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Lucilia (Diptera: Calliphoridae) is a genus of blowflies comprised largely of saprophagous and facultative
parasites of livestock. Lucilia bufonivora, however, exhibits a unique form of obligate parasitism of amphibians,
typically affecting wild hosts. The evolutionary route by which amphibian myiasis arose, however, is not well

Myiasis understood due to the low phylogenetic resolution in existing nuclear DNA phylogenies. Furthermore, the timing
Lucilia P s . . . s . .

. of when specificity for amphibian hosts arose in L. bufonivora is also unknown. In addition, this species was
Host specialisation . . A R A
Blowfly recently reported for the first time in North America (Canada) and, to date, no molecular studies have analysed

the evolutionary relationships between individuals from Eastern and Western hemispheres. To provide broader
insights into the evolution of the amphibian parasitic life history trait and to estimate when the trait first arose, a
time-scaled phylogeny was inferred from a concatenated data set comprising mtDNA, nDNA and non-coding
rDNA (COX1, per and ITS2 respectively). Specimens from Canada, the UK, Poland, Switzerland, the Netherlands
and Germany were analysed, as well as individuals from its sister taxa, the saprophage Lucilia silvarum and a
Nearctic species also implicated in amphibian myiasis, Lucilia elongata. Obligate amphibian parasitism appears to
have arisen ~4 mya, likely as a result of niche displacement of a saprophagous/facultative parasite ancestor.
Consistent paraphyly of L. bufonivora with respect to L. elongata across single-gene phylogenies and high mtDNA
genetic distances between Nearctic and Palearctic individuals suggest on-going cryptic speciation facilitated by
geographical isolation. These findings suggest that recent reports of L. bufonivora in the Nearctic do not con-
stitute a recent introduction, but instead suggest that it remained unrecorded due to taxonomic confusion and
low abundance. This is the first study to confirm the involvement of L. bufonivora in amphibian myiasis in
Canada using DNA-based identification methods.

1. Introduction

Myiasis is the infestation of a living host, usually vertebrate, with
dipterous larvae that feed on the tissues of the host (Zumpt, 1965).
Within the super-family Oestroidea, many different lineages of flies are
generally recognised as causing myiasis, ranging from highly specific
obligate parasites to opportunistic facultative agents of myiasis. The
family Calliphoridae includes a wide range of saprophagous, facultative
myiasis agents and a small number of species of obligate parasites
(Aubertin, 1933; Zumpt, 1965; Stevens et al., 2006), many of which are
of major economic importance in the livestock industry (e.g. Lucilia

sericata, Lucilia cuprina, Cochliomyia hominivorax). Most calliphorid flies
typically exhibit low host-specificity, relatively short periods of larval
development and are rarely seen infecting hosts in the wild (Zumpt,
1965; Erzinclioglu, 1989; Stevens et al., 2006). Thus, it has been hy-
pothesized that Lucilia blowflies may have evolved facultative ecto-
parasitism in association with humans and animal domestication
(Stevens and Wall, 1997a; Stevens et al., 2006). However, the toadfly,
Lucilia bufonivora, exhibits obligate parasitism for amphibians and is
generally associated with wild hosts that rarely survive infestation
(Vestjens, 1958; Koskela et al., 1974; Strijbosch, 1980; Gosé et al.,
2009; Diaz-Martin et al., 2012). The life history of facultative myiasis
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agents has been well studied in the past due to their economic im-
portance as livestock parasites and as forensic indicators (Zumpt, 1965;
Wall et al., 1992; Stevens and Wall, 1997a; Stevens, 2003; Wallman
et al., 2005). Given the lack of economic importance of L. bufonivora,
information on its evolutionary history is limited (Stevens and Wall,
1997a; Stevens, 2003). Moreover, precisely when L. bufonivora evolved
this high host-specificity for amphibians is unknown and detailed
phylogenetic studies are required to understand the evolution of ob-
ligate amphibian parasitism in a genus that is comprised mainly of
saprophagous and facultative agents of myiasis.

Until recently, it was thought that L. bufonivora was a strictly
Palearctic species; nonetheless, Tantawi and Whitworth (2014) re-
corded adult specimens for the first time in Canada. However, their
study used only morphological characterisitcs and, to date, there are no
published studies of the phylogenetic relationships between Nearctic
and Palearctic populations of L. bufonivora. Moreover, although adult
flies have been reported in North America, studies have not yet con-
firmed its involvement in amphibian myiasis in this region. Ad-
ditionally, it is not known whether this constitutes a recent introduction
to North America or simply reflects its relative rarity and/or previous
taxonomic confusion.

In the United States and Canada, two other blowfly species have
also been reported to be involved in amphibian myiasis: Lucilia elongata
and Lucilia silvarum (Roberts, 1998; Bolek and Coggins, 2002; Bolek and
Janovy, 2004). The former is restricted to the Nearctic and has never
been observed breeding in carrion and, thus, it is also generally con-
sidered an obligate parasite of amphibians (Tantawi and Whitworth,
2014). In contrast, L. silvarum is distributed throughout the Holarctic
(Rognes, 1991; Tantawi and Whitworth, 2014) and this species has
been reported as being involved in amphibian myiasis in Europe
(Duncker, 1891; Mortensen, 1892; Linder, 1924; Stadler, 1930).
Nevertheless, a recent study found that in the UK, the Netherlands and
Switzerland amphibian myiasis appears to be caused only by L. bufo-
nivora, as no specimens of L. silvarum were found to be implicated in the
disease (Arias-Robledo et al., 2019a). Moreover, the saprophagous be-
haviour of L. silvarum has been previously well documented (Hanski
and Kuusela, 1977; Hanski, 1987; Prinkkila and Hanski, 1995; Fremdt
et al., 2012). Nevertheless, blowflies often exhibit intraspecific beha-
vioural differences according to their geographical region. As an ex-
ample, the sheep blowfly L. sericata is typically a highly abundant sa-
prophagous species in many countries, but behaves as a primary
myiasis agent in Northern Europe (Wall et al., 1992; Wallman et al.,
2005; Salona-Bordas et al., 2009; Diakova et al., 2018). Hence, varia-
tion in the behaviour of L. silvarum and its involvement in amphibian
myiasis may be possible in North America.

The mitochondrial gene cytochrome c oxidase subunit one (COX1)
has proved to be a useful molecular marker for the detection and
identification of various parasites and pathogens, including, but not
limited to, nematodes (Aravindan et al, 2017), trypanosomes
(Rodrigues et al., 2017), ticks (Chitimia et al., 2010) and oestrid flies
(Samuelsson et al., 2013). Additionally, this mtDNA marker has pro-
vided clear resolution on the relationships of the L. bufonivora species
group: L. bufonivora, L. elongata and L. silvarum (McDonagh and Stevens,
2011; Arias-Robledo et al., 2019a). In contrast, the various nuclear
markers used to date have yielded mixed results and some are clearly
not suitable for resolving the relationships of these recently diverged
taxa (McDonagh and Stevens, 2011; Arias-Robledo et al., 2019a).
Nonetheless, some other phylogenetic studies on Calliphoridae have
shown that the use of optimised nuclear markers, such as the period
gene (per) or the non-coding ribosomal DNA (rDNA) Internal Tran-
scribed Spacer 2 (ITS2), are suitable for phylogenetic analysis of closely
related blowfly taxa (Marinho et al., 2011; Williams and Villet, 2013).
Thus, dependent on the nuclear DNA (nDNA) marker employed, some
are apparently well suited for resolving relationships between L. bufo-
nivora, L. elongata and L. silvarum.

The aims of this work were, firstly, to infer the times at which the

219

IJP: Parasites and Wildlife 10 (2019) 218-230

life history trait of obligate amphibian parasitism arose within a genus
that is mainly composed by species with sarco-saprophagous life cycles
(Lucilia). To do this, the present work analysed samples from across the
broad geographical range of L. bufonivora, L. elongata and L. silvarum.
Molecular clock dating was performed using a concatenated data set
comprising a nuclear (per), a mitochondrial (COX1) and a non-coding
gene (ITS2). Secondly, this work aimed to define the degree of genetic
divergence between Palearctic and Nearctic samples of L. bufonivora
with the widely used mitochondrial marker COX1, whilst also solving
the problem of the low phylogenetic resolution of this species group
that has been previously encountered when using nuclear DNA mar-
kers. To do this, multiple phylogenies were inferred from sequence data
obtained from optimised nuclear markers such as per and ITS2. Finally,
molecular data were employed to determine whether L. bufonivora is
involved in amphibian myiasis in North America.

In addressing these aims, this work also offers valuable information
on the primers and PCR protocols needed for the successful amplifica-
tion of a partial sequence of the protein-coding per gene of L. bufonivora.
Additionally, we also provide sequence data for Lucilia pilosiventris and
Lucilia regalis, blowfly species that have been understudied due to their
relative rarity (Aubertin, 1933; Rognes, 1991; Szpila, 2017). The roles
of geographical and ecological isolation on the speciation and evolution
of blowfly species associated with amphibian myiasis are discussed.

2. Materials and methods
2.1. Biological material

Forty-two blowfly specimens were analysed in this study. Twelve
specimens of L. bufonivora from different locations in Europe were in-
cluded (Table 1). Additionally, two adult flies originally labelled as ‘L.
silvarum’ that were reported to have caused amphibian myiasis in Al-
berta, Canada (Table 1) were identified morphologically as L. bufoni-
vora using recent keys (Tantawi and Whitworth, 2014). These samples
were also analysed and BLAST searches gave a 100% match with three
L. bufonivora COX1 sequences from Canada (Table 2); these sequences
were also added to the data set along with an additional sequence from
Spain (Table 2, Fig. 1).

Eight adult specimens of L. silvarum were analysed. Five were col-
lected from different locations in Europe and three from the USA. Two
COX1 sequences obtained from BOLD and GenBank (from Canada and
Spain, respectively) were also included in the analysis (Table 2).

Compared with other blowfly species in North America, Lucilia
elongata is rarely encountered in the field. This study obtained one
specimen from Vancouver, Canada and another from Alberta (Table 1,
Fig. 1). Two additional COX1 sequences from the United States and
Canada were obtained from BOLD and included in the analysis
(Table 2).

Phylogenetic relationships between the sheep blowflies (L. sericata
and L. cuprina) have been well studied in the past due to their economic
importance (Stevens and Wall, 1997b; Wallman et al., 2005; Williams
and Villet, 2013). For comparative reasons, this study analysed five L.
sericata specimens from a broad geographical range (Mexico, United
States, The Netherlands, Iran and the UK; Table 1). All L. cuprina se-
quence data were obtained from Genbank (Table 1).

Specimens of Lucilia ampullacea, Lucilia caesar, Lucilia illustris, Lucilia
mexicana, Lucilia richardsi, L. regalis and L. pilosiventris were also in-
cluded in the analysis (Table 1). A specimen of Calliphora vicina from
Bristol, UK, was used in the analyses as an outgroup; per gene sequence
data for C. vicina were obtained from GenBank (KF839531). Finally,
two additional COX1 sequences of Lucilia thatuna, another species be-
lieved to be implicated in amphibian myiasis in North America
(Tantawi and Whitworth, 2014), were included in the analysis
(Table 2).
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Table 1
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Specimen list. The table provides the location, name on tree, collector/provider, tissue used for DNA extraction, host (if any), their GenBank accession codes for their
respective per, ITS2 and COX1 sequence data, length (bp) of ITS2 sequences and primers used for the amplification of the per gene.

Species Location Name on tree Provided by Tissue Host per ITS2 CoX1 :Z;z) zfirmers
Lucilia bufonivora  Winssen, NL bufonivora_NLWi G. Arias Thorax - MK062159  MK579385 FR719161 306 1*
L. bufonivora Olst, NL bufonivora_NLOI G. Arias Thorax - MK062160  MK579385 FR719161 306 1*
L. bufonivora Rotterdam, NL bufonivora_NLRo J. Mostert Larva Bufo bufo MK062160  MK579385 FR719161 306 1*
L. bufonivora Schaopedobe, NL bufonivora_NLSc T. Stark Larva Bufo bufo MK062160  MK579385 FR719161 306 1=
L. bufonivora Wilp, NL bufonivora_frog T. stark Larva kf‘:’so C‘; 'I'é' Z’; . MK062158  MK579385  MK598626 306 1*
L. bufonivora Norfolk, UK bufonivora_UKNor S. Henderson  Larva Bufo bufo MK062160  MK579385 FR719161 306 1=
L. bufonivora Nottingham, UK bufonivora_UKNot L. Griffiths Larva Bufo bufo MK062160  MK579385 FR719161 306 1=
L. bufonivora Shrewsbury, UK bufonivora_UKShrew  A. Breed Larva Bufo bufo MK062160  MK579385 FR719161 306 1=
L. bufonivora Ossingen, CHE bufonivora_CHE G. Guex Larva Bufo bufo MK062160 MK579385 FR719161 306 1*
L. bufonivora Badenw. DEU bufonivora_DEU D. Mebs Thorax—» Bufo bufo MK062160 MK579385 FR719161 306 1*
L. bufonivora Borek, POL bufonivora_POL1 K. Szpila Thorax - MK062160 ~ MK579385  FR719161 306 1"
L. bufonivora Czarny Brynsk, POL bufonivora_POL2 K. Szpila Thorax - MK062160  MK579385 FR719161 306 1*
L. bufonivora Pine lake, CAN bufonivora_CANPi D. Shpeley Leg Pseudacris triseiata ~ MK598632  MK579389 BBDCQ387-10 304 2%
L. bufonivora Calling Lake, CAN bufonivora_CANCa D. Shpeley Leg Rana sylvatica MK598632  MK579389  BBDCQ387-10 304 2"
Lucilia silvarum Bristol, UK silvarum_UK4 G. Arias Thorax - MK062162  MK579386 KJ394947 312 1*
L. silvarum Bristol, UK silvarum_UK1 G. Arias Thorax - MK062163  MK579386 KJ394947 312 1
L. silvarum Winssen, NL silvarum_NLWi G. Arias Thorax - MK062165  MK579386  MK598627 312 1*
L. silvarum Olst, NL silvarum_NLOI G. Arias Thorax - MK062164  MK579386 LT963483 312 1*
L. silvarum Zatwarnica, POL silvarum_POL K. Szpila thorax - MN123800  MK579386 k1394947 312 1*
L. silvarum Sacramento, USA silvarum_USACa J. Stevens Thorax - MK062168  MK579387 LT963484 313 1*
L. silvarum Washington, USA silvarum_USAWa T. Whitworth  Leg - MK062166 ~ MK579387 ~ MK598628 313 2%
L. silvarum Oregon, US silvarum_USAOr T. Whitworth  Leg - MK062167  MK579387 LT963484 313 2*
Lucilia elongata Alberta, CAN elongata_alberta A. Telfer Thorax - MK062161 MK579388 Km858341 306 2%
L. elongata Vancouver, CAN elongata_vancouver  T.Whitworth  Leg - MK062161 ~ MK579388  MK598629 306 2%
Lucilia richardsi Bristol, UK richardsi_UK1 G. Arias Thorax - MK062169  MK579392 FR872384 333 1*
L. richardsi Bristol, UK richardsi_UK3 G. Arias Thorax - MK062169  MK579392 k1394940 333 1*
L. richardsi Torun, POL richardsi_POL K. Szpila Thorax - MK062169 MK579392 K1394940 333 1*
L. pilosiventris Frankfurt, DEU pilosiventris_DEU K. Szpila Thorax - MK598634 MK579397 MK598631 331 1*
L. regalis Zbocza Ptutowskie, POL  regalis_POL K. Szpila leg - MK598633 MK579396 MK598630 326 1=
Lucilia caesar Bristol, UK caesar_UK R. Wall Leg - MK062178  MK579393  KM657111 312 3*
L. caesar Denizli, TRK caesar_TRK K. Szpila Thorax - MKO062178 ~ MK579393  KM657111 313 3*
Lucilia illustris Olst, NL illustris_NL G. Arias Thorax - MKO062170  MK579390  KJ394900 314 3*
Lucilia ampullacea  Bristol, UK ampullacea_UK G. Arias Leg - MK062172 MK579391 LT963485 300 3*
L. ampullacea Nijmegen, NL ampullacea_NL G. Arias Thorax - MK062171 MK579391 LT963485 300 3*
Lucilia sericata Chapingo, MX sericata_MX F. Arias Thorax - MK062173 EF560187 HQ978732 321 3*
L. sericata Winssen, NL sericata_NL G. arias Thorax - MK062176 EF560187 AJa17714 321 3*
L. sericata Dorset, UK sericata_UK J.Memmott  Leg - MK062176 ~ EF560187 AJa17714 321 3*
L. sericata California, US sericata_USA 1. Stevens Leg - MK062174  EF560187 HQ978732 321 3*
L. sericata Kerman, IRN sericata_IRN K. Szpila Thorax - MK598635 EF560187 AJa17714 321 3*
Lucilia mexicana Chapingo, MX Mexicana F. Arias Thorax - MK062177 MK579394 LT900483 331 3*
Lucilia cuprina - - - - - JN792783.1  EF560185 AJ417707 335 -
Calliphora vicina ~ Bristol, UK Calliphora_UK G. Arias Thorax - KF839531*  MK579395 FR719219 327 -

If no host listed, the samples were collected in its adult stage. Country abbreviations: NL = the Netherlands; UK= United Kingdom; CHE= Switzerland;
DEU = Deustchland; POL = Poland; USA = United States of America; CAN = Canada; TRK = Turkey; MX = Mexico; IRN = Iran.
*per amplification primers: 1* = pbf14 - per650-R (present study); 2* = pbf14 - per433-R and pbf249 - per650-R (present study); 3* = per5 - perreverse (Williams

and Villet, 2013).

Accession codes in blue belong to BOLD database. NOTE: Only new sequence data were submitted to GenBank as haplotypes (shown in red text), thus specimens with
the same haplotype were allocated with the same accession codes.

2.2. DNA extractions, primer design and polymerase chain reaction (PCR)

procedures

Where possible, to avoid contamination, thoracic muscle fibres were
extracted from whole adult specimens and used for extractions. With rare
insect collection material, DNA extraction was undertaken from single legs.
For this, muscle fibres were extracted from the trochanter, femur, tibia and,
if available, the coxa. This was done by dissecting the legs in ethanol with
the aid of a sterile scalpel blade and entomological pins. In the case of larval
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specimens, anterior and posterior parts of the larvae were used (or the
whole specimen if it was a 1st stage larva). DNA extractions were carried
out using a QIAGEN DNeasy ® Blood and Tissue Kit (Qiagen GmbH,
Germany) according to the manufacturer's instructions.

When DNA extraction was undertaken from a single leg, once the tissue
was extracted it was put in a mix of 80 uL of ATL buffer and 20 uL of
Proteinase-K. Cell lysis was carried overnight at 56 °C. In order to increase
the yield and concentration of extracted DNA, 40 pL of elution buffer (EB)
were added to the spin-column and it was held for 30 min before the spin-
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Table 2

Additional COX1 sequences used in this study with their respective location,
accession codes and public database where the sequences are available (BOLD/
Genbank).

Species Location Accession Code BOLD/GenBank
Lucilia bufonivora Spain GBDP15380-14 BOLD

L. bufonivora Saskatchewan, CAN BBDCQ387-10 BOLD

L. bufonivora Saskatchewan, CAN CNGSD7561-15 BOLD

L. bufonivora Saskatchewan, CAN MF758767.1 GenBank
Lucilia silvarum Spain KJ394941.1 GenBank
L. silvarum Manitoba, CAN SMTPR3630-16 BOLD
Lucilia elongata Vancouver, CAN BBDCP287-10 BOLD

L. elongata Washington, USA GMNCF036-12 BOLD
Lucilia thatuna Callifornia, USA BBDIT928-11 BOLD

L. thatuna San Francisco, USA DQ453489 GenBank

Lucilia richardsi Germany GMGMAS838-14 BOLD

down. DNA templates were stored at —20 °C until required. Prior to PCR,
the concentration of DNA of each template (ng/uL) was checked using a
NanoDrop One spectrophotometer (Thermo Scientific).

Amplification of the protein-coding per gene from various Lucilia
species was carried out using the primers of Williams and Villet (2013).
However, these primers did not prove suitable for the amplification of
this gene in L. bufonivora. Therefore, a new set of primers (pbf14 and
pbf650-R, Table 3) was designed for the amplification of ~610 bp of the
nuclear protein-coding gene per in the L. bufonivora species group. This
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procedure was carried out using the online software Primer3 v 3.4
(Untergasser et al., 2007). and by ensuring that the difference in
melting point (TM) between primers was less than 0.5 °C and that each
primer had a Guanine-Cytosine base content of at least 50%. In the case
of single leg extractions, an additional set of primers was designed in
order to amplify the partial sequence of the per gene in two overlapping
fragments, each of ~410 bp (pbf14 + p433-R and p249 + pbf650-R;
Table 3). All primer sequences and PCR protocols for the amplification
of COX1 and ITS2 are listed in Table 3.

The ITS2 is a non-coding nuclear ribosomal RNA subunit located be-
tween the 5.8S and 28S ribosomal subunit DNAs. To amplify the complete
ITS2 sequence, primers were located in the 3’ end of the 5.8S subunit and
the 5’ end of the 28S subunit, as described by Marinho et al. (2011). Ad-
ditionally, in Calliphoridae, another small subunit (2S) splits the ITS2 region
in two fragments: ITS2a (~30 bp) and ITS2 (300-335 bp). Of these, ITS2a
has minimal sequence variation and was excluded from further analysis,
while amplification of the longer ITS2 region exhibited very variable se-
quence length among the taxa studied (Table 1).

PCR products were purified using 0.5 pL of exonuclease and 0.5 pL
of Antarctic phosphatase per 20 pL. of PCR product. After purification,
both forward and reverse strands were sequenced by a commercial
sequencing facility, EUROFINS®.

New sequence data were submitted to GenBank as haplotypes;
specimens with the same haplotype were allocated the same accession
code (Table 1).

Fig. 1. Location of samples for which the COX1 gene was sequenced in this study. Boxes represent the locations of individual samples: red, Lucilia elongata; orange,

Lucilia silvarum; green, Lucilia bufonivora.

Table 3
Primers used for the amplification of per, COX1 and ITS2. Name, sequence, source and PCR protocols are described.
Gene Name Sequence Source Protocol
ID D A E C F
per per5 GCCTTCAGATACGGTCAAAC Williams and Villet (2013) 94 °C 5min 94 °C 30s 50 °C 1min 72°C 30s x36 72°C 7min
perreverse CCGAGTGTGGTTTGGAGATT
pbfl4 GGCGTTGTCAAGCTCTAGC this study 94 °C 5min 94 °C 30s 48 °C 1min 72°C 30s x36 72°C 7min
pbf650-R CCACGAATGTGAACCAACTC
p249 GCAAACCAGTAACAGCACCT
p433-R GTGCCTGTACCGGTGTTG
COX1 LCO1490 GGTCAACAAATCATAAAGATATTGG Folmer et al. (1994) 94 °C 5min 95°C 30s 45°C 30s 72°C 1min x35 72°C 7min
HCO2198 TAAACTTCAGGGTGACCAAAAAATCA
ITS2 ITS4 TCCTCCGCTTATTGATATGC White et al. (1990) *94 °C 2min 94 °C 30s 44°C 35s 72°C 30s x38 72°C 3min
ITS5.8 GGGACGATGAAGAACGCAGC

*ID = initial denaturation step, D = denaturation, A = annealing, E = extension, C = cycles of D-A-E, F = final extension.


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=MF758767.1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=KJ394941.1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=DQ453489
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Fig. 2. Bayesian Inference tree constructed from Internal transcribed Spacer 2 (non-coding) sequence data. Each specimen is labelled with the species name and
location abbreviation as indicated in Table 1. Green text corresponds to European samples of Lucilia bufonivora; red represents Lucilia elongata; purple represents
Canadian L. bufonivora; orange represents Lucilia silvarum. Scale bar represents expected changes per site. (For interpretation of the references to colour in this figure

legend, the reader is referred to the Web version of this article.)

2.3. Sequence editing and alignment

Forward and reverse chromatograms were checked manually for
potential reading errors using the BioEdit software (Hall, 1999). This
software was also used for assembling both strands into a single con-
sensus sequence. Consensus sequences were subjected to BLAST sear-
ches to confirm species identity. Alignment was done using the Clus-
talW algorithm in BioEdit.

In the case of heterozygous sequences (per), both forward and re-
verse chromatograms were checked using BioEdit. Sites that presented
two different nucleotide peaks within the same site and with the same
height were considered as heterozygous sites. Consensus sequences
were encoded using their respective IUPAC annotation.

2.4. Phylogenetic analyses

Firstly, single-gene phylogenies were reconstructed to illustrate the dif-
ferent mutation rates exhibited in mtDNA (COX1), nDNA (per) and non-
coding rDNA (ITS2). Substitution model selection for single-gene data sets
was carried out using jModeltest (Posada, 2008); the best-fitting model was
chosen using the Bayesian Information Criterion (ITS2) and the Akaike In-
formation Criterion (per, COX1). The models selected were:
GTR + F + I + G4 for COX1; TIM2+G for per; and K3Pu + F + G4 for
ITS2. In the ITS2 data set, gaps were treated as complete deletions. Bayesian
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inference analysis was done with the software MrBayes v3.2.6 (Huelsenbeck
and Ronquist, 2001) by implementing the corresponding substitution model
with each data set. A Markov Chain Monte Carlo (MCMC) method was used,
starting from two simultaneous independent runs, with three heated chains
and one cold chain. Each was run for 10 million generations, sampling every
one thousand generations. When the critical value for the topological con-
vergence diagnostic fell below the default threshold (0.01) analyses were
stopped. Burn-in was set to 0.25 to discard a fraction of sampled values.
Trees were drawn using R in Rstudio (Team R., 2015) with the package
ggtree (Yu et al., 2017). Pairwise distances for COX1 were calculated using
MEGA?7 (Kumar et al., 2006). In cases of sequence heterozygosity (per gene),
sequences were formatted in SeqPHASE (Flot, 2009) and alleles were in-
ferred using PHASE under the default settings.

To provide a clearer resolution of the evolutionary relationships of
the L. bufonivora group using nuclear DNA, a parsimony splits network
based on a concatenated data set with the inferred per alleles and the
non-coding ITS2 was drawn under the default conditions of SplitsTree
(Huson and Bryant, 2006).

2.5. Divergence time estimation
Tree calibration was done by specifying the node age corresponding

to the split between the Luciliinae and Calliphorinae subfamilies (19.7
mya), as estimated by Wallman et al. (2005). Sequence data for the
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three genes (mtDNA, nDNA and non-coding rDNA) were used for this
analysis. Best-fit substitution models were unlinked to allow different
evolution rates. Additionally, to allow substitution rates to vary among
lineages, the clock model was set to an unlinked log-normal relaxed
clock for each gene separately. Clock rate was set to ‘estimate’ for each
data set under BEAST (Suchard et al., 2018) default settings. MCMC
consisted of two independent runs, each with a sampling size of 20
million, with samples logged every 1000 steps. Convergence between
runs was checked using Tracer. Tree files were combined using Log-
Combiner with a burn-in set to 10%. The software TreeAnnotator from
the BEAST package, was used for annotating the maximum credibility
tree. The latter was drawn using the package ‘strap’ (Bell and Lloyd,
2014) using R in Rstudio (Team R., 2015).

3. Results

In summary, amphibian parasitism was recovered as a mono-
phyletic life history trait in all phylogenies inferred. The saprophagous
species L. silvarum was never included in this monophyletic group.
Samples of the toadfly L. bufonivora showed consistent paraphyly with
respect to L. elongata, showing a clear distinction between individuals
from Europe and Canada. The well-recognised relationships between
the sheep blowflies L. sericata and L. cuprina were recovered with strong
support in all phylogenies. Similarly, the L. caesar species group,
comprised mainly of saprophagous species with very similar mor-
phology, was supported by strong PPO values in all phylogenies.

3.1. Single-gene phylogenies

The ITS2 sub-region exhibited very variable sequence length among
taxa (Table 1). Accordingly, phylogenetic analysis of the ITS2 subunit
included sequence data for the 2S (partial), ITS2 and 28S (partial) re-
gions. European sequences of L. bufonivora exhibited a consistent hap-
lotype with the presence of an 8 bp indel that was not observed in the
Canadian haplotype of the same species. This tree supported the para-
phyly of L. bufonivora with respect to L. elongata (Fig. 2). Whilst gen-
erally exhibiting lower posterior values, this tree recovered a European
L. silvarum clade that was distinct from a North American clade of the
same species (Fig. 2). Unlike L. bufonivora, all samples of the sheep
blowfly, L. sericata, were recovered in a monophyletic clade regardless
of the geographical distances between them. Similarly, samples of L.
caesar from Turkey and the UK did not exhibit any intraspecific varia-
tion within this phylogeny (Fig. 2).

Bayesian inference analysis of the COX1 data set suggested a rapid
mutation rate in the mtDNA of the L. bufonivora species group (Fig. 3).
All Canadian samples of L. bufonivora were clustered together in a single
clade independent from a European clade. Thus, L. bufonivora was de-
fined as paraphyletic with respect to the strictly Nearctic L. elongata.
Indeed, Canadian samples of L. bufonivora appear to have a closer af-
finity with L. elongata than with their European conspecifics (Fig. 3);
certainly, they exhibited relatively high intraspecific genetic distances
(0.050-0.052, Table 4). Similarly, within this phylogeny, L. silvarum
was recovered as a paraphyletic species with respect to L. richardsi/L.
pilosiventris/L. regalis (Fig. 3). Although L. thatuna has previously been
considered as being implicated in amphibian myiasis in North America
(Tantawi and Whitworth, 2014), it does not appear to have close re-
lationships with the L. bufonivora species group (Fig. 3). Within this
phylogeny the Australian sheep blowfly, L. cuprina, grouped next to the
L. sericata clade with strong support (Fig. 3). Surprisingly, the pairwise
distance displayed between them was lower than that observed be-
tween Canadian and European L. bufonivora (0.022-0.024, Table 4).

The single gene phylogeny inferred from the per (nDNA) gene also
supported the paraphyly of L. bufonivora with respect to L. elongata
(Fig. 4). Unlike previous phylogenies, all samples of L. silvarum (both
European and North American) were grouped in a single clade with
strong support (Fig. 4).
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Within the ITS2 and COX1 phylogenies, L. richardsi, L. pilosiventris
and L. regalis showed close relationships to one another (Figs. 2 and 3).
These species are morphologically similar to the sheep blowfly L. ser-
icata, which is in agreement with the ITS2 phylogeny (Fig. 2). Never-
theless, within the COX1 phylogeny, these species were recovered as a
sister group to the North American L. silvarum clade (Fig. 3).

3.2. Parsimony splits: per + ITS2

A concatenated data set of per and ITS2 gene sequence data allowed
the analysis of ~1050 bp of sequence. The resulting parsimony splits
network showed better resolution using nDNA than those based on
single-gene phylogenies (Figs. 2 and 4). As suggested previously by the
COX1 phylogeny, parsimony splits of the concatenated data set pro-
duced two well-separated groups of amphibian parasites: a Nearctic (L.
elongata and Canadian L. bufonivora) and a Palearctic (European L.
bufonivora) group. Both displayed almost the same genetic distance
with respect to the L. silvarum sister cluster (Fig. 5).

3.3. Divergence time estimation

A concatenated data set of COX1, ITS2 and per (~1700 bp) was ana-
lysed. A Bayesian uncorrelated relaxed clock was used to estimate the di-
vergence times for a range of different species of Lucilia. The molecular
clock calibration was set to the split between the subfamilies Luciliinae and
Calliphorinae, which has been estimated to have happened around 19.7
mya (Wallman et al., 2005). The present estimates indicate that the main
radiation of the genus Lucilia occurred during the middle Miocene, about
15.57 mya (95% CI: 10.69-20.26 mya, Fig. 6). Our results suggest that
during this time, there was a major split between a lineage of species with
predominantly saprophagous habits (the L. caesar group) and a lineage that
ultimately would include the sheep blowfly (L. sericata) and the toadfly (L.
bufonivora) species groups (Fig. 6).

The split between the L. bufonivora and the L. sericata species groups was
inferred to have occurred during the Miocene, around 9.26 mya (95% CI:
5.60-13.10 mya, Fig. 6). This suggests that the L. bufonivora group may
have diverged from a saprophagous/facultative ancestor. Diversification of
the L. bufonivora group was estimated to have occurred during the Pliocene
Epoch, 4.98 mya (CL: 1.92-8.40 mya, Fig. 6). Within this group, niche
isolation of their most recent ancestor may have played an important role in
the adaptative radiation of two distinct lineages: one with saprophagous
behaviour (L. silvarum) and another that evolved high host-specificity for
amphibians (L. bufonivora + L. elongata).

Similarly, the divergence between a Nearctic and Palearctic L. sil-
varum was inferred to occur around 3.05 mya (95% CI: 0.80-5.02 mya,
Fig. 6). Thus, this finding suggests the independent evolution of this
saprophagous species in two geographically isolated populations.

4. Discussion
4.1. Phylogenetic relationships

Previous studies have suggested that the parasitic habit in Lucilia
blowflies evolved independently on multiple occasions (Stevens and
Wall, 1997a; Stevens, 2003; Stevens and Wallman, 2006). Present re-
sults support this hypothesis, showing a clear distinction between the
different Lucilia species groups, most of which include taxa that exhibit
both saprophagous and parasitic life histories. In contrast, however,
obligate parasitism and specialisation for a distinct host species group
(amphibians) appear to have evolved just once, as indicated by the
reciprocal monophyly of L. bufonivora and L. elongata (Figs. 2-4).
Moreover, while L. silvarum showed close relationships with the latter
two species, it was never incorporated into the monophyletic group of
taxa associated with obligate amphibian myiasis. This is finding is
perhaps to be expected given that L. silvarum is a well-documented
saprophage (Hanski and Kuusela, 1977; Hanski, 1987; Prinkkila and
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Hanski, 1995; Fremdt et al., 2012).

Mutation rates in mtDNA are generally faster than those in nuclear DNA
due to the lack of recombination and the accumulation of deleterious mu-
tations (Brown et al., 1979; Neiman and Taylor, 2009). Within recently
diverged species of Lucilia blowflies, this can result in shorter branches in
nuclear phylogenies but longer branch lengths in mtDNA-based phylogenies
(McDonagh and Stevens, 2011; Yusseff-Vanegas and Agnarsson, 2017).
Certainly, the single-gene phylogenies presented here showed an ac-
celerated mtDNA mutation rate within the L. bufonivora species group. This
has also been reported in other insect groups, such as crabronid wasps
(Hymenoptera) (Kaltenpoth et al., 2012).

All phylogenies exhibited a clear distinction between well-defined
clades of Nearctic and Palearctic L. bufonivora. Evidence from the con-
catenated time-scaled phylogeny and parsimony splits networks
(ITS2 + per) suggests that L. bufonivora from Canada has greater affinity
with the strictly Nearctic L. elongata than with its Palearctic conspecifics.
Surprisingly, the COX1 intraspecific pairwise distance between Canadian
and European individuals of L. bufonivora was greater than the interspecific
distance displayed between the sheep blowflies L. sericata and L. cuprina.
Thus, geographical isolation of L. bufonivora and rapid mtDNA evolution
rates appear to be facilitating on-going cryptic speciation. This phenomenon
is relatively common within Diptera, as reported in geographically isolated
populations of gall midges, tephritid flies, flesh flies and black flies (Hall
et al., 2009; Tadeo et al., 2015; Adler et al., 2016; Duque-Gamboa et al.,

2018). The status of L. bufonivora in Canada as a distinct species, however,
remains to be resolved, and will also require detailed morphological ex-
amination of specimens from both Eastern and Western hemispheres.

Phylogenetic resolution of the L. bufonivora species group is often poor
when using nuclear DNA markers (McDonagh and Stevens, 2011; Arias-
Robledo et al,, 2019a). In fact, a recent study failed to differentiate L.
elongata from L. silvarum using the gene EFIa, highlighting the close re-
lationships of this species group (Arias-Robledo et al., 2019a). In the present
study, single-gene phylogenies inferred from both per and ITS2 sequence
data provided clearer resolution on the relationships of this species group
and recovered L. elongata as being closely related to L. silvarum. Further-
more, the parsimony splits from a concatenated data set of the aforemen-
tioned genes indicated a clear split between a Nearctic lineage (Canadian L.
bufonivora and L. elongata) and a Palearctic (European L. bufonivora)
grouping of obligate parasites of amphibians that exhibit almost the same
genetic distance with respect to L. silvarum. All taxa from the L. bufonivora
species group exhibited unique and consistent ITS2 haplotypes with differ-
ences in length and base composition. Therefore, unambiguous species
identification can be carried out employing multi-locus analysis with COX1
and ITS2 sequence data (Jordaens et al., 2013; GilArriortua et al., 2014;
Yusseff-Vanegas and Agnarsson, 2017).

The saprophagous species L. silvarum exhibited high mtDNA sequence
divergence between Palearctic and Nearctic samples. While this result could
be viewed as indicative of species-level differentiation, it is suggested that
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this should be interpreted with caution. For instance, unlike for L. bufoni-
vora, the concatenated time-scaled tree recovered L. silvarum as mono-
phyletic (Fig. 6). Similarly, previous molecular studies on other blowflies,
e.g., Phormia regina, have detected high mtDNA sequence divergence be-
tween North American and European populations (Desmyter and Gosselin,
2009; Boehme et al., 2012). Due to a lack of morphological differentiation
and minimal nuclear DNA variation, it was concluded that the mtDNA
variation observed in P. regina did not indicate species-level differentiation
(Jordaens et al., 2013). This phenomenon has also been reported for other
species such as Lucilia eximia and Lucilia rica (Yusseff-Vanegas and
Agnarsson, 2017). In addition, in the current study, Bayesian analysis of per
gene data clustered Nearctic and Palearctic L. silvarum in a single clade.
And, in contrast with L. bufonivora, the parsimony splits network also
clustered all samples of L. silvarum close to each other (Fig. 5). These
findings suggest that L. silvarum also exhibits an accelerated mtDNA mu-
tation rate; thus, accelerated mtDNA evolution might have been present in
the saprophagous ancestor of L. bufonivora and cannot be attributed directly
to its highly specific life history.

It is well recognised that multi-locus phylogenies typically provide
deeper insights into the evolutionary history of an organism than do
single-gene phylogenies (Wallman et al., 2005; McDonagh and Stevens,
2011). Nonetheless, the latter can still be useful to illustrate potential
differences in mutation rates exhibited by individual loci. Single-gene
trees may also help in detecting ancient hybridisation and/or in-
complete lineage sorting events. Certainly, the current study found that

(For interpretation of the references to colour in this figure legend, the reader is

the less commonly encountered species L. richardsi/L. pilosiventris/
L.regalis comprise a species group, which, in turn, is related to both L.
sericata (ITS2, Fig. 2) and L. silvarum (COX1, Fig. 3). To date, only one
morphology-based phylogenetic study has recovered a close relation-
ship between L. regalis/L. pilosiventris and the saprophage L. silvarum
(Stevens and Wall, 1996). Although in the COX1-based mtDNA phylo-
geny presented here (Fig. 3) the relationship between these taxa ac-
cords with that presented by Stevens and Wall (1996), the positioning
of these taxa within the ITS2 phylogeny is in marked contrast, with L.
pilosiventris/L. regalis and L. richardsi being grouped more closely with L.
sericata (Fig. 2). In the past, this incongruency has been detected only
for L. richardsi (McDonagh and Stevens, 2011; Arias-Robledo et al.,
2019a). In Drosophila spp., such incongruencies are attributed to in-
complete lineage sorting (Pollard et al., 2006) and we suggest a similar
explanation for the incongruence observed between the mtDNA and
nuclear DNA phylogenies in the current study. For example, in the
current study the toadfly species group (L. bufonivora/L. silvarum/L.
elongata) and the sheep blowfly species group (L. sericata/L. richardsi/L.
regalis) share a common ancestor (Figs. 3, 4 and 6). Thus, it is likely that
after the rapid speciation of the ancestral form, polymorphisms were
fixed randomly in each species (e.g. L. sericata and L. bufonivora) and, in
some cases involving non-sister species, this could have resulted in the
fixation of the same ancestral polymorphisms (e.g. in L. richardsi and L.
silvarum). Nonetheless, further studies with more loci and/or mitoge-
nomic data are required to confirm this hypothesis.
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4.2. Evolution of obligate parasitism in Lucilia blowflies and specificity for
amphibian hosts

The time-scaled phylogeny (Fig. 6) suggests that the diversification of
genera within Calliphoridae seems to have occurred ~15.57 mya (95% CI:
10.69-20.26 mya), which is in accordance with several previous estimates
(Wallman et al., 2005; Junqueira et al., 2016). Nonetheless, it has been
suggested that some economically important calliphorid flies (i.e. L. sericata
and L. cuprina) may have evolved parasitic behaviour in association with
humans and the domestication of animals, as myiasis is rarely reported in
wild animals (Erzinclioglu, 1989; Stevens and Wall, 1997a). However, high
host-specificity for wild amphibians suggests that L. bufonivora evolved in-
dependently from those blowfly species associated with animal domestica-
tion. Indeed, the time-scaled phylogeny suggests that this life history trait
arose approximately 5 mya, during the Early Pliocene (Fig. 6). In some
groups of strictly obligate taxa such as oestrid flies, host-parasite coevolu-
tion appears to have played an important role in lineage divergence and
speciation (Pape, 2006; Stevens et al., 2006). This, however, differs con-
siderably from the evolution of L. bufonivora, which shows close phyloge-
netic affinity with other fly species that exhibit predominantly sapropha-
gous feeding habits (e.g. L. silvarum).

The close relationship of L. bufonivora with L. silvarum suggests that their
last common ancestor probably exhibited facultative parasitism or sapro-
phagous feeding habits. Moreover, this idea is also supported by the re-
ciprocal monophyly of the toadfly (L. bufonivora) and the sheep blowfly (L.
sericata) species groups, both of which are comprised of parasitic and sa-
prophagous taxa. Our results suggested that the split between these two
species groups occurred in the Miocene around 9.26 mya (95% CL
5.60-13.10 mya, Fig. 6). The time-scaled phylogeny also suggests that the
saprophagous ancestor of L. bufonivora may have co-existed with other
calliphorid lineages that behaved mostly as carrion-breeders (e.g. Calliphora,
Fig. 6). It is well known that ephemeral resources, as provided by carrion,
can facilitate intense interspecific competition (Hanski and Kuusela, 1977;
Hanski, 1987; Prinkkila and Hanski, 1995). Intense competition within the

carrion fly community may have forced the saprophagous ancestor of L.
bufonivora to migrate to narrower ecological niches with fewer competitors;
it may have started by infesting already injured amphibian hosts and/or
colonising toad carcasses within minutes after death, thus facilitating in
evolutionary time an adaptative radiation of a lineage of obligate parasites,
namely L. bufonivora, and a saprophagous lineage that remained active in
the carrion fly community (L. silvarum). The monophyletic origin of obligate
amphibian parasitism in Lucilia blowflies is in marked contrast with the
evolution of obligate parasitism of mammals, which appears to have had
multiple independent origins in the Calliphoridae (Stevens, 2003;
McDonagh and Stevens, 2011).

In contrast to L. bufonivora, the sheep blowfly, L. sericata, is a
common and highly abundant species in many parts of Europe, in-
cluding the UK (Rognes, 1991; Hwang and Turner, 2006; Arias-Robledo
et al., 2019b). The large population sizes, high migration capacity and
fertility of L. sericata are reported to have increased rates of gene flow
and to have reduced the impact of genetic drift (Diakova et al., 2018).
This would explain the genetic similarity of many of the geographically
distant samples of L. sericata included in this study; moreover, this
finding accords with previous research showing minimal intraspecific
variation in much larger and spatially broader samples of L. sericata
(Stevens and Wall, 1997b; DeBry et al., 2010; McDonagh and Stevens,
2011; Williams and Villet, 2013). In contrast, the low abundance of L.
bufonivora in the field suggests that small population sizes, in combi-
nation with a restricted dispersal capacity, make the toadfly a species
vulnerable to genetic drift, thereby facilitating the rapid independent
evolution of geographically isolated populations, resulting in the high
genetic distances observed between Nearctic and Palearctic L. bufoni-
vora. A similar finding has been reported in a non-synanthropic flesh fly
involved in obligate myiasis of different mammal species, Wohlfahrtia
vigil (Hall et al., 2009). Given that W. vigil does not affect livestock host
species, it is unlikely to have been dispersed by human activity, thus, it
has evolved independently in the Eastern and Western hemispheres
(Hall et al., 2009).
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Fig. 6. Divergence times estimated from a concatenated data set of per, COX1 and ITS2 sequences for the Lucilia bufornivora species group. Substitution model and
relaxed clock models were unlinked for each gene. The tree was calibrated by setting the root to the node age corresponding to the split between Luciilinae and
Calliphorinae subfamilies (~19 mya) as estimated by Wallman et al. (2005). Blue bars represent 95% highest posterior density (HPD) of each node age. (For

interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Lucilia bufonivora parasitizes mainly wild hosts (as does W. vigil) and
its dispersal is unlikely to have been mediated by human activity. This
group of taxa experienced rapid diversification that appears to have
been facilitated by geographical barriers. For example, the results
presented here suggest that the diversification of the most recent an-
cestor to L. bufonivora was facilitated by geographical isolation between
Nearctic and Palearctic individuals, which was estimated to have oc-
curred 3.52 mya (95% CI: 1.08-6.35 mya, Fig. 6). Certainly, in Europe
it appears that the ancestral type diverged into the well-defined Pa-
laearctic L. bufonivora. However, in North America it seems to have
diverged into a Nearctic lineage that subsequently diversified 1 mya
later into L. elongata and a Nearctic L. bufonivora (2.19 mya, 95% CL:
0.50-4.02 mya, Fig. 6). Therefore, it is suggested that L. bufonivora has
been present in the North American continent for several million years
but has remained unrecorded, possibly due to its low abundance and/or
taxonomic confusion. However, there is currently insufficient reliable
evidence to conclude exactly how this species migrated between con-
tinents. Nevertheless, the reciprocal monophyly between Nearctic and
Palearctic parasites of amphibians suggests that this life history trait
evolved before the intercontinental dispersal of the ancestral species,
rather than obligate amphibian parasitism having independent origins
in two different continents. The time-scaled phylogeny suggests that
this dispersal occurred during the Pliocene, also a determining epoch
for the intercontinental dispersal of vertebrates, including mammals,
through Beringia (Cook et al., 2017). The Bering Land Bridge is also
known to have mediated intercontinental dispersal of plants, amphi-
bians, insects and parasites (Stevens et al., 2001; Contreras and Chapco,
2006; Li et al., 2015; Wen et al., 2016; Cook et al., 2017). Although
there are existing reports of L. bufonivora from far east Asia and
northern Canada (Draber-Morniko, 2013; Tantawi and Whitworth,
2014), more detailed phylogeographic studies, as well as updated sur-
veys on the calliphorid fauna of eastern Russia and Alaska, are required
to better understand the timing of the proposed divergence of Pa-
laearctic and Nearctic L. bufonivora. Nevertheless, it can be concluded
that L. bufonivora has been present in the North American continent for
at least two million years but has remained unrecorded due to its re-
lative rarity, as well as taxonomic confusion with L. silvarum.

4.3. Species composition in amphibian myiasis in North America

Using both morphological and molecular data, the present study con-
firmed the involvement of L. bufonivora in amphibian myiasis in Alberta,
Canada. These reports relate to an infected western chorus frog in Pine Lake
and a wood frog in Calling Lake (Table 1). It is of note that these specimens
were adult flies reared from diseased amphibians and were originally la-
belled as ‘L. silvarum’ using early morphological keys (Hall, 1948). While
based on only two cases, this suggests that some records of L. silvarum in-
volved in amphibian myiasis in North America, particularly those identified
using Hall's 1948 keys, are likely to be misidentifications. Firstly, and sig-
nificantly, the keys do not include L. bufonivora at all, as at this time it was
thought to be absent from North America. Secondly, Tantawi and
Whitworth (2014) noted that there were several specimens of L. bufonivora
mislabelled as ‘L. silvarum’ in Canadian insect collections (with 1954 as the
earliest collection record). Therefore, the species composition of flies asso-
ciated with amphibian myiasis in North America and reports of L. silvarum
being involved in the disease remain confused and more research is required
to resolve this issue. Nevertheless, further misidentifications can now be
prevented by using the sequencing approach presented in this study (i.e.
using ITS2 and COX1) in combination with up-to-date morphological keys
(Tantawi and Whitworth, 2014).

5. Conclusion
Within the genus Lucilia, obligate parasitism and host-specificity for

amphibians is likely to have evolved just once around 4 mya. It is likely
that this occurred after the niche displacement of a saprophagous/
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facultative parasite ancestor from the carrion-fly community.
Consistent paraphyly of L. bufonivora across single-gene phylogenies
and high mtDNA sequence divergence between Palearctic and Nearctic
lineages suggest on-going cryptic speciation of L. bufonivora facilitated
by geographical isolation. A time-scaled phylogeny suggests L. bufoni-
vora has been evolving independently in these two regions for at least 2
mys. Thus, this species appears to have been present in North America
since this time, but, due to its relative rarity, it has remained un-
recorded by taxonomists until relatively recently (Tantawi and
Whitworth, 2014). This is the first positive DNA-based identification of
L. bufonivora from two confirmed cases of amphibian myiasis in North
America.
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