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The differences in how our brain is connected are often thought to reflect the differences

in our individual personalities and cognitive abilities. Individual differences in brain

connectivity has long been recognized in the neuroscience community however it has

yet to manifest itself in the methodology of resting state analysis. This is evident as

previous studies use the same region of interest (ROIs) for all subjects. In this paper

we demonstrate that the use of ROIs which are standardized across individuals leads to

inaccurate calculations of functional connectivity. We also show that this problem can be

addressed by taking an individualized approach by using subject-specific ROIs. Finally

we show that ROI selection can affect the way we interpret our data by showing different

changes in functional connectivity with aging.
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Introduction

An important aspect of network analysis and graph theory in brain imaging is node definition
(Smith et al., 2011; Shen et al., 2013). These nodes represent neural populations in the brain which
have shared structural or functional relevance (Sporns et al., 2004; Bullmore and Sporns, 2009).
Nodes that share a common functional purpose are connected among one another to form a
network. Recently, studies have utilized resting state functionalmagnetic resonance imaging (fMRI)
to obtain functional network properties of the whole brain (Salvador et al., 2005; He et al., 2009;
Wang et al., 2010). These studies have shown that fluctuations in the spontaneous blood oxygen
level dependent (BOLD) signal exhibit a high degree of correlation between regions with known
functional similarities (Biswal et al., 1995; Damoiseaux et al., 2006; Raichle, 2011). Therefore,
resting state fMRI is able to map functional connectivity in the absence of any overt task (task-free)
during the process of image acquisition. The simplicity in its design, image acquisition and analysis
has made resting state analysis popular in fMRI studies. Resting state analysis has been useful in
examining changes in brain connectivity with age (Stevens et al., 2009; Supekar et al., 2009; Ferreira
and Busatto, 2013). The human lifespan is characterized by the initial development and later decline
of cognitive abilities from adolescence through aging. These changes in our cognitive abilities are
thought to be representative of changes in the functional organization of our brains.

In graph theory, nodes are created using a seed-based approach in resting state analysis.
Regions of interest (ROIs) in the brain are selected, and the time-series of the BOLD
response is extracted to represent the resting state neuronal activity (Fox and Raichle, 2007).
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The extracted time-series are then correlated with one another to
determine connectivity among the different nodes. The methods
and parameters of ROI selection are often different across studies
(Poldrack, 2007). Consequently, with resting state analysis, there
is no established standard for ROI selection. ROIs are usually
selected based on brain atlases, group independent component
analysis (ICA), or previous functional studies (Cole et al., 2010).
Additionally, in resting state fMRI, it is common to use the same
ROIs for all subjects in a given study. This poses a problem
because using ROIs that are the same, or standardized across
subjects, ignores the issue of subject variability. While the brain,
for the most part, shares common functional topographies across
subjects, they are not identical for every person (Mohr and
Nagel, 2010; Mueller et al., 2013). Thus, while a specific region
of the brain might be a good representation of a functional
region for one individual, it is highly probable that it will be
misrepresentative for another. As such, it becomes debatable
whether the extracted time series from a given ROI is the actual
desired signal of interest (Shen et al., 2013).

We propose that using the same ROIs for all subjects
is fundamentally flawed because it assumes spatial similarity
between subjects. In addition, since these ROIs can be inaccurate
representations of the desired signal of interest, the measures
of connectivity that result from these ROIs can be inaccurate
as well. In this study we will show the differences in calculated
functional connectivity using different ROI selection methods.
We show that methods which use a standardized set of ROIs for
all individuals result in lower calculated functional connectivity
and higher variance than an individualized approach. Finally, we
show that this process of ROI selection could affect the way data
could be interpreted in aging which can result in entirely different
conclusions. From the results of our study we propose that ROI
selection should be conducted individually for a more accurate
analysis of resting state functional connectivity.

Methods

Subject Demographics
Twenty-two right handed young adults, ages 20–32 years old,
and 20 elderly cognitive normal subjects, ages 65–80 years old
underwent 5min resting state fMRI scans. Data was acquired
at Samsung Medical Center and this study was approved by
the Institutional Review Board at Samsung Medical Center.
All participants and/or caregivers provided written, informed
consent for participation in this study.

MRI Acquisition
A 3.0 Tesla scanner (Model: Philips Intera Achieva, Phillips
Healthcare, The Netherlands) was used for resting state MRI
acquisition. Participants were instructed to lay motionless with
their eyes open during image acquisition. The scans involved
the acquisition of 35 axial slices using a gradient echo planar
imaging pulse sequence: voxel size (RL, AP)= 2.875× 2.875mm
with a slice thickness of 4mm. TE = 35ms; TR = 3000ms; FOV
(RL, AP, FH) = 220 × 140 × 220mm. T1-weighted anatomical
images were obtained for each participant (TE = 10ms; TR =

1114ms; FOV (RL, AP, FH) = 220 × 220 × 132mm, REC voxel
size= 0.43× 0.43× 0.43mm).

Pre-processing
Pre-processing of the resting state fMRI and structural MRI
data was performed using MRIcron (http://www.cabiatl.com/
mricro/mricron/index.html) and the FMRIB Software Library
(FSL, www.fmrib.ox.ac.uk/fsl/). MRIcron converted the raw
fMRI images to a compressed FSL format. Image pre-processing
consisted of skull stripping using the Brain Extraction Tool
(BET), splice timing correction, temporal high-pass filter
(Gaussian-weighted least-squares line fitted with sigma =

100.0 s), MCFLIRT motion correction and spatial smoothing
(using a Gaussian kernel of FWHM 4mm). FLIRT (FMRIB’s
Linear Image Registration Tool) was used to register and
normalize the images to the Montreal Neurological Institute
(MNI) template (2-mm resolution). Group measures of head
movement was measured using the FSL Motion Outliers with
framewise displacement (FD). Additional motion correction
steps and nuisance regression was not performed. For validation
purposes, white matter and CSF signals are identified from ICA
and regressed out using partial correlation.

Comparison of ROI Selection Methods
To show the effects of ROI selection on the calculated resting
state connectivity, we calculated the intrinsic connectivity of the
anterior default mode network (aDMN) using three different
methods for ROI selection (Supplementary Figure 1). The first
two methods each use a conventional set of ROIs in which
each set is standardized across subjects. In the first method,
ROIs were determined from the results of a previous study that
looked at the connectivity of the DMN (Watanabe et al., 2013).
These ROIs will be referred to as “literature ROIs” (Figure 1).
The secondmethod used group independent component analysis
(ICA) using the Multivariate Exploratory Linear Optimized
Decomposition into Independent Components (MELODIC)
toolbox in FSL (Beckmann and Smith, 2005). Group ICA was
run on the young subject group with output 30 components.
The seed coordinates were determined by the peak z-values in
the spatial maps of the targeted functional networks. Since these
ROIs were generated based on the data used in the study, these
ROIs will be referred to as “Group ROIs” (Figure 1). In the

FIGURE 1 | ROI location from three different methods. Figure shows the

location of each ROI for each method. Literature ROIs are shown in yellow and

group ROIs are shown in blue (A). In these two methods the ROIs are

standardized such that they are the same for every individual. Subject-specific

ROIs are shown in red (B). In this method the ROIs are different for every

subject as represented by the many ROIs in the figure. Each dot represents an

ROI in a given node for one specific individual.

Frontiers in Neuroscience | www.frontiersin.org 2 August 2015 | Volume 9 | Article 280

http://www.cabiatl.com/mricro/mricron/index.html
http://www.cabiatl.com/mricro/mricron/index.html
http://www.fmrib.ox.ac.uk/fsl/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Sohn et al. Individualized approach for resting fMRI analysis

third method, resting state networks for each individual subject
were reconstructed in a manner similar to the dual-regression
method (Filippini et al., 2009). However, in this case, instead of
spatially regressing the ICA spatial map, the time-series which
was associated with the target network was regressed directly
in each subject for network reconstruction. In other words, the
associated time-series for a network obtained in ICA is used to
reconstruct that network for a specific individual. To do this,
we took the time component of each target ICA network and
identified the time-series for each individual. These time-series
were then mapped individually using the FEAT toolbox in FSL
(Smith et al., 2004; Jenkinson et al., 2012). Seed coordinates were
determined by the peak z-values in the reconstructed networks
for each individual, which resulted in a unique set of ROIs for
each subject. These ROIs will be referred to as “subject-specific
ROIs” (Figure 1).

When seeding the aDMN, 6 × 6 × 6mm cubic ROIs were
drawn in each of the major node regions. These regions included
the left and right lateral parietal lobe (PLL, PLR), the posterior
cingulate cortex (PCC), the dorsal prefrontal cortex (dPFC), and
the left and right hippocampus (HCL, HCR).

To determine the effects that spatial location had on calculated
connectivity we calculate the average z-stat a given ROI had
in the reconstructed aDMN network for each individual. This
information gave the correlation to the aDMN of a region
of the brain that would be seeded using various methods.
Low z-stats indicated that the region of the brain seeded
had a low correlation with the aDMN, and high correlations
indicated high correlations with the aDMN for that individual.
In essence, a low average z-stat showed the incorrect seeding
of the aDMN and vice versa. This average z-stat was correlated
with average calculated connectivity with other nodes to
show the effect that incorrect seeding has on calculated
connectivity.

Connectivity between ROIs was obtained by extracting the
average time-series from each ROI and calculating the correlation
using Pearson’s correlation coefficient. Statistical significances
between methods of ROI selection were calculated using paired
t-tests. Visualization of ROIs and brain networks was performed
using the BrainNet software (Xia et al., 2013).

Graph Theory Analysis: Aging Effects
The accurate calculation of functional connectivity can have
significant implications in data analysis and interpretation. A
major area of interest in neuroscience is the study of how
functional connectivity in the brain changes with aging. To
examine changes during aging, an additional elderly subject
group of 20 subjects with no history of psychological illness
was included. Furthermore, to examine changes in major brain
network topographies, four additional networks were included
for analysis (Supplementary Figure 1). These networks included
the posterior DMN (pDMN), the left and right frontoparietal
network (FPNL, FPNR), and the salience network (SAL). For
each network, one seed region was created for each major node.
Four regions were seeded for the pDMN: the PCC, PFC, PLL,
and PLR. Seven regions each were seeded for both the FPNL and
FPNR: the PCC, ACC, left and right inferior parietal sulcus (IPSL,

IPSR), left and right inferior frontal gyrus (IFGL, IFGR), and the
respective occipital temporal cortex (OTC). Finally five regions
of the SAL network were chosen for seeding: the ACC, the left,
and right prefrontal cortex (PFCL, PFCR), and the left and right
insula (IL, IR). When seeding each region, 6 × 6 × 6mm cubic
ROIs were used. A total of 30 seeds were used for analysis.

To show how ROI selection can affect data interpretation,
three different methods for seed selection were used. The first two
methods used group ROIs and the third method used subject-
specific ROIs. The first two group ROIs were generated based
on the different subject groups; the first group ROI set was
derived from the young subject group and the second group
ROI set was derived from the old group. In other words, ICA
analysis was performed on both the young and old subject groups
separately. One set of ROIs was generated from the results of
each ICA analysis, resulting in a young subject or “young group
ROI” set and an elderly subject or “old group ROI” set. Subject-
specific ROIs were derived in the same way as the first section of
our analysis. Individual networks were reconstructed from ICA
to identify peak voxels within each major node in the various
networks for seeding. Time series are extracted from each ROI
and correlated with each other to obtain resting connectivity.

Connectivity between ROIs was obtained using a Pearson’s
correlation coefficient between the extracted time series from
each ROI to create a set correlation matrices for each method
in every subject. This results in every individual having three
correlation matrices, one calculated from ROIs derived from
young subjects, one from ROIs derived from elderly subjects,
and finally one derived from subject specific ROIs. Individual
correlation matrices are thresholded at r > 0.35 to create
binary matrices for graph theory analysis. The threshold was
set high intentionally so that only high correlation edges were
considered. Networks representations were constructed from
averaged correlationmatrices for each group which are converted
to binary matrices using a threshold of r > 0.35. Network
visualization was done using Pajek—Program for Large Network
Analysis (http://pajek.imfm.si/doku.php?id=pajek).

Significant differences between old and young groups were
calculated using unpaired t-tests. Bonferroni correction was used
for multiple hypothesis testing (α/435). Network properties were
calculated for each individual using Matlab scripts from the
Brain Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010)
and Matlab Tools for Network Analysis (http://strategic.mit.
edu/downloads.php?page=matlab_networks). Properties were
calculated using binary undirected matrices. Modularity was
calculated using the Louvain method for community detection.

Results

Resting State Correlation Analysis
Analysis of different methods of ROI selection showed that
ROI selection has a drastic effect on the calculation of
resting state connectivity. Overall, the average connectivity
between nodes was significantly higher when using subject-
specific ROIs compared to the other sets of ROIs (Figure 2A,
Supplementary Figures 2A–C). The general trend showed that
the more relevant a set of ROIs were to the data set, the higher the
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calculated connectivity. For the most part, subject-specific ROIs
showed significantly higher correlations (p < 0.0001) compared
to literature and group based ROIs. In addition, literature and
group ROIs have higher variance than subject specific ROIs
(Figure 2A, Supplementary Figures 2D–F).

Calculations of average ROI z-stats showed that the
literature and group ROIs exhibited consistently low z-stats
compared to subject-specific ROIs (Figure 2B). In addition,
if we were to arbitrarily threshold our image at z > 2.3
(a commonly used threshold in fMRI studies), we would
find that for the majority of subjects, the literature and
group ROIs will not fall in the clusters of aDMN for more
than half the ROIs. On the other hand, we found that
the majority of ROIs using a subject-specific approach fell
consistently within the aDMN. As a result, we found that
average calculated connectivity is lower when ROIs fell outside
the aDMN and high when the ROIs are inside the aDMN
(Figure 2B).

Graph Theory Analysis: Aging Effects
Correlation analysis again showed lower connectivity with
the group based methods compared to subject-specific ROIs
(Figure 3). Significant changes in connectivity with aging differed
depending on the ROI selection method. With young subject
group ROIs we observed increases and decreases in network
connectivity with aging. However, most importantly we saw a
decrease in connectivity in the aDMN and an overall breakdown
in network connectivity (Figure 3G). With the old subject
group ROIs, again we observed both increases and decreases
in connectivity; however, when looking at the aDMN, we
observed a significant increase in connectivity in addition to
the formation of connectivity between nodes (Figure 3H). These
results contrast with those derived from the young group ROIs.
Finally, subject-specific ROIs generally showed no significant
changes in intrinsic network connectivity with aging, with the
exception of the FPNL (Figure 3I). However, significant changes
in between network connectivity was more apparent particularly

FIGURE 2 | Calculated resting state functional connectivity differs

depending on the method of ROI selection. Calculated resting

connectivity for literature ROIs, group ROIs and subject-specific ROIs (A).

In addition to higher correlation, subject-specific ROIs showed lower

variance. This can be attributed to incorrect seeding with literature and

group ROIs (B). **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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in the left and right FPN (Figure 3I). With aging, the FPNL and
FPNR showed significantly increased connectivity with both the
aDMN and pDMN. In addition the FPNL and FPNR showed a
loss of connectivity or a formation of anti-correlation with the
SAL network.

Graph network construction showed little or no connectivity
between networks using the group based ROIs (Figure 4).
Particularly, in the aDMN, we could observe a loss of connectivity
with the young group ROIs (Figures 4A,D) but not with the old
group ROIs (Figures 4B,E). In the case of subject-specific ROIs,
there were no real changes in intrinsic connectivity; however,
there was an increase in between network connectivity which,
resulted in a loss of modularity (Figures 4C,F). Various graph
theory properties which were measured included clustering
coefficient, modularity, assortivity, and efficiency. Analysis of
these different properties revealed no real differences with aging
except for modularity when using the subject-specific ROI
approach (Figure 4G, Supplementary Figure 3).

Connectivity between the aDMN and pDMN showed
practically no connectivity with group based methods
(Figures 3A,B,D,E). However, subject-specific ROIs showed
a high degree of connectivity between the two networks
(Figures 3C,F). The changes in connectivity are also the
same with aging. Both networks show a significant increase
in correlation to the FPNL (Figure 3I). Finally, graph theory

analysis reveals that the two networks are hardly connected with
group based methods (Figures 4A,B,D,E). Subject-specific ROIs
on the other hand, show the two networks as part of the same
module, with high connectivity between nodes (Figures 4C,F).

Discussion

Currently, neuroimaging studies have largely ignored or
marginalized the issue of subject variability. While major
brain networks exhibit similar spatial characteristics between
individuals, they are not exactly the same. Therefore, a
generalized map of the human connectome can, at best, provide
only a rough reference for major brain connections (Lichtman
and Sanes, 2008).

We found that by using subject-specific ROIs, we were able
to obtain higher correlations and lower variance compared
to using ROIs that were based on group averages or previous
research (Figure 2A, Supplementary Figure 2). Intuitively,
higher correlations between nodes of the same network provide
a more accurate representation of network connectivity, since
brain networks are by definition, regions of the brain that exhibit
a high degree of correlation with one another (Fox and Raichle,
2007; Bullmore and Sporns, 2009). Lower connectivity obtained
using ROIs that are standardized across individuals could be
attributed to subject variability since the exact location of a

FIGURE 3 | Different methods of ROI selection changes how

changes in connectivity with aging are interpreted. Calculated

correlation shows different changes in functional connectivity. Obtained

correlation reveals different connectivity with young (A–C) and old (D–F)

subjects. Statistical differences are shown between old and young

subjects using young group ROIs (G), old group ROIs (H), and

subjects-specific ROIs (I). Gray regions show statistical differences for

p < 0.05 and white regions show statistical difference for pCorrected <

0.05. ROIs are listed from top to bottom for each network. aDMN: PCC,

PFC, PLL, PLR, HCL, HCR. pDMN: PCC, PFC, PLL, PLR. FPNL: ACC,

PCC, IPSL, IPSR, IFSL, IFSR, OTC. FPNR: ACC, PCC, IPSL, IPSR, IFSL,

IFSR, OTC. SAL: ACC, PFCL, PFCR, IL, IR.
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major brain network node is not the same from person to person
(Mueller et al., 2013). As a result, the use of incorrect ROIs will
result in lower calculated connectivity and higher variance as
the ROIs used will “miss” the correct node location for certain
individuals (Figure 2A). When examining the spatial locations
of each ROI with relation to the DMN for each individual, we
find that for literature and group ROIs there is a high chance that
they will not fall in the DMN for a given individual (Figure 2B).
This means that, for those individuals, the calculated correlations
obtained are not the real correlations between regions of the
DMN. This is extremely important in graph theory because the
calculated connectivity between nodes is often used to determine
whether or not an edge exists. This can have huge ramifications
in interpreting data. For example, analysis with literature ROIs
yielded the result in our data that DMN connectivity was all
but non-existent while subject-specific ROIs showed strong
DMN connectivity. Thus, while we may have defined a standard
set of ROIs that was used across individuals as part of the
same network (literature and group ROIs), the low calculated
connectivity suggests that these ROIs are incorrect for a majority

of the subjects. This issue can be compensated somewhat by
enlarging the size of the ROI (Supplementary Figure 4), which
increases the likelihood that the brain region representing that
particular individual’s node will be included. However, this also
increases the likelihood of including voxels that are not part of
the desired target network at all, causing a decrease in signal to
noise ratio. Thus, the extracted time signal will not be a true
representation of the node of interest.

Accurate computation of brain networks is essential because
incorrect node definition can lead to misrepresentations of the
functional changes which can occur across different cognitive
states or disease. It is well-established that the DMN shows
decreased correlation or deterioration with aging (Koch et al.,
2010; Tomasi and Volkow, 2012; Vidal-Pineiro et al., 2014).
However, these previous studies often used a seed based method,
in which the ROIs were derived from young subjects. In this
study, we replicated the findings of decreased connectivity
within the DMN using ROIs based on our young subject group
(Figures 4A,D). However, when the ROIs were derived from
our old subject group, we observed increased DMN connectivity

FIGURE 4 | Different methods of ROI selection changes how

changes in connectivity with aging are interpreted. Different

calculated correlation and topographical organizations of the brain in

young (A–C) and old (D–F) subjects (r > 0.35). High correlation among

regions of the DMN (shown in yellow) are only observed if the ROIs are

derived from that specific group. Graph theory analysis shows decreased

in modularity using subjects-specific ROIs (G). Different colors represent

different networks as determined from modularity analysis. Subject

specific ROIs show consistent partitioning into 4 distinct networks in both

old and young subjects. ***p < 0.001.
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with age, which is contrary to previous literature (Figures 4B,E).
These results show that ROI selection can have a direct effect
on calculated connectivity by being biased toward the data from
which they were derived. In comparison, the subject-specific
ROIs showed no decrease or increase in correlation between
regions of the DMN with aging (Figures 3C,F). Instead of
network deterioration, the subject-specific ROI approach shows
that between network connectivity is more affected. In this case,
connectivity between the FPNL and the DMN and between
the FPNL and the SAL increased significantly. This resulted
in a loss of modularity with aging (Figure 4G). These results
are in agreement with two previous studies which report loss
of modularity and segregation between networks (Betzel et al.,
2014; Chan et al., 2014) with aging. Finally, most convincing
is that the majority of significant changes that were found with
standardized ROIs did not survive multiple comparison testing
(Bonferroni). However, with subject-specific ROIs a large portion
of connections were significant, particularly connections between
the FPNL and regions of the DMN.

The fractionation of the DMN into sub-networks is a
commonly reported phenomenon in many studies (Andrews-
Hanna et al., 2010; Jones et al., 2011; Van Oort et al., 2014).
Therefore, while we have divided the DMN into two separate
networks (aDMN, pDMN) for our analysis, they are in actuality
two sub-components of the same network. Interestingly, if we
look at the analysis using different ROI selection techniques, we
find that standardized ROIs show low connectivity between node
regions of the aDMN and pDMN (Figures 3, 4). In contrast,
analysis of subject-specific ROIs shows high correlation between
node regions between both networks (Figures 3, 4). Modularity
analysis showed that both the aDMN and pDMN are part of
the same module with subject-specific ROIs and are divided into
many different modules with standardized ROIs (Figure 4). If
we examine the changes in correlation with aging, we find that
there is no pattern of change with standardized ROIs, however,
with subject-specific ROIs, both the aDMN and pDMN showed
similar changes (Figure 3I). In all these aspects, ROIs which are
standardized across subjects, showed that the aDMN and pDMN
were different networks, while subject-specific ROIs identified
to two as part of the same overall network. When we examine
other networks, we again see that only subject specific ROIs
were successful in grouping ROIs into their respective networks
(Figure 4). This supports the argument the subject-specific ROIs
are needed for accurate calculations of functional connectivity.

The issue that methods of analysis can have an impact on
results has been mainly investigated in the preprocessing stage
(Aurich et al., 2015; Power et al., 2015). Particularly, studies
in motion correction reveal that the breakdown in long range
connections in aging could be attributed to motion (Power et al.,
2012). The results of our analysis also show that it is entirely
possible for the results of previous papers to be the results of
analysis methods rather than actual changes that occur in aging.
It should be noted that multivariate and voxel wide approaches,
such as ICA and seed based voxel wide approaches, show
decreases in correlation of the DMN with aging (Damoiseaux
et al., 2008; Ferreira and Busatto, 2013). The simplest explanation
for this is that, while the hub central regions of these networks do

not experience a decrease in connectivity, the spatial extent or
surrounding regions may be affected by aging. However, it also
possible that these results may have been over interpreted. Studies
have shown that with aging and in other neurological disorders
individual differences increase (Macdonald et al., 2006). These
“decreases” in connectivity observed in previous studies could
merely be a result of larger differences within the elderly group
or the younger group being more homogenous. If we follow
that our connectome develops and changes with time, the exact
spatial organization of our DMN network will also change with
aging. Thus, while connectivity between regions of the DMN
will not change, the spatial organization will (i.e., no change in
intrinsic connectivity; however, there is network reorganization).
This may have resulted in the observed decreases in certain voxels
which were common in the younger age group, but, due to this
reorganization, these voxels were no longer a part of the DMN
in many elderly subjects. This is apparent in other studies which
showed decreased connectivity using a voxel wise approach but
showed no significant changes in calculated correlations between
regions of the DMN (Koch et al., 2010). Further, studies and tests
should be performed to resolve these discrepancies.

The results of our study and the significance levels
were obtained without the use of preprocessing methods
such as motion correction and nuisance regression.
Supplementary Figure 5 shows the changes in calculated
connectivity of the aDMN after WM and CSF regression. There
effects on subject-specific ROIs were small, however with group
ROIs, there was an increase in connectivity of the left and right
hippocampus to other node regions and decreased connectivity
between each other. This may be because of the spatial location of
the hippocampus. Incorrect seeding of these regions may result
in seeding regions with high WM or CSF signals. Therefore, an
addition advantage in using subject-specific ROIs is that they
are less susceptible to WM and CSF noise. Small ROIs derived
using single-subject network reconstruction from ICA, allows
for targeted extraction of functional time-series. Since the time
series extracted are actually from functionally relevant regions
from that particular individual, there is little need for nuisance
regression. Motion analysis showed no significant different in
headmotion between young and elderly subjects (Supplementary
Table 1).

Currently different automated parcellation methods have
become popular methods of creating ROIs for graph theory
analysis. These methods are successful in creating generalized
maps of functional organization in the brain (Cohen et al., 2008;
Power et al., 2011; Craddock et al., 2012). However, despite their
success and popularity, many studies have shown different results
in brain connectivity based on different parcellation methods
which brings even more ambiguity as to which methods are
more appropriate for resting state ROI selection (Wang et al.,
2009; Van Den Heuvel and Sporns, 2011; Shirer et al., 2012;
De Reus and Van Den Heuvel, 2013; Thirion et al., 2014). The
use of subject-specific ROI proves an alternative to functional
parcellation providing a solidmethod to define functional regions
of the brain for graph theory analysis.

It should be noted that this study is not the first to explore the
concept of different ROI selection strategies or analysis methods
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(Koch et al., 2010; Marrelec and Fransson, 2011). While these
studies show slight differences between each analysis, the general
conclusion is that the overall results are unchanged. Neither,
is this the first study to utilize subject-specific ROIs in fMRI
analysis (Golestani and Goodyear, 2011; Marrelec and Fransson,
2011). Many studies create subject-specific ROIs from task
activation paradigms (Fedorenko et al., 2010; Weeda et al., 2011).
However, since resting state fMRI lacks these task activation
trials, this option is not available. Methods using dual-regression
have begun to be a popular tool for analysis, however, despite
individual reconstruction, these studies have failed to consider
each data uniquely (Rytty et al., 2013; Smith et al., 2014).
One study group created subject-specific ROIs from resting
state networks similar to our study (Marrelec and Fransson,
2011). However, their results found no differences between using
traditional standardized ROIs and subject specific ROIs. A major
difference in our study is that the sizes of ROIs are much smaller.
In the case of the other study they used a 12mm sphere (6mm
diameter), which is a large ROI. When ROIs become this large,
the different ROIs begin to overlap with one another which
results in the similar calculated correlations which they obtain in
their study. In fact when ROIs become rather large, the calculated
connectivity can be very similar regardless of the method of ROI
selection (Supplementary Figure 4D).

One drawback to this approach is that we can only perform
analysis on functional regions which can be identified by ICA.
Since traditional decompositions are only able to identify major
brain networks (Beckmann et al., 2005; Damoiseaux et al., 2006;
Ray et al., 2013), seeding of smaller subnetwork aremore difficult.
Identification of smaller subnetworks can be performed using
high order ICA (Abou Elseoud et al., 2011), or localized ICA
(Sohn et al., 2012; Beissner et al., 2014; Igelstrom et al., 2015).
However, even in these cases it requires some a priori knowledge
to identify functional regions for analysis.

The novelty of this paper is that it is the first to show
that differences in calculated correlations with different ROI
selection methods can have huge implications in the way data are
interpreted. We propose that using small subject-specific ROIs
located in each individual’s network node regions provides a
better representation of intrinsic network connectivity. Analysis
using this method offers more insight into actual network
connectivity than large bulky ROIs which more often than not
include voxels which are not relevant to the signal of interest.
In addition we show that by taking a more individualized
approach, we are able to observe results which are absent in
traditional approaches, such as the lack of change in DMN
intrinsic connectivity with aging.

The brain is a complex system composed of different
structurally and functionally interlinked regions. To map the
functional connectivity between regions, an accurate definition
of nodes is required. Whether, it is performed by parcellation, or
seeding functional regions, the main issue of subject variability
has been yet to be sufficiently addressed. More than anything this
study aims to advocate an individualized approach to resting state
fMRI by highlighting the advantages and dangers when using
subject-specific ROIs and traditional approaches.
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Supplementary Figure 1 | Major resting state networks. Networks were

obtained using ICA. A total of five networks were selected for subsequent analysis.

Supplementary Figure 2 | Calculated resting state functional connectivity

and variance from different ROI seeding methods. Figure shows correlation

values for each ROI selection method (A–C) and the variance (D–F).

Supplementary Figure 3 | Graph theory properties for different ROI

selection methods with aging. Properties analyzed include assoritivity (A),

efficiency (B), clustering coefficient (C), and modularity (D). Only the modularity

obtained when using subject specific ROIs showed any significant differences in

aging.

Supplementary Figure 4 | Calculated Functional Connectivity with respect

to ROI size. Graph shows how functional connectivity between nodes is affected

when different ROI sizes are used for node selection when ROIs are selected from

literature (A), data (B), and obtained for subject specific ROIs (C). ROIs used are

cubic ROIs and label denotes the length of a ROIs edge. Therefore actual ROI size

will be n∧3 where n is the length of an edge. (D) Shows the calculated connected

between nodes for different ROI selections methods using a 9Voxel size ROI.

PCC, posterior cingulate cortex; PFC, prefrontal cortex; LPL, left parietal lobe;

RPL, right parietal lobe.

Supplementary Figure 5 | Calculated Functional Connectivity with WM and

CSF regression. Figure shows average connectivity of the aDMN using group

ROIs (A,C) and subject-specific ROIs (B,D) when regressing WM and CSF signals

(C,D) compared to when regression is not performed (A,B). Regression shows

little difference in calculated connectivity with subject-specific ROIs (F). Group

ROIs also show little difference in calculated connectivity aside from the

hippocampus (E).
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