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Abstract

Microbialites are highly diverse microbial communities that represent modern examples of

the oldest life forms, stromatolites (dated >3.7 Ga). Bacalar Lagoon, in Mexico, harbors the

largest freshwater microbialite occurrences of the world; yet diverse anthropogenic activities

are changing the oligotrophic conditions of the lagoon. The objective of this work was to per-

form a spatial exploration of the microbialites of Bacalar Lagoon, analyze their prokaryote

diversity, following a high throughput sequencing approach of the V4 region of the 16S

rDNA, and correlate to the environmental parameters that influence the structure of these

communities. The results indicate the presence of microbialites throughout the periphery of

the lagoon. The microbiome of the microbialites is composed primarily of Proteobacteria

(40–80%), Cyanobacteria (1–11%), Bacteroidetes (7–8%), Chloroflexi (8–14%), Firmicutes

(1–23%), Planctomycetes (1–8%), and Verrucomicrobia (1–4%). Phylogenetic distance

analyses suggests two distinct groups of microbialites associated with regions in the lagoon

that have differences in their environmental parameters, including soluble reactive silicate

(in the north), bicarbonates and available forms of nitrogen (ammonium, nitrates and nitrites)

(in the south). These microbialite groups had differences in their microbiome composition

associated to strong anthropogenic pressure on water quality (agriculture, landfill leachate,

lack of water treatment infrastructure and intensive tourism), which were related to a loss of

microbial diversity.

Introduction

Bacteria and Archaea (prokaryotes) represent the most diverse and abundant organisms on

the planet [1]. They are involved in maintaining and controlling biogeochemical cycling of the

fundamental elements of life (H, C, N, O, S and P) [2]. Understanding the multiple ecological

and evolutionary processes that are related to the distribution and structure of prokaryote

diversity at the local and global scales is a main interest of microbial ecology [3–4]. The forma-

tion of biogeographic distribution patterns in prokaryotes is determined by environmental

heterogeneity (ecological factor) and dispersion (historical factor) [5]. At the local scale, factors

that include pH, habitat heterogeneity, system productivity, and more recently, human
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alteration of the habitat, are contributing to shape prokaryote diversity and structure [6–8].

Industrial activities which modify land use including agriculture, mining and wastewater dis-

charges cause direct changes in the structure of microbial communities [9–10]. Studies based

on environmental DNA sequencing suggest that prokaryotes are biological monitors of

anthropogenic environmental change [11–12].

Knowledge of the factors that define communities, including the interactions that shape

community structure and dynamics, within a certain environmental matrix, are fundamental

to understand shifts related to habitat transformation [13]. Ecological analysis based on the

spatial distribution of diversity (α, β, γ) [14] is the basis to defining the emergent properties of

communities [15], and a relevant tool to monitor ecosystem function [16–18].

Microbialites are diverse microbial communities that precipitate carbonates, silicates and

sulfate minerals, through the interaction of their metabolisms with the environment [19–23].

Fossil microbialites (stromatolites) have been dated in ~3.5–3.7 Ga years [24–26] and repre-

sent the oldest evidence of life on Earth. Microbialites are present in modern aquatic environ-

ments, both freshwater and marine. Microbialites can be found in saline marine environments

such as the Hamelin Pool of Shark Bay (Western Australia), Cayo Cocos (Cuba) and in High-

borne Cay (Bahamas); in lacustrine environments including Pavilion Lake and Clinton Creek

(Canada), Lake Tanganyika (Africa), Lake Salda Golu (Turkey), Cuatro Cienegas and Lake

Alchichica (Mexico), Ruidera Pools (Spain) and Great Salt Lake (GSL) (United States) [13,

22–23, 27, 83], among others.

The genetic composition of microbialites has been studied with different approaches, and

Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Chloroflexi are their main

constituents [22, 27]. Moreover microbialites from Pavilion lake have a high abundance of

Proteobacteria (Alphaproteobacteria and Deltaproteobacteria) and Acidobacteria, principally

photoheterotrophic Rhodobacter, Rhodomicorbium, Phodopseudomonas and Rhodospirrillum,

heterotrophic Sphingomonas, nitrogen-fixing Bradyrhizobium and Rhizobium, dissimilatory

sulfate reducing Desulfobacterium and Desulfovibrio, heterotrophicMyxococcus, Cyanobacte-

ria such as Anabaena, Lyngbya, Nostoc and Oscillatoria [22]. While microbialites from hyper-

saline Storr’s lake (Bahamas) have high abundance of Chloroflexi, Deltaproteobacteria and

Spirochaetes [28]. Microbialites from Great Salt Lake are dominated by Alteromonadales,

Oceanospirillales, Flavobacterales, Cytophagales, Chlorococcales and Chromatiales, with

archaeal represented byHalorubrum sp., Halobacterales and Haloferacales [13]. In Mexico,

there are several environments that harbor microbialites which share similar genetic composi-

tion at the phylum level, although each microbialite is different at the species level. We now

know that microbialites in Mexico show differences in their genetic composition related to

geographic region and that conductivity, concentration of nitrate and temperature are among

the variables that structure their composition [8].

Microbialites constitute complex communities in which all pathways needed for biomass

formation and recycling are present. Nitrogen fixation associated to heterocystous cyanobacte-

ria, which can couple this pathway with oxygenic photosynthesis, is a fundamental metabolism

in microbialites [29–30]. Cyanobacteria are fundamental microbialite builders, through the

coupling of photosynthesis, nitrogen fixation and Extracellular Polymeric Substance (EPS)

matrix synthesis [31–32]. Aerobic and anaerobic heterotrophic bacteria are associated with

the cyanobacterial biofilm and contribute to biomass cycling [22, 33]; further, the role of sul-

fur-bacteria has been related to mineral precipitation in microbialites [34–36].

Bacalar Lagoon has been documented as the largest freshwater microbialite ecosystem in

the world [37–38]. Several authors have studied Bacalar microbialites [23, 30, 37–39], but have

focused on specific areas of the lagoon. Bacalar microbialites have been described as actively

fixing N2 during the daytime [30], and harbor a vast diversity of cyanobacteria and sulfur
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bacteria [38–39]. In this study we wanted to answer if habitat transformation of Bacalar

Lagoon influences microbialite community structure and composition. We characterized the

microbiome of Bacalar microbialites throughout the lagoon and analyzed if there are structur-

ing effects on their prokaryote composition related to environmental variables, following a

next-gen sequencing approach of the V4 hypervariable region of the 16S rDNA gene.

Materials and methods

Study site

Bacalar is a karstic and freshwater lagoon located in the southeast of Quintana Roo, Mexico in

the Yucatan peninsula (Fig 1, S1 Table). The lagoon is a geological fault due to its orientation

and shape. Bacalar Lagoon, has been considered an oligotrophic system due to the low concen-

tration of nitrogen (N) and phosphorus (P), and is part of the Transverse Coastal Corridor, a

complex water system, where a series of karst freshwater lakes, lagoons and estuaries are con-

nected through underground water flows [40]. Temperature and pH range between 28–31˚C

and 7.7–8.2, respectively [27, 39, 41]. Hydrogeochemistry is characterized by higher concen-

tration of calcium (Ca2+) [37] and sulfate (SO4
2-), compared to other karstic lagoons in the

south of the Yucatan peninsula [39]. Bicarbonate concentration (HCO3
-) in southern Bacalar

Lagoon, is higher than marine levels, due to the presence of five sinkholes (locally known as

“cenotes”) that are sites of groundwater intrusion to the lagoon [37–38, 41]. Bacalar Lagoon

has a north-south and south-north water circulation pattern, that converges towards the mid-

dle of the lagoon, and flows towards the Bay of Chetumal to the East [38].

Sample collection

Microbialites were collected in 15 sites along the western shore of Bacalar Lagoon along a

north-south gradient. Cores of approximately 2.5 cm in diameter were sampled in duplicates

from individual microbialite heads, and three to five individuals per site were sampled (Fig 1,

S1 Table). Samples were taken with gloves and sterile material to avoid cross-site contamina-

tion. Collection was carried out during the spring of 2018. Samples were stored at 4˚C during

transport to the laboratory where they remained frozen at -70˚C until processed. All microbia-

lite samples were carried under collector permit PPF/DGOPA-113/14 awarded by SEMAR-

NAT, Mexico. Field studies did not involve endangered or protected species.

Three water samples (500 mL) were taken at each sampling point using Nalgene bottles,

previously washed with 15% HCl, and were filtered (0.22 μm Millipore membrane) in situ and

stored at 4˚C for dissolved nutrients analysis. In situ conductivity, pH and temperature were

measured using a YSI Professional handheld (YSI model Pro 30) and pH-meter (Hanna HI

9146).

The degree of tourist visitation per site was assessed during the sampling with interviews to

locals. A high level represents sites that have tourism throughout the year; medium represents

sites that only have tourists during holiday seasons; low represent sites that are seldom visited

by tourists.

Nutrient analysis and statistical analysis of environmental variables

Nutrient measurements were done with colorimetric methods using a UV-visible spectropho-

tometer (SHIMADZU, Model UV-1700). Ammonium, NOx (nitrites and nitrates), soluble

reactive silicate (SRSi) and soluble reactive phosphorus (SRP), were analyzed [42–43]. All anal-

yses were performed in triplicate in the Chemistry Laboratory at ECOSUR, Chetumal, Mexico.
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Principal Component Analysis (PCA) was used to describe the relationship between the

chemical variables measured in the water with each sampling location. The compiled data set

representing the environmental variables analyzed in this study was transformed into a "site x

variable" matrix. Euclidean distance and ordinations were plotted with FactoMineR and fac-

toextra in Rstudio [44].

Biogeochemical analysis

The biogeochemical analyzes of the microbialite fabric were carried out with different method-

ologies. For total carbon and nitrogen we used a soil analyzer (Thermo Scientific Flash 2000).

Barnard’s calcimeter method [45] was used for inorganic carbon analysis by the determination

of calcium carbonates. Total phosphorus was measured through solubilization by acid diges-

tion (HNO3/HClO4). Available phosphorus was determined with the Olsen method [46].

Organic matter and organic carbon were determined with Walkley and Black method [47].

Determinations were done in the Soils and Plants Analysis Laboratory, ECOSUR, San

Cristóbal.

X-Ray Diffraction (XRD)

For XRD analyses samples were cold dried (10˚C), homogenized with a pestle and agate mor-

tar and sieved through a mesh < 75μm. The measurement was made in the angular interval 2θ
from 5˚ to 80˚ in step scanner with a "step scan" of 0.003˚ and an integration time of 40 sec per

step, using double-side aluminum holders (unoriented fractions). Each diffractogram was

Fig 1. a) Location of Bacalar Lagoon, Mexico and microbialite sampling sites for this study; b) Example of

morphology of microbialites from Bacalar Lagoon; c) cross-section of microbialites from Bacalar Lagoon, indicating

sampling sites.

https://doi.org/10.1371/journal.pone.0230071.g001
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obtained in a diffractometer (Empyrean) equipped with a Ni filter, a monochromator, a thin

tube focus copper and PIXcel3D detector. The diffraction patterns were analyzed with the

HighScore software (version 4.5) with reference patterns from the ICDDPDF-2 and ICSD

databases. All determinations were done in the X-Ray Diffraction Laboratory, Institute of

Geology, UNAM.

Total DNA extraction and 16S rDNA amplification

DNA extractions of microbialite samples (0.25 g) were done in triplicate using the DNeasy

PowerSoil1 Kit (Qiagen) following the manufacturer’s instructions. Amplifications of the 16S

rDNA V4 region were done following an established protocol [48]. Each sample was amplified

in three independent PCR reactions. PCR conditions were: 98˚C for 30 s followed by 35 cycles

of 95˚C for 30 s, 52˚C for 40 s, and 72˚C for 90 s, and a final elongation step of 12 min at 72˚C,

then kept at 4˚C. PCR products were pooled and purified with Ampliclean carboxyl-coated

magnetic beads (NimaGen, NDL). The purified amplicon library was quantified with a

QUBIT fluorometer (Promega, USA). The amplicon library with 20 ng/μl sample was

sequenced on an Illumina MiSeq 2 x 300 platform (Yale Center for Genome Analysis, CT,

USA).

Analysis of Illumina 16S rDNA V4 sequences

The 16S rDNA V4 sequences of 90 samples of microbialites collected throughout Bacalar

Lagoon, were deposited in the GenBank under BioProject PRJNA 550210. In addition, the

data used during the analyses are available in the Open Science Framework: https://osf.io/

zme9y/. Sequences were denoised, chimera and singletons were removed, then sequences were

assigned into ASVs (Amplicon Sequence Variants) in QIIME2 (v.2018.6) [49] and truncated

at position 200 with DADA2 [50] using the plugin qiime dada2 denoised-paired. ASVs repre-

senting less than 0.01% of the sequences across the dataset were eliminated. Taxonomy was

resolved using the SILVA database (release 132–99% OTUs, 515–806 region), with the feature-
classifier classify-consensus-vsearch (v2.9.0) plugin [51]. Mitochondrial and chloroplast

sequences were filtered out from the feature table before rarefaction. Rarefaction was done at

10,000 ASVs per sample, resulting in the removal of 14 samples that had less than 9,000

sequences. The total dataset includes 90 samples for 15 sites.

After QIIME analyses, all sequence data were analyzed using multivariate correlational and

ordination methods in the R statistical environment (version 3.6.2), for this, we used Phyloseq

R [52]. We considered using the R markdown document that contains the complete com-

mands for the analysis which is available here: https://github.com/YanezAlfredo/The-

microbiome-microbialites-in-Bacalar-Lagoon-Mexico.git. The weighted Unifrac matrix was

used to calculate the dissimilarity between the groups (D). The associations between environ-

ment and prokaryote community structure from different sites are shown using a constrained

multidimensional scaling by Canonical Analysis of Principal Coordinates (CAP) based on

weighted unifrac distance dissimilarity [53]. The differences between regions in the lagoon

was analyzed using the PERMANOVA approach [54], implemented in “vegan” as the ADO-

NIS function using R package.

The ASV table was used to construct the biological matrix of genetic diversity based on 16S

rDNA taxonomy. The alpha diversity indices such as species and Shannon index were calcu-

lated with the R package “vegan” [https://cran.r-project.org, https://github.com/vegandevs/

vegan]. Wilcoxon tests were used to test for group differences in microbial diversity. A Venn

diagram was created to compare the North-Center and South-Center regions obtained by uni-

frac weighted analysis, using the DrawVenn tool available online (http://bioinformatics.psb.
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ugent.be/webtools/Venn/).The total sum of-squares of the community composition matrix

was partitioned into additive components of species (ASVs) to obtain their contributions to

beta diversity (SCBD) and the local contributions of individual sampling units to beta diversity

(LCBD) [55]. Following Legendre and De Cáceres [56], we first transformed (Hellinger) the

species abundance per site matrix and then we calculated multiple-site β-diversity indices

(betapart) [57]; LCBD and SCBD indices were ran in adespatial [58], ade4 [59] and with beta.

div functions in “vegan” [56].

Results

The physicochemical environment surrounding microbialites in Bacalar

Lagoon

The survey conducted in Bacalar Lagoon suggested an overall north-south gradient defined by

higher conductivity and SRSi in the north, while the southern region had higher values of

bicarbonate and available forms of nitrogen (ammonium, NOx), with similar values of sulfate

and calcium throughout the lagoon (S1 Table). In the PCA, two general gradients were

observed in Bacalar Lagoon. A north-south gradient based on PC1, where the following corre-

lations were made: SRSi to HCO3
—NOx (NO3

- + NO-
2) with correlation coefficient values of

-0.52 to 0.49, 0.52 respectively. The second gradient is interpreted on PC2, from the central

zone towards the north with variables such as Ca-NH4
+-SO4

2- to Conductivity-SRP, correla-

tion coefficient values of -0.55, -0.042, -0.34 to 0.42, 0.45, respectively. None of the variables

represented a strong component to explain the ordination (Fig 2).

Nonetheless, certain variables separated these regions, including bicarbonates, NOx

(NO3
- + NO-

2) and ammonium in the center-southern sampling sites (B 12–15) which

increase near urban areas (Fig 2). Likewise, an analysis of previous research in the lagoon

showed that concentrations of nitrates and ammonium increased two orders of magnitude

between 2008 and 2018 in the southern sampling sites [8, 30, 60, this study] (Table 1).

Microbialite mineral and biogeochemical composition

Bacalar Lagoon microbialites were composed mainly of calcite (CaCO3) (~97%) and other

minerals (3%) such as quartz (SiO2), siderite (FeCO3), kieserite (MgSO4) and ternadite

(Na2SO4) (S2 Table). Regarding the biogeochemical characteristics of microbialites, we

observed that no regional differences existed. All structures had similar values with respect to

organic matter (om), nitrogen and carbon (S3 Table). The C:N ratio suggested a productive

community.

Microbialite genetic composition (16S rDNA V4)

A total of 4,167,392 reads were obtained for the 16S rDNA V4 hypervariable region. The mean

number of sequences per site was 40,071. To include samples from all sites we defined a rare-

faction at 10,000 sequences per subsample per site. All the microbialites were fully character-

ized at this sampling coverage.

The prokaryote genetic composition at the phylum level indicates that 99.5% of all reads

were assigned to Bacteria (Fig 3) and 0.5% to Archaea (S1 Fig). The main bacterial phyla

showed great heterogeneity among sites: Proteobacteria (40–80%) was the most abundant,

where class Gammaproteobacteria had the largest abundance at certain sites, (5–79%), fol-

lowed by Alphaproteobacteria (14–25%) and Deltaproteobacteria (1–10%); Chloroflexi (7.6–

14%); Cyanobacteria (1–11%); Firmicutes (1–23%); Bacteroidetes (7–8%); Planctomycetes (1–
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8%) and Verrucomicrobia (1–4%). Phyla with low abundances in all sites included Acidobac-

teria, Actinobacteria, Nitrospira, Chlamydiae, Spirochaetes, and Gemmatimonadetes.

The UniFrac weighted distance matrix separated Bacalar microbialites in two phylogeneti-

cally differentiated microbial communities. This result allowed us to classify the 15 sampling

sites into two regions (S2 Fig). The first region was defined as North-Center and included sites

Fig 2. Spatial ordination (PCA) of environmental variables associated to microbialite sampling sites in Bacalar Lagoon.

https://doi.org/10.1371/journal.pone.0230071.g002

Table 1. Available nutrient concentrations (nitrate, ammonia and soluble reactive phosphorus) in Bacalar Lagoon.

Region Year NO3
- NH4

+ SRP Reference

South 2008 0 0.036 BLD Beltrán et al., 2012

South 2009 0.15 0.11 BLD Centeno et al., 2012

South 2016 1.94 0.15 BLD Tobón-Velázquez et al., 2018

South 2018 1.42 0.12 0.07 This study

North 2018 0.38 0.06 0.08 This study

The concentration of nutrients are presented in mg/l. BLD, below the limit of detection.

https://doi.org/10.1371/journal.pone.0230071.t001
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B 1–3 and B 6–9, which represented 80% of the global microbial diversity and were very simi-

lar between them (D = 0.82). The second region was defined as South-Center with sites B 4–5

and B 10–15. Overall, the CAP of the genetic diversity matrix and environmental dataset, sug-

gested that the factors that correlate in the South-Center region of Bacalar Lagoon with micro-

bialite diversity are the concentrations of available forms of N (NO3
- and NH4

+, respectively)

(Fig 4). PERMANOVA analysis also indicated that the differences between regions in Bacalar

Lagoon were significant (p<0.05).

A Mann-Whitney-Wilcoxon test was conducted to compare the richness and diversity indi-

ces between the North-Center and South-Center regions. Several diversity indices demon-

strated that the microbiome diversity of the North-Center was significantly greater than that

observed in the South-Center region (p< 0.01) (Fig 5). The Shannon index indicated that the

sampling sites North-Center of the town of Bacalar had a greater bacterial diversity (H´ = 5.7),

and the sites to the South-Center had 42% less diversity (H' = 3.3).

The following groups defined microbialite bacterial diversity within the North-Center

region in 66% of the relative abundance: Alphaproteobacteria (25%), Chloroflexi (14%),

Fig 3. Microbialite bacterial genetic composition (16S rDNA V4) at the phylum level.

https://doi.org/10.1371/journal.pone.0230071.g003

PLOS ONE The microbiome of modern microbialites in Bacalar Lagoon, Mexico

PLOS ONE | https://doi.org/10.1371/journal.pone.0230071 March 25, 2020 8 / 22

https://doi.org/10.1371/journal.pone.0230071.g003
https://doi.org/10.1371/journal.pone.0230071


Deltaproteobacteria (10%), Cyanobacteria (11%), Bacteroidetes (8%) Planctomycetes (8%) and

Verrucomicrobia (4%). On the other hand, the microbialites that develop in the South-Center-

region of Bacalar Lagoon, showed less abundance of bacterial groups, while 50% of the bacte-

rial diversity was shared with their North-Center counterparts. Changes in composition

between microbialites of both regions was characterized by a decrease in Alphaproteobacteria

(14%), Chloroflexi (7.6%), Cyanobacteria (1%) and Deltaproteobacteria (1%) in the south. Bac-

teria that make up to 64% of the total diversity in microbialites were represented by Gamma-

proteobacteria (41%) and Firmicutes (23%) (Fig 3, Fig 6A–6J). Cyanobacteria, which are

fundamental components of microbialites, shared 50% of their diversity between regions, with

an average abundance of 10% for the North-Center and 1% for the South-Center. Shared cya-

nobacteria among all sites included Nostocales (Calothrix, Rivularia, Scytonema, Nostoc,Mas-
tigocladopsis), Chroococcales (Chroococcidiopsis), Oscillatoriales (Aliterella, Lyngbya,

Leptolyngbya, Phormidium). Cyanobacteria in the northern region had 16 exclusive species

including Calothrix, Geitlerinema, Gloeomargarita, Leptolyngbya, Nostoc, Oscillatoria and Scy-
tonema, among others, while the south did not show exclusive species (Fig 6A). Archaea have

been reported as regular components of microbialites, yet their contribution is not fully under-

stood. Archaea represented 0.5% and 0.2% of the total diversity in north and south

Fig 4. Constrained Analysis of Principal coordinates (CAP) based on Weighted-Unifrac and environmental variables.

https://doi.org/10.1371/journal.pone.0230071.g004
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microbialites, respectively. Six phyla (Altiarchaeota, Asgardaeota, Diapherotrites, Euryarch-

aeota, Nanoarchaeaeota and Thaumarchaeota) were identified in this study. Again, the micro-

bialites in the North-Center had the greatest diversity, where Heimdallarchaeia,

Woesearchaeia and Nitrososphaeria were the most abundant (Fig 6J).

To elucidate why these significant changes in community structure were occurring and

which taxa were associated with variations at each site, we used the LCBD and SCBD metrics,

as proposed by Legendre and De Cáceres [56]. The highest and most significant differences in

LCBDs were found at sites B 5, B 12 and B 13 (p<0.05). The SCBD showed that Pseudomonas,
Aeromonas, Stenotrophomonas, Acinetobacter, Bacillus, Chryseobacterium, Achromobacter,
Brevundimonas and Bacillus were bacterial genera that contributed mostly to community

structure substitution.

Fig 5. Observed counts and alpha diversity measured by the Chao1 and Shannon indices in the microbialites of Bacalar Lagoon: North-Center (sites B 1–3 and B

6–9) and South-Center (sites B 4–5 and B 10–15).

https://doi.org/10.1371/journal.pone.0230071.g005
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Discussion

The Yucatan peninsula is an emerged carbonated continental platform. The northern region

emerged during the Paleogene and Neogene, while the south began to rise in the Oligocene

[61]. There are no rivers in the Yucatan peninsula and karst features including channels and

sinkholes (cenotes) are common [62]. In particular, the southeastern Yucatan peninsula is

located in an evaporite region [63], that has a high ecological connectivity and is the area

where the greatest number of sites with microbialites are reported: Chetumal Bay [64], Muyil

(Sian Ka´an) and Bacalar Lagoon [8, 30].

Fig 6. Venn diagram of main prokaryotes. (a) Cyanobacteria, (b) Chloroflexi, (c) Verrucomicrobia, (d)

Planctomycetes, (e) Alphaproteobacteria, (f) Gammaproteobacteria, (g) Deltaproteobacteria, (h) Bacteroidetes, (i)

Firmicutes, (j) Archaea.

https://doi.org/10.1371/journal.pone.0230071.g006
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The hydrogeochemical dynamics of Bacalar Lagoon are considered unique, with a high

rate of constant exchange between the surface and groundwater flows [40]. The concentration

of bicarbonate-NOx and the values of conductivity-SRSi were variables that defined a

gradient in Bacalar Lagoon. There are sites around the world that host microbialites with

hydrogeochemical characteristics similar to those of Bacalar Lagoon (carbonate saturation),

such as Pavillon Lake in Canada; Great Salt Lake in the United States; Satonda in Indonesia

[27]. The north zone of tBacalar is characterized by higher electrolytic conductivity, due to the

connectivity with other lagoons such as Chile Verde, Salada and the Bay of Chetumal [40, 65–

66]. The south of Bacalar, has higher bicarbonate concentration than the North and has higher

concentrations of NOx [30, 60]. Sulfates are homogeneous throughout the lagoon, as

described by Johnson et al., [39] and Beltrán et al., [30]. While, Sánchez et al., [66] reported

that southern Quintana Roo has high rates of infiltration of nutrients—such as nitrates- and

there is a high risk of contamination of the aquifer by human activities, such as agriculture.

Economic development and population growth are direct threats to freshwater ecosystems

[67–68]. Nitrogen is often the limiting nutrient in aquatic marine environments, and P, in

karst regions, is extremely low due to interactions with carbonate [69]. The concentration of

ammonium ions and NOx is increasing in Bacalar Lagoon, especially near the city and south

of the lagoon [8, 39, 60, this study]. The increasing presence of available forms nitrogen is one

of the main causes of water quality change in freshwater bodies [70]. We are observing a

change in the natural oligotrophic conditions of Bacalar Lagoon. Other sites with increased

eutrophication have shown that the productivity of the system alters the interactions of micro-

bialites with eukaryotes, favoring competition the organisms such as algae, bivalves and dia-

toms [71].

Biogeochemical and mineralogical and characterization of Bacalar Lagoon

microbialites

Microbialite are spatially distributed throughout Bacalar Lagoon. Bacalar Lagoon’s hydrogeo-

chemical dynamics make it different from other sites with microbialites in seawater and conti-

nental environments. All the microbialites analyzed in Bacalar Lagoon share mineral

composition (CaCO3, ~97%). Valdespino et al., [23] reported a similar mineralogy for the

microbialites of Bacalar Lagoon and Cuatro Cienegas Basin, which are water bodies of karstic

origin. Bacalar Lagoon, which is located in the evaporative hydrogeochemical region [62],

presents carbonate dissolution processes of the subterranean water tunnels that reach the

lagoon and the walls (carbonate rock) of the cenotes within the lagoon, favoring the saturation

of bicarbonates [37, 72]. The development of larger microbialites in the south of Bacalar might

be associated to bicarbonate saturation. Chagas et al., [27] also report for lacustrine systems

with microbialites such as Lake Pavilion, Lake Van, Cuatro Cienegas Basin, Alchichica and

Clifton, that calcite minerals and aragonite are the main minerals in microbialites.

Depending on the chemistry of the water and the bacterial community, microbialites pres-

ent a diverse range of minerals, although generally they have been reported in greater percent-

age aragonite, hydromagnesite, gypsum and calcite [23, 73]. Cyanobacteria such as

Pleurocapsales and Chroococcales and Alphaproteobacteria are associated with the formation

of aragonite in microbialites from Lake Alchichica (Mexico), a Mg-rich hyperalkaline crater

lake (pH 8.9), while in Cuatro Cienegas and Bacalar, a S-rich karstic system, filamentous cya-

nobacteria and Sulfate Reducing Bacteria (SRB) favor calcite precipitation [39]. The hydrogeo-

chemical conditions in Bacalar Lagoon favor the presence of bacterial groups (including

cyanobacteria and S-cycling bacteria) that are involved in carbonate precipitation processes

[20, 22, 74] and SRB reduce sulfates to sulfides with a consequent oxidation of organic carbon
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to bicarbonates. They contribute to a state of saturation, which occurs within the EPS matrix

(associated mainly to cyanobacterial activity), precipitated by cyanobacteria in an alkaline pH,

where calcium ions finally precipitate as CaCO3 [33, 75]. We report the same groups of SRB

(Desulfovibrionales, Desulfobacteraceae, Syntrophobacteraceae, Desulfobulbaceae and Desul-
fomonile), distributed in all Bacalar Lagoon sites and reported by Johnson et al., [39]. All of

these SRB have larger abundances in microbialites of the North-Center region.

In addition, Bacalar Lagoon microbialites have been described for their interactions with

organisms such as gastropods (Pomacea flagellata), bivalves (Mytilopsis sallei), nematodes and

mangroves [38, 76]. Johnson et al., [39] reported the presence of Cyanobacteria and Rhizo-

biales, a nitrogen-fixing Alphaproteobacteria, in the microbialites associated with mangroves

in their study sites in southern Bacalar Lagoon.

Bacterial community structure of the microbialites of Bacalar Lagoon

This study proposes the presence of two phylogenetically differentiated communities in Baca-

lar Lagoon microbialites. Generally, studies mention that population differences occur in bio-

geographic patterns with the differentiation of niches at large geographic scales [77]. However,

within ecosystems, biogeographic regionalization is possible due to the presence of gradients

that induce changes in biological communities [3]. Currently, anthropological activities can be

considered a selective force, either physically (implementation of infrastructure) or by chemi-

cal alteration, which includes eutrophication of water bodies related to nutrient availability

[12].

The microbialite sites that represent the South-Center region of this study are located near

the city of Bacalar, and to the south of the lagoon. These sites are associated to urban develop-

ment in the shoreline of the lagoon which lack infrastructure for domestic water treatment,

have leaking septic systems, agriculture and intense tourist activity, that are causing trophic

affectation in the system [68, 78–80]. Alterations in water quality was related to changes in the

structure of the microbiome of microbialites between the North-Center and the South-Center

regions Bacalar Lagoon. Recently, the work of Lindsay et al., [13] reported that in Great Salt

Lake (GSL), USA, the bacterial community of microbialites responded to anthropogenic per-

turbation of the system related to construction of a railroad causeway. These authors demon-

strated that microbialites in less disturbed areas of GSL have a greater abundance of

cyanobacteria and diatoms compared to the almost total absence of these organisms in the

microbialites where disturbance exists. Therefore, the monitoring of the community diversity

of the microbialites, could be a strategy to know how bacterial groups react to the processes of

alteration of the environment [81], either before a physical affectation or through the chemical

changes of the water as in the case of Bacalar Lagoon.

Microbialites in the world maintain, regardless of their geographical region, a similar com-

position at the phylum level [8, 23]. Actinobacteria, Bacteroidetes, Cyanobacteria and Proteo-

bacteria [8, 37–39], are common components of microbialites. Bacalar Lagoon microbialites

in the North-Center region have a high diversity (H´ = 5.7) (Fig 5), which contributes to

understand that oligotrophy is not a limiting factor in the development of complex communi-

ties [81]. The decrease of almost half of the bacterial diversity in the South-Center region is

associated to dominance of specific microbes of the Gammaproteobacteria and Firmicutes

groups.

Cyanobacteria were most abundant in the North-Center region. Considering that the

South-Center region of Bacalar Lagoon is suffering an increase of nutrients due to anthropo-

genic activities, our results coincide with other works where it is reported that cyanobacteria

are more diverse in oligotrophic waters than in eutrophic waters [82]. Cyanobacteria, a
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phylum that is relevant in EPS formation and has been considered to form nucleation sites for

carbonate precipitation [83–84], showed a greater abundance and diversity in the North-Cen-

ter microbialites of Bacalar Lagoon. The North-Center region also presented a higher diversity

of Planctomycetes and Verrucomicrobia (~8.4% and ~3.8%, respectively), both forming part

of a taxonomic super phylum called PVC [85–86], described with a relative abundance

between 7–12% in different microbialites of the world [8, 86]. Recently, the presence of these

bacteria was correlated in places where calcite crystals predominated [23]. Chloroflexi, an

anoxygenic phototrophic phylum, which participates in the "alkaline machinery" which in

combination with oxygenic photosynthesis by cyanobacteria and sulfate reduction, promote

the precipitation of carbonated minerals [20, 36], was also more abundant in the North-Center

region. This would suggest that loss of cyanobacterial, PVC and chloroflexi diversity could

affect microbialite growth and maintenance in the South-Center region of Bacalar.

Further, the microbiome of microbialites in the South-Center region presented a high

abundance of Firmicutes (~23.3%). This group occupies between 0–2% of relative abundance

in other microbialites of the world [87], and is thus, not common in healthy microbialite fab-

rics. Firmicutes generally have low percentages in oligotrophic water conditions and their

abundance may suggest an environmental pollution processes [82], as reported for Gonghu

Bay, China, where one of the causes of increased nutrients was domestic wastewater [88]. The

class (eg. Bacilli) of the Firmicutes are used as indicators of fecal pollution in freshwater and

their main sources are untreated domestic waters [89], as may be happening in the South-Cen-

ter region of our study.

Changes in the bacterial community of microbialites in Bacalar Lagoon

It is important to define the factors that are causing the environmental disturbance of a system,

especially if it is due to human activities [90]. We used the LCBD-SCBD metrics and a CAP to

associate the environmental variants of home site (niche) and the association with their bacte-

rial community (dispersion) [91]. Legendre and De Cáceres [56] mention that high values of

LCBD indicate the degree of ecological singularity of each sampling site. From this perspective,

sites with high values of LCBD may contain unusual species or are sites that respond to human

disturbance [92]. In both cases, the use of beta-diversity metrics can be a starting point for

decision-making in conservation or ecological restoration scenarios [93]. In this study, the

highest values of LCBD were related to sites in the South-Center region. The sites B5, B 12 and

13, obtained the highest LCBD values. Site B5 is a particular case of microbialite growth that

has a strong correlation in the CAP to ammonium. Further research is needed to identify the

sources of ammonium to this specific area in Bacalar Lagoon that shows an increase in domes-

tic and tourist developments.

The Mexican Caribbean is an area whose economy depends mainly on tourism related to

its natural resources [60, 94]. Particularly within Quintana Roo, places like Cancun and

Playa del Carmen that have intense tourist activity, show affectations to the water quality of

the underground aquifer systems and cenotes [95–96]. Currently, Bacalar presents an

increase in tourist occupation. According to the Mexican Government office of statistics

(INEGI-SecTur, 2019) Bacalar Lagoon received approximately 90,000 tourists in 2018,

which was twice the amount of tourist visitation in 2017 (45,000). This phenomenon is

likely to continue and the infrastructure to accommodate these visitors is not available.

Tobón-Velázquez et al., [60] mentioned that the lack of infrastructure regulation from the

government could result in the degradation of the water quality of Bacalar Lagoon, hence

affecting the microbialites.
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A direct correlation is reported between the most visited sites for tourists and the lowest

prokaryote diversity. In addition, the sites with the lowest diversity that are located at the

South-Center region of the lagoon, are the same sites that have been historically used for tour-

ism. These results postulate that the changes in the microbiome of microbialites along Bacalar

Lagoon are probably associated to a greater extent, with poor water quality due to high concen-

trations of ammonium and NOx [80, 97].

Disturbance in oligotrophic water conditions affect the structure of

microbiome in the microbialites of Bacalar Lagoon

Environmental problems in aquatic ecosystems related to nutrient enrichment are observed in

different parts of the world [79, 98]. In particular, in karstic environments (such as the Yuca-

tan peninsula), where groundwater is flowing through fractures, and complex cave systems

interconnect water bodies, such as lagoons and coastal environments [99]. Groundwater dis-

charge has been identified as an important source of nutrients in many aquatic ecosystems of

the peninsula [100]. It should be noted that all human activity in the peninsula (settlement,

intensive fertilizer farming practices, deforestation, tourism, lack of wastewater treatment) has

a direct impact on nearby water bodies [101–102], and affects the structure of mangrove com-

munities, coral reefs, sea grasses [103], and microbialite diversity.

Understanding the changes in the structure of microbial communities is crucial, as this

information may provide insights of the system and later be used as bioindicators for assessing

environmental problems [104]. Currently, values for available SRP in Bacalar Lagoon remain

close the detection limit [30, 60], but the different forms of available forms of nitrogen (NH4
+,

NO3
-) are alarmingly increasing [8, 60] (Table 1). After an environmental disturbance, the

possibility of a community of returning to its previous state will depend on its genetic and

physiological diversity [105], yet so far, no research has demonstrated that microbialite com-

munities can recover in the short term.

A hypothesis that rises from this study is that microbialites in Bacalar Lagoon have the

same phylogenetic origin, yet disturbances in water quality detected in the South-Center

region are causing loss of biodiversity. Another possible explanation is that high concentra-

tions of carbonate present in the South-Center region, promote larger and faster microbia-

lite growth, which is associated to a different community structure, differing from their

North-Center counterparts. So far, we do not have elements to prove any of these open

questions, but we do know that microbialites have fundamental biological constituents,

where Cyanobacteria and bacteria associated to S-cycling are the main contributors to

microbialite formation and growth. We still need to understand the dynamics of the com-

munities that form microbialites, while trying to document their transformations in fragile

habitats, like the tropical lagoon that is represented in this study. The increase in available

forms of nitrogen is preoccupying to say the least since our research shows this is associated

to lack of water treatment and planned agriculture in the region. How much can the native

communities, represented in this study by microbialites, deal with the rate of change that

human activities cause in the environment?
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Roo, México. Rev Mex Cienc Geol. 2015; 32(1): 62–76.

73. Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, et al. The role of microbes in

accretion, lamination and early lithification of modern marine stromatolites: Nature. 2000; 406(6799):

989–92. https://doi.org/10.1038/35023158 PMID: 10984051

74. Castanier S, Le Métayer-Levrel G, Perthuisot JP. Ca-carbonates precipitation and limestone genesis

—the microbiogeologist point of view. Sediment Geol. 1999; 126(1–4): 9–23. https://doi.org/10.1016/

S0037-0738(99)00028-7

75. Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, et al. Sulfate reducing bacte-

ria in microbial mats: changing paradigms, new discoveries. Sediment. Geol. 2006; 185(3‑5): 131–

145. https://doi.org/10.1016/j.sedgeo.2005.12.008
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