rather than the traditional material principal coordinate system. Theoretical and experimental
evaluation of CFRP laminates under different loading conditions demonstrates the rationality and
effectiveness of the proposed numerical model. The model has been successfully implemented
in a finite element (FE) software to simulate the intralaminar progressive failure process of CFRP
laminates. A good agreement between the experimental and numerical results demonstrates that the
present model is capable of predicting the intralaminar failure of CFRP laminates.

Keywords: CFRP laminate; continuum damage model; intralaminar progressive failure analysis;
modified Puck’s theory; in situ strength effect

1. Introduction

Carbon fiber reinforced polymers (CFRPs) are being increasingly used in industry due to their
advantageous properties such as high specific strength and stiffness, good resistance to fatigue and
corrosion, as well as flexibility in design. CFRP laminates are now widely applied in various fields,
including aerospace structures, windmill blades, and pressure vessels. Nevertheless, the design of
CFRP composite structures is still rather conservative in engineering practice. A large quantity of
time-consuming and expensive tests must be carried out to ensure structure safety. To efficiently reduce
the time and cost as well as fully exploit the advantages of CFRPs, there is an imperative need for the
accurate theoretical prediction of the failure of CFRP laminates. However, the failure mechanisms of
CFRP laminates are very complex due to their inherent anisotropy and the variety of failure modes.
Hence, developing a reliable failure theory for CFRP laminates is a very challenging task.

The failure process of CFRP laminates can be divided into two stages. First the damage initiates
in a ply, and then it gradually propagates through the laminate until the structure reaches the ultimate
failure load [1]. The continuum damage mechanics (CDM) approach, which was originally developed
by Kachanov [2], has been successfully employed in the progressive failure analysis of CFRP laminates
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and achieved good results [3–7]. The CDM approach uses failure criteria to predict damage initiation.
Once damage initiates, the material stiffness will be degraded to simulate damage propagation.
The reduction of the stiffness coefficients is controlled by the damage variables, which increase
monotonically as damage accumulates.

A large number of failure criteria have been developed to predict the damage onset of CFRP
laminates. Classical criteria such as the maximum stress or strain, Hoffman, and Tsai–Wu fail to
distinguish the intralaminar failure modes, namely the matrix failure and the fiber failure. In 1980,
Hashin proposed a set of criteria which separate the fiber and matrix failure modes [8]. Although
Hashin’s criteria have been widely used in research [9–11], they are incapable of accurately predicting
the matrix damage in compression [12]. Nevertheless, Hashin’s assumption that material failure is
exclusively caused by the stresses acting on the fracture plane is physically meaningful. Inspired
by Hashin’s insightful idea, Puck and his co-workers developed a new failure theory for composite
materials [13]. Puck’s failure criteria distinguish two different types of fracture: inter-fiber fracture
(IFF) and fiber fracture (FF). Inter-fiber fracture comprises both cohesive matrix fracture and adhesive
fracture of the fiber/matrix interface [13] (p. 7). In this mode a macroscopic crack runs parallel to the
fibers through the thickness of a layer; see Figure 1. In the fiber fracture mode, composites fail due to
fiber rupture. In the first world-wide failure exercise (WWFE-I), Puck’s failure theory was among the
five leading theories recommended by the organizers [14]. In the second world-wide failure exercise
(WWFE-II), it was judged to be a fairly developed model in an advanced stage [15].
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Despite its good performance for unidirectional laminae, Puck’s theory predicts an initial failure
stress of laminates that is significantly lower than experimental results [16]. The underlying reason is
that Puck’s theory does not consider the “in situ” effect properly. When confined to a multidirectional
laminate, the lamina’s IFF strengths are observed to be higher than those measured in isolated
unidirectional laminae due to the constraint of neighboring plies with different fiber orientation [17].
However, directly replacing the strength values in Puck’s IFF criteria with the corresponding in situ
strengths may result in incorrect predictions for both the first ply failure load and the fracture angle [18].
Hence Puck’s IFF criteria should be re-examined and modified in order to take into account the in situ
effect properly.

Once damage initiates, a stiffness degradation law is required to characterize damage propagation.
The direct stiffness degradation method can be easily implemented in a finite element code, but it is
purely empirical and lacks generality [19]. The energy-based CDM approach progressively degrades
material properties until enough energy is dissipated for complete failure [20]. It associates the damage
variables which represent the possible damage modes, with their respective fracture energies. A bilinear
or an exponential constitutive relation is often established to describe the failure process. While many
progressive damage models of CFRP laminates reduce the stiffness coefficients directly in the material
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principal coordinate system [21–23], a few researchers have noticed the influence of the fracture plane
orientation on material degradation [5,24]. As shown in Figure 1, the external stress action plane may
not coincide with the fracture plane in the case of inter-fiber failure. Hence, the material principal
coordinate system (coordinate 1-2-3) generally differs from the fracture plane coordinate system
(coordinate l-n-t). According to Puck’s failure theory, inter-fiber fracture is exclusively determined by
the stresses acting on the fracture plane [25]. After damage occurs, the load carrying capacity on the
fracture plane will be reduced directly. Therefore, it is more reasonable to define the damage variables
in the fracture plane coordinate system instead of the traditional material principal coordinate system.

In the present study, a continuum damage model for intralaminar progressive failure analysis
of CFRP laminates is developed based on Puck’s fracture plane theory. The in situ strength effect
and the shear nonlinear behavior of CFRPs are considered in the model. The modified Puck’s failure
criteria are employed to predict the initiation of fiber and inter-fiber fracture. In strict accordance
with Puck’s failure hypothesis, the material stiffness matrix is degraded using the damage variables
defined in the fracture plane coordinate system rather than the traditional material principal coordinate
system. Theoretical and experimental evaluation validates the rationality and effectiveness of the
proposed model.

2. Continuum Damage Model of CFRP Laminates

2.1. Stress and Strain Analysis

The intralaminar damage modes of CFRP laminates normally can be divided into two categories:
fiber fracture (FF) and inter-fiber fracture (IFF). For the FF mode, the failure plane is approximately the
plane on which the longitudinal normal stress σ1 acts [8], while the IFF mode occurs in an inclined
plane parallel to the fiber direction; see Figure 1. The stress and strain components in the fracture plane
coordinate system l-n-t can be transformed from those in the material principal coordinate system
using the coordinate transformation matrix T:

σfp = T−1σ, (1)

εfp = TTε, (2)

whereσ = [σ1 σ2 σ3 τ23 τ31 τ12], ε = [ε1 ε2 ε3 γ23 γ31 γ12], σfp = [σl σn σt τnt τlt τnl], εfp = [εl εn εt γnt γlt γnl]

are the stress and strain components defined in the coordinate system 1-2-3 and l-n-t respectively. The
inverse matrix of T is given by:

T−1 =



1 0 0 0 0 0
0 cos2 θ sin2 θ 2 sinθ cosθ 0 0
0 sin2 θ cos2 θ −2 sinθ cosθ 0 0
0 − sinθ cosθ sinθ cosθ cos2 θ− sin2 θ 0 0
0 0 0 0 cosθ − sinθ
0 0 0 0 sinθ cosθ


, (3)

where θ (−90◦ ≤ θ ≤ 90◦) is the potential inter-fiber fracture angle.
The constitutive equations for the undamaged unidirectional lamina in the coordinate 1-2-3 and

l-n-t are respectively given by:
ε = S0σ, (4)

ε f p = S f p
0 σ

f p, (5)

where S0 and S f p
0 are the initial compliance matrices defined in the coordinates 1-2-3 and

l-n-t, respectively.
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Substituting Equations (1) and (2) into Equation (5), we obtain:

ε =
(
TT

)−1
S f p

0 T−1σ. (6)

Comparing Equation (4) and Equation (6) results in:

S f p
0 = TTS0T. (7)

Once damage initiates, the CDM approach introduces a damage variable matrix D to establish the

relationship between the effective stress
^
σ and the actual stress σ. As is discussed in Section 1, it is

more reasonable to define the effective stress in the fracture plane coordinate system l-n-t instead of the
material principal coordinate system 1-2-3:

^
σ

f p
= D f pσ f p, (8)

where Dfp is the damage variable matrix defined in the coordinate l-n-t, whose form is given by:

D f p = diag[
1

1− dl
,

1
1− dn

,
1

1− dt
,

1
1− dnt

,
1

1− dlt
,

1
1− dnl

], (9)

where di (i= l, n, t) and dij (i, j= n, t, l) are the damage variables corresponding to different damage modes.
Based on the assumption of energy equivalence, the form of the strain energy of the damaged

material is identical to that of the undamaged material [26]:

Wd =
1
2

(
σfp

)T
Sfp

d σ
fp =

1
2

(
^
σ

fp)T

Sfp
0

^
σ

fp
. (10)

Substituting Equation (8) into Equation (10) results in:

1
2

(
σfp

)T
Sfp

d σ
fp =

1
2

(
σfp

)T(
Dfp

)T
Sfp

0 Dfpσfp. (11)

Comparing the left and right sides of Equation (11) gives:

Sfp
d =

(
Dfp

)T
Sfp

0 Dfp. (12)

Following the similar deriving process of Equation (7), we obtain:

Sfp
d = TTSdT. (13)

Substituting Equations (7) and (13) into Equation (12), the compliance matrix of the damaged
material in the coordinate 1-2-3, Sd, is expressed as:

Sd =
(
TT

)−1(
Dfp

)T
TTS0TDfpT−1 = DTS0D, (14)

where D is defined as the damage variable matrix in the coordinate 1-2-3:

D = TDfpT−1. (15)

Finally, the constitutive equations for the damaged unidirectional lamina in the coordinate 1-2-3 is
given by:

ε = Sdσ. (16)
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CFRPs usually exhibit nonlinear shear response in the in-plane shear directions. The nonlinear
shear constitutive model proposed by Hahn and Tsai [27] is adopted in this paper:{

γ12 = G−1
12 τ12 + βτ3

12
γ13 = G−1

13 τ13 + βτ3
13

, (17)

where G12 and G13 are the initial shear moduli, and β is the shear nonlinearity factor.
In the present study, the nonlinear terms in Equation (17) are linearized using the stable algorithm

provided in Abaqus documentation [28]. Although the linearization algorithm does not consider the
unloading process, it is adopted due to its simplicity.

2.2. Failure Criteria for Intralaminar Damage Initiation

2.2.1. Inter-Fiber Fracture Criteria

According to Puck’s fracture hypothesis, inter-fiber fracture in a plane parallel to the fibers is
exclusively determined by the shear stresses τnt and τnl as well as the normal stress σn that are acting
on this plane [25]. The stress components τnt, τnl and σn can be calculated from Equation (1):

τnt(θ) = −σ2 sinθ cosθ+ σ3 sinθ cosθ+ τ23
(
cos2 θ− sin2 θ

)
, (18)

τnl(θ) = τ31 sinθ+ τ12 cosθ, (19)

σn(θ) = σ2 cos2 θ+ σ3 sin2 θ+ 2τ23 sinθ cosθ. (20)

Puck’s failure criteria for inter-fiber fracture are as follows [13] (p. 74):
Inter-fiber tensile fracture (IFFT):

FIFFT =

 τnt

RA
⊥⊥

2

+

 τnl

RA
⊥//

2

+ 2
pt
⊥ψ

RA
⊥ψ

σn + (1− 2
pt
⊥ψRAt

⊥

RA
⊥ψ

)
σ2

n

(RAt
⊥
)

2 = 1 for σn ≥ 0, (21)

Inter-fiber compressive fracture (IFFC):

FIFFC =

 τnt

RA
⊥⊥

2

+

 τnl

RA
⊥//

2

+ 2
pc
⊥ψ

RA
⊥ψ

σn = 1 for σn < 0, (22)

with
pt,c
⊥ψ

RA
⊥ψ

=
pt,c
⊥⊥

RA
⊥⊥

cos2 ψ+
pt,c
⊥//

RA
⊥//

sin2 ψ, (23)

cos2 ψ =
τ2

nt

τ2
nt + τ2

nl

, sin2 ψ =
τ2

nl

τ2
nt + τ2

nl

, (24)

RAt
⊥ = YT, (25)

RA
⊥⊥ =

YC

2
(
1 + pc

⊥⊥

) , (26)

RA
⊥// = SL. (27)

YT and YC are the transverse tensile and compressive strengths respectively, while SL is the
longitudinal shear strength. pt

⊥//, pc
⊥//, pt

⊥⊥
, pc
⊥⊥

are four inclination parameters of contour lines of
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the fracture body. The recommended values of pt
⊥// and pc

⊥// for CFRPs are 0.35 and 0.30 respectively,
while pt

⊥⊥
and pc

⊥⊥
can be determined using the following formula [25]:

pt
⊥⊥ = pc

⊥⊥ =
1
2

√1 + 2pc
⊥//

YC
SL
− 1

. (28)

Substituting Equations (18)–(20) into Equations (21) and (22), the inter-fiber fracture function,
FIFF, can be written as the function of all stress components except σ1 as well as the potential fracture
angle θ:

FIFF(σ2, σ3, τ23, τ21, τ31,θ). (29)

The θ–FIFF relation can be obtained under any given three-dimensional stress sate. Inter-fiber
fracture is considered to occur once the maximum value of FIFF is equal to 1, and the actual fracture
angle θfp is the corresponding potential fracture angle:

FIFF
(
σ2, σ3, τ23, τ21, τ31,θ f p

)
= max
−90◦≤θ≤90◦

FIFF(σ2, σ3, τ23, τ21, τ31,θ) = 1. (30)

The maximum value of FIFF and the corresponding fracture angle θfp can be searched numerically
within the interval −90◦ ≤ θ ≤ 90◦ [17].

Given the in situ effect of multidirectional laminates, the in situ strength values, Yis
T , Yis

C,
and Sis

L , should be used in Puck’s IFF criteria. However, simply replacing the strength values
in Equations (25)–(28) with the corresponding in situ strengths may result in incorrect predictions of
both the failure stress and the corresponding fracture angle [18]. For example, the strength values of
CFRP IM7/8552 are listed in Table 1. The following simple stress states are considered: transverse tensile
stress (σ2 = YT or Yis

T), transverse compressive stress (σ2 = −YC or −Yis
C), and longitudinal shear

stress (τ21 = SL or Sis
L ). As shown in Figure 2, for the ply in a unidirectional laminate, the maximum

values of the failure function FIFF and the corresponding fracture angles are well predicted under all
these simple stress states. For the ply embedded in a multidirectional laminate, Figure 3 shows that
the predicted results are reasonable under transverse compression (see Appendix A for details) and
longitudinal shear. Nevertheless, the maximum value of FIFF exceeds 1 under pure transverse tension,
indicating that material failure has already occurred before σ2 = Yis

T . Besides, the corresponding
tensile fracture angle is no longer 0◦, which is obviously wrong [18]. To reasonably combine Puck’s IFF
criteria with the in situ strength theory, the procedure to determine the seven unknown parameters,
namely, the three strength parameters (RAt

⊥
, RA
⊥⊥

and RA
⊥//) and the four inclination parameters (pt

⊥//,
pc
⊥//, pt

⊥⊥
and pc

⊥⊥
), should be re-examined in detail.

Table 1. Strength values of CFRP IM7/8552 [29].

YT/MPa YC/MPa SL/MPa Yis
T /MPa Yis

C /MPa Sis
L /MPa

62.3 199.8 92.3 160.2 281.8 1 130.2

1 Yis
C is calculated using Yis

C =
Sis

L
SL

YC in reference [30].

Under the longitudinal shear stress state, the corresponding in situ strength is denoted as Sis
L ,

and the fracture angle θls
f p = 0◦. According to Equations (18)–(20), the only stress component on the

fracture plane is τnl = Sis
L . Substituting (τnt = 0, τnl = Sis

L , σn = 0) into Equation (21) results in:

RA
⊥// = Sis

L . (31)
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Under transverse compression, the corresponding in situ strength is denoted as Yis
C.

The compressive fracture angle is slightly above 50◦ for CFRPs [25]; thus, θc
f p = 51◦ is taken

in the present study. According to Equations (18)–(20), the stress components on the fracture
plane are τnt = Yis

C sinθc
f p cosθc

f p, σn = −Yis
C cos2 θc

f p. Substituting (τnt = Yis
C sinθc

f p cosθc
f p, τnl = 0,

σn = −Yis
C cos2 θc

f p) into Equation (22) results in:

Yis
C sinθ cosθ

RA
⊥⊥

2

− 2
pc
⊥⊥

RA
⊥⊥

Yis
C cos2 θ = 1. (32)

θc
f p is the fracture angle corresponding to the maximum value of the failure function FIFFC:

dFIFFC(θ)

dθ

∣∣∣∣∣∣
θ = θc

f p

=
d

dθ


Yis

C sinθ cosθ

RA
⊥⊥

2

− 2
pc
⊥⊥

RA
⊥⊥

Yis
C cos2 θ


∣∣∣∣∣∣∣∣
θ = θc

f p

= 0 . (33)

Solving Equations (32) and (33) together, we obtain:

RA
⊥⊥ =

Yis
C

2
(
1 + pc

⊥⊥

) , (34)
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pc
⊥⊥ =

1
2 cos2 θc

f p

− 1. (35)

Under transverse tension, the corresponding in situ strength is denoted as Yis
T , and the fracture

angle θt
f p = 0◦. According to Equations (18)–(20), the only stress component on the fracture plane is

σn = Yis
T . Substituting (τnt = 0, τnl = 0, σn = Yis

T ) into Equation (21) results in:

RAt
⊥ = Yis

T . (36)

The inclination parameters pt
⊥// and pc

⊥// can be derived experimentally [25]. Nevertheless,
the inclination parameters pt

⊥⊥
and pc

⊥⊥
in Puck’s IFF criteria are not determined by experiments.

Their recommended values, Equation (28), are given based on mathematical reasons, rather than
physical ones [25]. If the in situ strengths are taken into account, Equation (28) will lead to incorrect
predictions under pure transverse tension (as shown in Figure 3). In the present study, the rigorously
derived Equation (35) is employed to determine pc

⊥⊥
, while pt

⊥⊥
is obtained using the following method.

According to Equations (18)–(20), the stress components on the potential fracture plane under
pure transverse tensile stress (σ2 > 0) are given by:

τnt(θ) = −σ2 sinθ cosθ, τnl(θ) = 0, σn(θ) = σ2 cos2 θ. (37)

The failure stress is Yis
T , and the fracture angle θt

f p = 0◦. This implies the following conditions:

FIFFT(θ)
∣∣∣
θ = 0◦, τnt = 0, τnl = 0,σn = Yis

T
= 1, (38)

FIFFT(θ)
∣∣∣
τnt = −Yis

T sinθ cosθ, τnl = 0,σn = Yis
T cos2 θ

≤ 1 for θ ∈ [−90◦, 90◦]. (39)

It is easy to prove that Equation (38) can be satisfied. From Equation (39) we obtain:

−Yis
T sinθ cosθ

RA
⊥⊥

2

+ 2
pt
⊥⊥

RA
⊥⊥

Yis
T cos2 θ+ (1− 2

pt
⊥⊥

RAt
⊥

RA
⊥⊥

)

(
Yis

T cos2 θ
)2

(RAt
⊥
)

2 ≤ 1 for θ ∈ [−90◦, 90◦]. (40)

Substituting Equation (36) into Equation (40) results in:

pt
⊥⊥ ≤

[
1−

(
Yis

T sinθ cosθ

RA
⊥⊥

)2
− cos4 θ

]
RA
⊥⊥

2Yis
T cos2 θ(1− cos2 θ)

for θ ∈ [−90◦, 90◦]. (41)

Puck et al. believed that pt
⊥⊥

and pc
⊥⊥

ought to be approximately of the same magnitude, and
setting pt

⊥⊥
= pc

⊥⊥
will not lead to any unacceptable contradictions for unidirectional laminates [25].

Since the modified IFF criteria should also be applicable in the case of unidirectional laminates,
we propose to minimize the difference between pt

⊥⊥
and pc

⊥⊥
without violation of Equation (41). In

other words, pt
⊥⊥

can be obtained by solving the following problem:
find pt

⊥⊥

s.t. pt
⊥⊥
≤

1−( Yis
T sinθ cosθ

RA
⊥⊥

)2

−cos4 θ

RA
⊥⊥

2Yis
T cos2 θ(1−cos2 θ)

for θ ∈ [−90◦, 90◦]

min
∣∣∣pt
⊥⊥
− pc
⊥⊥

∣∣∣
(42)



Materials 2019, 12, 3292 9 of 20

2.2.2. Fiber Fracture Criteria

Puck suggested the use of a simple maximum stress formulation to predict fiber fracture in 1969,
and believed it was sufficient for a preliminary analysis [13] (p. 37). More sophisticated FF criteria
were developed afterwards to account for the transverse effect, requiring the measurements for the
elastic modulus E1f and Poisson’s ratio υ12f of the fibers [17]. Since these values are seldom provided
in references, the simple maximum stress criteria are adopted in the present study:

Fiber tensile fracture (FFT):

FFFT =
σ1

XT
= 1 for σ1 ≥ 0, (43)

Fiber compressive fracture (FFC):

FFFC =
σ1

XC
= 1 for σ1 < 0, (44)

where XT and XC are the longitudinal tensile and compressive strengths, respectively.

2.3. Damage Evolution Law

Damage propagation is a process accompanied by the dissipation of energy. A fracture
energy-based approach is employed in the present study to characterize damage evolution. Once
damage initiation is predicted by the failure criteria, the material stiffness will be progressively
degraded until enough energy is dissipated for complete failure.

2.3.1. Damage Variables

As shown in Figure 4, a bilinear constitutive relation is used to characterize the damage evolution
process. The internal damage variable corresponding to each intralaminar failure mode is defined as:

dI = max

0, min

1,
ε

f
eq,I

(
εeq,I − ε0

eq,I

)
εeq,I

(
ε

f
eq,I − ε

0
eq,I

)

 I ∈ (IFFT, IFFC, FFT, FFC), (45)

where εeq,I, ε0
eq,I and ε f

eq,I are the equivalent strains in the current state, the damage initiation state, and
the final failure state, respectively. All these equivalent strains will be defined precisely later. dI = 0
means the material is undamaged, while dI = 1 represents the complete failure of material.Materials 2019, 12, 3292 10 of 20 

 

 

Figure 4. Bilinear constitutive relation. E is the elastic modulus of the undamaged material. 

The normal tensile stress on the inter-fiber fracture plane (σn > 0) tends to open the cracks, so no 

forces can be transmitted as a result of there being no contact between the crack faces. Nevertheless, 

cracks are closed under the normal compressive stress (σn < 0), and thus forces can be transmitted 

across the cracks [5]. Consequently, the damage variable IFFC
d only has an effect on the shear moduli, 

and the damage variable with respect to the n-direction is given by: 

.
n IFFT

d d  (46) 

The damage variable with respect to the l-direction is given by [21]: 

.
l FFT FFC FFT FFC

d d d d d    (47) 

The damage variable dt represents the damage with respect to the t-direction. Since the t-

direction is always perpendicular to the damage axes of IFF and FF failure (see Figure 1), no damage 

occurs along the t-axis [31], i.e., 

0.
t

d   (48) 

The damage variables associated with the shear moduli Gij (i, j = n, t, l) can be expressed as: 

1 (1 )(1 ) ,
nt m t m

d d d d      (49) 

1 (1 )(1 ) ,
lt l t l

d d d d    
 (50) 

1 (1 )(1 )= + - ,
nl m l l m l m

d d d d d d d   
 (51) 

with 

.
m IFFT IFFC IFFT IFFC

d d d d d    (52) 

2.3.2. Equivalent Stress and Strain 

According to Puck’s fracture hypothesis, material failure is exclusively determined by the stress 

components acting on the fracture plane. For the IFF mode, the stress components on the fracture 

plane are τnt, τnl and σn. The tensile normal stress (σn > 0) promotes fracture in combination with the 

shear stresses τnt and τnl, while the compressive normal stress (σn < 0) impedes material failure [25]. 

Therefore, the equivalent stress and strain for the IFF mode are defined as: 

eq,IFF

2 2 2 ,
n nt nl

σ σ τ τ      (53) 

eq,IFF

2 2 2 ,
n nt nl

ε ε γ γ    
 

(54) 

where   is the McCauley operator defined as ( ) / 2x x x    for x . 
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The normal tensile stress on the inter-fiber fracture plane (σn > 0) tends to open the cracks, so no
forces can be transmitted as a result of there being no contact between the crack faces. Nevertheless,
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cracks are closed under the normal compressive stress (σn < 0), and thus forces can be transmitted
across the cracks [5]. Consequently, the damage variable dIFFC only has an effect on the shear moduli,
and the damage variable with respect to the n-direction is given by:

dn = dIFFT. (46)

The damage variable with respect to the l-direction is given by [21]:

dl = dFFT + dFFC − dFFTdFFC. (47)

The damage variable dt represents the damage with respect to the t-direction. Since the t-direction
is always perpendicular to the damage axes of IFF and FF failure (see Figure 1), no damage occurs
along the t-axis [31], i.e.,

dt = 0. (48)

The damage variables associated with the shear moduli Gij (i, j = n, t, l) can be expressed as:

dnt = 1− (1− dm)(1− dt) = dm, (49)

dlt = 1− (1− dl)(1− dt) = dl, (50)

dnl = 1− (1− dm)(1− dl) = dl + dm − dldm, (51)

with
dm = dIFFT + dIFFC − dIFFTdIFFC. (52)

2.3.2. Equivalent Stress and Strain

According to Puck’s fracture hypothesis, material failure is exclusively determined by the stress
components acting on the fracture plane. For the IFF mode, the stress components on the fracture
plane are τnt, τnl and σn. The tensile normal stress (σn > 0) promotes fracture in combination with the
shear stresses τnt and τnl, while the compressive normal stress (σn < 0) impedes material failure [25].
Therefore, the equivalent stress and strain for the IFF mode are defined as:

σeq,IFF =
√
〈σn〉

2 + τ2
nt + τ2

nl, (53)

εeq,IFF =
√
〈εn〉

2 + γ2
nt + γ2

nl, (54)

where 〈 〉 is the McCauley operator defined as 〈x〉 = (x + |x|)/2 for x ∈ <.
For the FF mode, the stress components on the fracture plane are τ12, τ13 and σ1 [8]. However, the

contribution of the shear stress components τ12 and τ13 to fiber fracture is very small, and hence can be
neglected [32]. Therefore, the equivalent stress and strain for the FF mode are defined as:

σeq,FF =
√
σ2

1, (55)

εeq,FF =
√
ε2

1. (56)

The equivalent stress and strain in the damage initiation state, σ0
eq,I and ε0

eq,I, correspond to the
equivalent stress and strain when the failure function FI equals 1.
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2.3.3. Equivalent Strain in the Final Failure State

The crack band theory introduces the characteristic length Lc to correlate the energy release rate
(i.e., energy dissipated per unit area) with the energy dissipated per unit volume [33]. For the IFF
failure mode, a quadratic interaction criterion is established under mixed-mode loading:(

gn

GIc/Lc
IFF

)2

+

(
gnt

GIIc/Lc
IFF

)2

+

(
gnl

GIIc/Lc
IFF

)2

= 1, (57)

where gn, gnt, and gnl are the strain energy densities associated with the corresponding stress components.
GIc and GIIc are the critical energy release rates for fracture mode I and mode II respectively. Lc

IFF is the
characteristic length for IFF.

The strain energy densities in the final IFF failure state are given by [12]:

g f
i =

∫ ε
f
i

0
σidεi ≈

1
2
σ0

i ε
f
i =

1
2
σ0

i βiε
f
eq (i = n, nt, nl), (58)

where σ0
i is the stress at the initiation of IFF failure. βi denotes the mixed-mode ratio, which can be

expressed as:

βn =
〈εn〉

εeq
, βnt =

γnt

εeq
, βnl =

γnl

εeq
. (59)

Substituting Equation (58) into Equation (57), the equivalent strain in the final IFF failure state is
given by:

ε
f
eq,IFF =

2
Lc

IFF


(
σ0

nβn

GIc

)2

+

τ0
ntβnt

GIIc

2

+

τ0
nlβnl

GIIc

2
−

1
2

. (60)

For the FF mode, the equivalent strain in the final failure state is determined by the bilinear
constitutive relation shown in Figure 4:

Gt(c)
f c

Lc
FF

=
1
2

XT(C)ε
f
eq,FF ⇒ ε

f
eq,FF =

2Gt(c)
f c

XT(C)Lc
FF

, (61)

where Gt(c)
f c is the critical energy release rate corresponding to longitudinal tension (compression).

XT(C) is the longitudinal tensile (compressive) strength. Lc
FF is the characteristic length for FF.

3. Theoretical and Experimental Verification

3.1. Ply Failure Analysis

Two plies, one in a unidirectional laminate and the other embedded in a multidirectional laminate,
are taken as the case study. The material system is IM7/8552, whose strength values are listed in Table 1.

As shown in Figure 5, the results predicted by the original and modified Puck’s IFF criteria
are almost identical for the ply in a unidirectional laminate. There are only negligible discrepancies
between the curves due to the small differences between the parameters used (pt

⊥⊥
= pc

⊥⊥
= 0.258

and 0.262 respectively). The failure stresses and the fracture angles are correctly predicted under these
simple stress states.

For the embedded lamina, the predicted results are reasonable under transverse compression
(see Appendix A for details) and longitudinal shear; see Figure 6b,c. Under pure transverse tension,
the failure stress is underestimated by the original IFF criteria, and the predicted fracture angle is
unreasonable; see Figure 6a. This problem is solved by using the modified IFF criteria.
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For the ply in a unidirectional laminate, again there is a good agreement between the predicted
σ2-τ21 failure envelopes; see Figure 7a. For the embedded lamina, Puck’s original IFF criteria
underestimate the failure stress in the high tensile stress (σ2 > 0) region (see Figure 7b), while the
modified criteria do not have this serious defect.
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3.2. Progressive Failure Analysis of CFRP Laminates

The proposed model focuses on the intralaminar damage of CFRP laminates, yet ignores the
interlaminar damage between adjacent layers (i.e., delamination). Since the influence of delamination
on the mechanical behavior of composite laminates with dispersed plies is very small under in-plane
loading conditions [29,34], notched CFRP laminates under uniaxial tension and compression are
selected as the validation cases. To avoid convergence problems, quasi-static analysis was performed
in the FE software Abaqus/Explicit using a user-defined material subroutine (VUMAT). The FE model
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of the specimen is shown in Figure 8. The continuum 3D 8-node reduced integration element (C3D8R)
was used per ply thickness. The mesh around the circular notch was refined (0.5 mm × 0.5 mm × t),
while a relatively coarse mesh was used in the remaining regions (1.5 mm × 0.5 mm × t). Ideally, the
characteristic length is a function of the fracture angle as well as the direction of crack propagation.
For the sake of simplicity, the characteristic lengths for IFF and FF are here taken as the cubic root of
the volume of the elements. This method has been proven to be efficient and effective for 3D elements
if the element size is sufficiently small [24,35].
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Figure 8. The FE model of the specimen.

Only half of the laminate was modelled due to the stacking symmetry in the z direction. The loading
direction is along the longitudinal direction of the specimen, which coincides with the direction of the
0◦ ply. The laminate was clamped on the left end, while a uniform displacement was applied at the
right edge. The z-symmetry boundary conditions were applied at the mid-plane.

Two specimens were modelled in the present study. One is a quasi-isotropic laminate with the
stacking sequence [90/0/±45]3s under unidirectional tensile loading [29], while the other is an angle-ply
laminate containing six ±45◦ sub-laminates under uniaxial compression [36]. A sketch of the laminate
is shown in Figure 9, and the geometric dimensions are reported in Table 2. A strain gauge was
placed on the outer surface (lgau = 50 mm) to monitor the axial strain ε of the quasi-isotropic laminate,
while an extensometer was used to measure the relative displacement ∆ of the angle-ply laminate
(lext = 25.4 mm). The laminates are manufactured from CFRP IM7/8552 and T300/976 respectively,
whose mechanical properties are listed in Tables 3 and 4. The in situ strengths are calculated using the
analytical formulas proposed by Camanho and his co-workers [30,37]; see Table 5.
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Table 2. Geometric dimensions of the laminates.

Stacking Sequence l (mm) w (mm) d (mm)

[90/0/±45]3s 150 48 8
[±45]6s 101.6 25.4 6.35
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Table 3. Mechanical properties of material IM7/8552 [29].

E1/GPa E2/GPa G12/GPa υ12 tp/mm

171.42 9.08 5.29 0.32 0.131

XT/MPa XC/MPa YT/MPa YC/MPa SL/MPa

2326.2 1200.1 62.3 199.8 92.3

GIc/kJm−2 GIIc/kJm−2 Gt
f c /kJm−2 Gc

f c /kJm−2 β/MPa−3

0.2774 0.7879 81.5 106.3 2.98 × 10−8

Table 4. Mechanical properties of material T300/976 [36,38].

E1/GPa E2/GPa G12/GPa υ12 tp/mm

156.5 12.9 6.96 0.23 0.143

XT/MPa XC/MPa YT/MPa YC/MPa SL/MPa

1516.8 1592.7 44.54 253 106.8

GIc/kJm−2 GIIc/kJm−2 Gt
f c /kJm−2 Gc

f c /kJm−2 β/MPa−3

0.22 0.46 91.6 79.9 2.44 × 10−8

Table 5. Analytical formulas to calculate the in situ strengths.

Type of Ply Yis
T Sis

L Yis
C

Thin Embedded Ply
√

8GIc
πtΛ0

22
, Λ0

22 = 2
(

1
E2
−
ν2

12
E1

) √
(1+βϕG2

12)
1/2
−1

3βG12
, ϕ = 48GIIc

πt
Sis

L
SL

YC

Thin Outer Ply 1.78
√

GIc
πtΛ0

22
, Λ0

22 = 2
(

1
E2
−
ν2

12
E1

) √
(1+βϕG2

12)
1/2
−1

3βG12
, ϕ = 24GIIc

πt
Sis

L
SL

YC

For the laminate under uniaxial tensile loading, a total of 110,784 elements were used in the
model. The axial average stress is defined as the external load per unit cross-sectional area: σ = F/wtL,
where w and tL are the width and thickness of the specimen. The axial average stress–strain curves
are shown and compared in Figure 10. Good correlation between the experimental and numerical
results is observed, and the predicted ultimate average stress (394.8 MPa) is slightly higher than the
experimental value (375.7 MPa). Not considering interlaminar damage might be another possible
reason for the overprediction apart from the uncertainty of experiments. As shown in Figure 11a,
inter-fiber damage first occurs at the notch edge of the outer 90◦ ply. Subsequently, fiber tensile fracture
initiates in the 0◦ plies; see Figure 11b. As the load increases, damage propagates perpendicular to the
loading direction. In the final failure state of the laminate, fiber damage extends along the transverse
direction in the 0◦ plies, while inter-fiber damage in the 90◦ plies fully extends across the width of the
specimen; see Figure 11c,d. Inter-fiber tensile fracture also occurs in the ±45◦ plies (see Figure 11e,f),
but the damage zones are smaller than those in the 90◦ plies. The predicted damage pattern is in line
with the net-section failure mode observed in the experiment [29].
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Figure 11. Progressive failure process of the CFRP laminate under tension. (a) IFFT initiates in a 90◦
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ply; (e) Damage variable dIFFT in a 45◦ ply; (f) Damage variable dIFFT in a −45◦ ply.

For the laminate under uniaxial compressive loading, a total of 38,892 elements were used in
the model. The F–∆ curve obtained from the experimental data is plotted in Figure 12, where F is
the external load measured in the test, and ∆ is the relative displacement. As shown in Figure 12,
the curve exhibits a very pronounced nonlinear behavior, and the ultimate failure load is approximately
13.5 kN. The simulated curve agrees well with the experimental result, and the ultimate failure load
is well predicted (12.6 kN) with a relative error of 6.7%. No fiber damage is observed in the whole
failure process of the laminate. Only inter-fiber compressive damage occurs in the vicinity of the
hole, and then propagates along the ±45◦ direction; see Figure 13. The predicted damage pattern is
consistent with the experimental observation [36].



Materials 2019, 12, 3292 17 of 20
Materials 2019, 12, 3292 17 of 20 

 

 

Figure 12. Experimental and numerically predicted F–Δ curves 

 
(a) 

 
(b) 

Figure 13. Progressive failure process of the CFRP laminate under compression. (a) IFFC initiates in 

a 45° ply; (b) Damage variable dIFFC in a 45° ply. 

4. Conclusions 

In the present study, a continuum damage model based on the modified Puck’s theory is 

developed to simulate the intralaminar progressive failure of CFRP laminates. The in situ strength 

effect and the nonlinear shear behavior of CFRPs are considered in the model. The modified Puck’s 

failure criteria are adopted to determine damage initiation, while a bilinear constitutive relation is 

used to describe damage evolution. In strict accordance with Puck’s concept of action plane, the 

equivalent stress/strain and the damage variables are defined in the fracture plane coordinate system 

rather than the traditional material principal coordinate system. Theoretical and experimental 

evaluation of CFRP laminates validates the rationality and effectiveness of the proposed model. The 

numerical model has been implemented in an FE software to simulate the progressive failure of CFRP 

laminates, and good correlation between the numerical and experimental results is observed. Future 

research will combine the proposed model with the interface fracture modeling techniques to 

simulate both intralaminar and interlaminar damage of CFRP laminates. 

Author Contributions: Conceptualization, J.G.; formal analysis, J.G.; methodology, J.G. and K.L; data curation, 

K.L. and L.S.; funding acquisition, J.G. and K.L; writing—original draft preparation, J.G.; writing—review and 

editing, K.L. and L.S. 

Figure 12. Experimental and numerically predicted F–∆ curves

Materials 2019, 12, 3292 17 of 20 

 

 

Figure 12. Experimental and numerically predicted F–Δ curves 

 
(a) 

 
(b) 

Figure 13. Progressive failure process of the CFRP laminate under compression. (a) IFFC initiates in 

a 45° ply; (b) Damage variable dIFFC in a 45° ply. 

4. Conclusions 

In the present study, a continuum damage model based on the modified Puck’s theory is 

developed to simulate the intralaminar progressive failure of CFRP laminates. The in situ strength 

effect and the nonlinear shear behavior of CFRPs are considered in the model. The modified Puck’s 

failure criteria are adopted to determine damage initiation, while a bilinear constitutive relation is 

used to describe damage evolution. In strict accordance with Puck’s concept of action plane, the 

equivalent stress/strain and the damage variables are defined in the fracture plane coordinate system 

rather than the traditional material principal coordinate system. Theoretical and experimental 

evaluation of CFRP laminates validates the rationality and effectiveness of the proposed model. The 

numerical model has been implemented in an FE software to simulate the progressive failure of CFRP 

laminates, and good correlation between the numerical and experimental results is observed. Future 

research will combine the proposed model with the interface fracture modeling techniques to 

simulate both intralaminar and interlaminar damage of CFRP laminates. 

Author Contributions: Conceptualization, J.G.; formal analysis, J.G.; methodology, J.G. and K.L; data curation, 

K.L. and L.S.; funding acquisition, J.G. and K.L; writing—original draft preparation, J.G.; writing—review and 

editing, K.L. and L.S. 

Figure 13. Progressive failure process of the CFRP laminate under compression. (a) IFFC initiates in a
45◦ ply; (b) Damage variable dIFFC in a 45◦ ply.

4. Conclusions

In the present study, a continuum damage model based on the modified Puck’s theory is developed
to simulate the intralaminar progressive failure of CFRP laminates. The in situ strength effect and
the nonlinear shear behavior of CFRPs are considered in the model. The modified Puck’s failure
criteria are adopted to determine damage initiation, while a bilinear constitutive relation is used to
describe damage evolution. In strict accordance with Puck’s concept of action plane, the equivalent
stress/strain and the damage variables are defined in the fracture plane coordinate system rather than
the traditional material principal coordinate system. Theoretical and experimental evaluation of CFRP
laminates validates the rationality and effectiveness of the proposed model. The numerical model has
been implemented in an FE software to simulate the progressive failure of CFRP laminates, and good
correlation between the numerical and experimental results is observed. Future research will combine
the proposed model with the interface fracture modeling techniques to simulate both intralaminar and
interlaminar damage of CFRP laminates.

Author Contributions: Conceptualization, J.G.; formal analysis, J.G.; methodology, J.G. and K.L; data curation,
K.L. and L.S.; funding acquisition, J.G. and K.L; writing—original draft preparation, J.G.; writing—review and
editing, K.L. and L.S.
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Appendix A

As shown in Figure A1, the in situ transverse compressive strength Yis
C in Table 1 is increased from

the unidirectional transverse compressive strength YC to 3YC, but the maximum value of FIFF always
equals 1, and the fracture angle is also within the reasonable range (50◦~54◦). The reason is as follows:

Materials 2019, 12, 3292 18 of 20 

 

Funding: This research was funded by the National Natural Science Foundation of China (Grant No. 11902124), 

Key Project of Industry Foresight and Common Key Technologies of Science and Technology Department of 

Jiangsu Province (BE2017002-2), and Fundamental Research Funds for the Central Universities (Grant No. 

JUSRP51732B). 

Conflicts of Interest: The authors declare no conflict of interest.  

Appendix A 

As shown in Figure A1, the in situ transverse compressive strength is

C
Y in Table 1 is increased 

from the unidirectional transverse compressive strength YC to 3YC, but the maximum value of FIFF 

always equals 1, and the fracture angle is also within the reasonable range (50°~54°). The reason is as 

follows: 

 

Figure A1. FIFF–θ relation for IM7/8552 under
2

is

C
σ Y  with the increase of is

C
Y . 

Under transverse compression, the corresponding in situ strength is denoted as is

C
Y . According 

to Equations (18)–(20), the stress components on the potential fracture plane are τnt= sin cosis

C
Y θ θ , σn 

= 2- cosis

C
Y θ . Substituting (τnt = sin cosis

C
Y θ θ , τnl = 0, σn = 2- cosis

C
Y θ ) into Equation (22) results in: 

 
2

2sin cos
2 cos .

is c
isC

IFFC CA A

Y θ θ p
F θ Y θ

R R


 

 
   
 

 (A1) 

 2 1

is
A C

c

Y
R

p







holds in both the original and modified criteria. Substituting it into Equation (A1), 

we obtain: 

     
2

22 1 sin cos 4 1 cos .c c c

IFFC
F θ p θ θ p p θ

  
    
 

 (A2) 

It can be seen from the above equation that under transverse compressive stress 2

is

C
σ Y  , the 

FIFF–θ curve solely depends on the value of cp


. The rigorously derived Equation (35) shows the 

relation between cp


and c

fp
θ : 

2

1
1.

2cos
c

c

fp

p
θ


   (A3) 

In Puck’s original criteria, cp


is determined by 

Figure A1. FIFF–θ relation for IM7/8552 under σ2 = − Yis
C with the increase of Yis

C.

Under transverse compression, the corresponding in situ strength is denoted as Yis
C. According

to Equations (18)–(20), the stress components on the potential fracture plane are τnt = Yis
C sinθ cosθ,

σn = −Yis
C cos2 θ. Substituting (τnt = Yis

C sinθ cosθ, τnl = 0, σn = −Yis
C cos2 θ) into Equation (22) results in:

FIFFC(θ) =

Yis
C sinθ cosθ

RA
⊥⊥

2

− 2
pc
⊥⊥

RA
⊥⊥

Yis
C cos2 θ. (A1)

RA
⊥⊥

=
Yis

C
2(1+pc

⊥⊥)
holds in both the original and modified criteria. Substituting it into Equation (A1),

we obtain:
FIFFC(θ) = [2(1 + pc

⊥⊥
) sinθ cosθ]2 − 4pc

⊥⊥
(1 + pc

⊥⊥
) cos2 θ. (A2)

It can be seen from the above equation that under transverse compressive stress σ2 = − Yis
C,

the FIFF–θ curve solely depends on the value of pc
⊥⊥

. The rigorously derived Equation (35) shows the
relation between pc

⊥⊥
and θc

f p:

pc
⊥⊥ =

1
2 cos2 θc

f p

− 1. (A3)

In Puck’s original criteria, pc
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Combining Equation (A3) and Equation (A4) results in:

θc
f p = arccos

1√
1 +

√
1 + 2pc

⊥//
Yis

C
Sis

L

. (A5)

Substituting the parameters of CFRP IM7/8552 (with the variance of Yis
C) into Equation (A5),

the fracture angles predicted by Puck’s original IFFC criterion can be obtained (50◦~54◦).
The above analysis shows that even if the in situ transverse compressive strength increases

significantly, the predicted result does not change much. Hence the results predicted by Puck’s original
IFFC criterion are reasonable under transverse compression.
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