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Birds can use two kinds of information from the geomagnetic field for navi-
gation: the direction of the field lines as a compass and probably magnetic
intensity as a component of the navigational ‘map’. The direction of the mag-
netic field appears to be sensed via radical pair processes in the eyes, with
the crucial radical pairs formed by cryptochrome. It is transmitted by the
optic nerve to the brain, where parts of the visual system seem to process
the respective information. Magnetic intensity appears to be perceived by
magnetite-based receptors in the beak region; the information is transmitted
by the ophthalmic branch of the trigeminal nerve to the trigeminal ganglion
and the trigeminal brainstem nuclei. Yet in spite of considerable progress in
recent years, many details are still unclear, among them details of the radical
pair processes and their transformation into a nervous signal, the precise
location of the magnetite-based receptors and the centres in the
brain where magnetic information is combined with other navigational
information for the navigational processes.
1. Introduction
The magnetic field of the Earth provides animals that can sense it with naviga-
tional information: the vector indicates directions, and magnetic intensity and
inclination, which decreases from the magnetic poles to the magnetic equator,
and possibly also magnetic declination could be used as components of the
navigational ‘map’. Birds make use of the geomagnetic field in two ways:
the vector provides them with a compass, and other parameters, probably mag-
netic intensity, appear to be an important component in the navigational ‘map’
for long-distance navigation. How birds sense these parameters is not yet com-
pletely understood, although numerous aspects of the receptive processes have
been described in recent years.
2. Magnetic compass: starting out with radical pair processes
Behavioural experiments, mostly based on the orientation of migratory birds,
revealed three surprising characteristics of the avian magnetic compass, indicat-
ing a mode of magnetoreception that is basically different from the way that our
technical compass shows directions (e.g. [1]).

(1) It is an inclination compass, not sensitive to the polarity of the magnetic field;
instead it senses the axial course of the field lines and interprets their incli-
nation in space (figure 1a,b; [2–4]). It thus does not distinguish between
magnetic North and South, but between ‘poleward’, where the field lines
run downward, and ‘equatorward’, where they run upward.

(2) It is narrowly tuned to the intensity of the ambient magnetic field; fields
with markedly lower or higher (!) intensity cause disorientation. Yet this
‘functional window’ is not fixed; it can be modified by exposing birds to
intensities outside this window, which enables them to use these intensities
subsequently for directional orientation [5–7].

(3) It requires short-wavelength light. Tests under near-monochromatic lights
revealed that orientation is possible under light from ultraviolet to about
565 nm green; under yellow and red light, birds are disoriented [8–12].
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Figure 1. Magnetic compass orientation under green light (G) originating in radical pair processes (a–d), and a ‘fixed direction’ response in total darkness (D),
probably originating in magnetite-based receptors in the beak region (e–h). The compass response is not sensitive to the polarity of the magnetic field, but to the
axial course of the field lines; it is disrupted by radiofrequency fields, but not affected by anaesthesia up the upper beak. The ‘fixed direction’ response, in contrast, is
a polar response; it is not affected by radiofrequency fields, but is disrupted by anaesthesia of the upper beak. The triangles at the periphery of the circle mark the
mean directions of individual birds, the arrows indicate the grand mean vector and the inner circles give the 5% (dotted) and the 1% significance border of the
Rayleigh test (see [2]).
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The avian magnetic compass seems to measure directions
with an accuracy of about 3° in the vertical [13] and at least 5°
in the horizontal [14].

2.1. The radical pair model
These properties of the avian magnetic compass caused Ritz
and colleagues [15] to propose the radical pair model: upon
absorption of a photon, radical pairs are formed, either as
singlets with antiparallel spin or as triplets with parallel
spin. The ratio between the two states depends on the orien-
tation of the radical pair in the magnetic field and can thus
mediate magnetic directions. The eye was suggested as the
site of the receptive processes, because here light is available
and, because of its more or less round form, receptors, aligned
perpendicularly to its surface in ordered arrays, are covering
all spatial directions. This would lead to a characteristic acti-
vation pattern on the retina that is centrally symmetric to the
vector of the magnetic field; it can be spatially interpreted
and thus indicate magnetic directions. As a receptor molecule,
the authors suggested cryptochrome, a flavoprotein, because
this is the only protein known in animals where absorption
of photons leads to the formation of radical pairs [15,16].

This model is in agreement with the known characteristics
of the avian magnetic compass. Because the singlet/
triplet ratio depends on the course of the field lines, but not
on their polarity, it results in an inclination compass, as
found in birds. The ‘functional window’ and its flexibility
can also be explained: the activation pattern also depends on
magnetic intensity; birds that experience a sudden change in
intensity are facedwith a novel patternwhichmight be confus-
ing at first. The pattern retains its central symmetry to the
magnetic vector, however, so that birds can learn to interpret
it after a while. Cryptochrome, the suggested magneto-
receptor molecule, absorbs short-wavelength light from UV
to about 560 nm (e.g. [17,18]) and is thus in agreement with
the behavioural findings on the light dependency of compass
orientation in birds (see also [19]).

Specific experiments support this model. Subjecting birds
to radiofrequency fields, a diagnostic tool for radical pair pro-
cesses [20], results in disorientation (figure 1c). This applies to
migrants during migratory orientation [21–24] as well as to
directionally trained non-migrants such as Domestic Chick-
ens [25] and Zebra Finches [26]. The Larmor frequency, that
is, the frequency of the electron, proved most effective and
disrupts orientation at very low intensities [27]; this has
been independently confirmed by [23,28]. Reports of the
opposite [24] are inconclusive because of methodological
short-comings (use of metallic test cages that not only
shield but also reflect and distort radiofrequency fields so
that the conditions become undefined).

2.2. Cryptochromes in the avian eyes
The chromophore of cryptochrome is flavin (FAD), which
undergoes a redox cycle: photon absorption reduces FAD
to the semiquinone FADH°, forming a first radical pair
with tryptophan. In a next step, FADH° can be further
photo-reduced to the fully reduced form FADH−, which is
then re-oxidized independently of light. During this process,
a second radical pair is formed (e.g. [18]). Behavioural exper-
iments in flickering light and an alternatively pulsed
magnetic field indicate that the receptive process itself does
not require light, suggesting that, in contrast to crypto-
chrome-controlled responses in plants (e.g. [29]), the second
radical pair formed during re-oxidation is the one crucial
for avian magnetoreception. Light is required, however, to
provide the fully reduced form FADH− to be re-oxidized
[30]. Details of this process are still not entirely clear (e.g.
[31–36] and others).
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Four types of cryptochromes—Cry1a, Cry1b, Cry2 and
Cry4—have been found in the eyes of birds. Cryptochrome
1 was first described by Haque and colleagues [37] based
on mRNA expression in the photoreceptor layer and the
ganglion cell layer (see also [38]); Möller and colleagues
[39] identified two splice products of the Cry1 gene, Cry1a
and Cry1b, with different C-termini. In an immuno-
histochemical study using a specific antiserum, Nießner
and colleagues [40] located Cry1a in the UVS/VS (SWS1)
cones (ultraviolet/violet cones) in chickens and robins, with
immuno-electron microscopy showing it positioned at the
discs in the outer segment together with UV-opsin. An
in vivo study showed that, in contrast to what Kutta and col-
leagues [41] assume, it is directly activated by light of the
wavelengths that are absorbed by flavin [19]. The UVS/VS
cones have clear oil droplets that allow all wavelengths of
light to pass [42]; they are present all across the retina so
that they can give rise to the activation pattern proposed by
Ritz and colleagues [15] and mediate magnetic directions.

Cry1b was located by immuno-histochemistry in the cyto-
sol of ganglion cells, displaced ganglion cells and also in the
inner segments of the photoreceptors [43–45], free as well as
bound to membranes. In night-migrating birds, its expression
varies with season and was much stronger during the
migratory season when the birds were active during the
night [45,46]. A role in magnetoreception has been suggested
[44], but, because the use of a magnetic compass is also
shared by non-migrants and hence appears to be a general
ability of birds, the seasonal changes seems to suggest
another role, possibly involving the shift from diurnal
activity to nocturnal Zugunruhe.

Cryptochrome 2 was described by Bailey and colleagues
[47], who identified it by its mRNA in a number of organs,
among them the pineal and, in the eyes, in the photoreceptors
and ganglion cells (see also [38]). It includes a sequence that
suggests its location in the cell nucleus [39,43], which points
to a possible role as a clock protein (e.g. [48]).

Cryptochrome 4 was described in avian eyes by Watari
and colleagues [49] using mRNA expression and immuno-
histochemistry. With specific antisera, Günther and col-
leagues [50] could narrow down the location of Cry4 to the
outer segments of the LWS (longwave-sensitive) single
cones and of the double cones. It has recently been speculated
that Cry4 may be involved in magnetoreception (e.g. [50,51]).
In particular the location within the double cones prompted
the suggestion of such a role of Cry4, because here the
input of two adjacent receptors with the magneto-receptive
molecules oriented in different directions could be compared
to overcome problems by different light intensities and polar-
ization [50,52]. However, the principal cone is associated with
an oil droplet that acts as a cut-off filter absorbing short wave-
lengths [42] and thus most of the wavelengths needed for
cryptochrome photo-reduction. This, together with the gap
junctions between the two cones, would interfere with a com-
parison. Hence such a role of Cry4 in the double cones in
magnetoreception seems problematic. The Cry4 in the LWS
single cones seems even less suitable for magnetoreception,
because these cones contain a red oil droplet that transmits
only long wavelengths that are not absorbed by
cryptochrome.

Qin and colleagues [53], based on genome-wide screen-
ings, suggested an iron–sulfur protein polymer, MagR, with
an intrinsic magnetic moment, in combination with Cry4,
as a magnetic sensor that combines ferrimagnetic and light-
dependent features. This complex was found by antibodies
to be most highly expressed in the retinal ganglion cell
layer, and the inner and outer nuclear layer. Yet the assump-
tions about the magnetic moment—it appears to be much
weaker than assumed—and the immuno-histological studies
have been criticized (see [54]), and it is still unclear whether
such a combined sensor is involved in magnetoreception.

Altogether, the presently available evidence indicates
Cry1a as the most likely receptor molecule for sensing direc-
tions. The observation that its gene expression shows a
diurnal rhythm [51] does not speak against such a role,
because it only indicates a rhythmic production in the inner
segment, from where it has to be transported into the outer
segment—a parallel case to vision where the production of
opsins also shows a diurnal pattern (e.g. [55,56]).
2.3. Processing directional information in the brain
Any activation pattern caused by the magnetic field in the
retina must be transmitted by the optic nerve to the brain
to be processed (see [57,58]). How singlet/triplet ratios could
be transformed into a sensory signal for transmission to the
brain is not yet known.

Behavioural tests showed that, in adult birds, the magnetic
compass is lateralized in favour of the right eye, which means
that the respective information is processed predominantly in
the left hemisphere of the brain [59–62]. Migrants could use
both eyes during their first autumn migration [63–65]; the
lateralization was found to develop between the first
autumn and the first spring migration [65]. In the beginning,
it proved rather flexible, as it could be undone by covering
the right eye for 1½ h ([66]; see also [67], where that eye was
covered for more than 1 h before the tests started). This
suggests that the lateralization is initially caused by asym-
metric inhibitory interactions between the two hemispheres;
when the right eye was covered short-term synaptic plasticity
returned the ability of the left eye and the right hemisphere to
process magnetic directional information. Yet the lateraliza-
tion in favour of the right eye returned once the right eye
could be used again [66].

The centres in the brain where magnetic directional infor-
mation is processed are still not entirely clear. Most probable
candidates are areas associated with the visual system, yet it
is still open whether the processing of magnetic information
is an integrated part of vision or whether it is processed
more or less independently as a sense of its own. The obser-
vation that covering the right eye could remove the
lateralization only if meaningful magnetic information was
available—light alone proved insufficient [66]—could be
interpreted as suggesting the latter. An involvement of the
thalamofugal pathway is suggested (e.g. [58,67,68]).

Electrophysiological responses to changes in magnetic
directions were recorded from direction-sensitive cells in the
nucleus of the basal optic root (nBOR), a part of the accessary
optic system, and from the stratum griseum et fibrosum superfi-
ciale of the tectum opticum [69,70]. Yet recent studies failed
to find magnetic field-induced activity in the tectum
opticum [71,72].

Using neural activity markers, a part of the Wulst, cluster
N, was identified as an area with considerable neural activity
during migratory behaviour in night-migrating passerines
when they had to rely on their magnetic compass [73].
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A follow-up study showed activity in cluster N during
nocturnal activity, but not during the day, with a certain
lateralization in favour of the right hemisphere. This was dis-
cussed in connection with night vision, but also as possibly
being associated with processing magnetic directional infor-
mation, although a difference in neuronal activity between
a near-zero magnetic field and a changing magnetic field
could not be observed [74]. By neuronal tracing, cluster N
was found to be connected with the retinal neurons via the
visual thalamus by the thalamofugal pathway [58]. Lesioning
cluster N led to disorientation [75]. However, when a day-
and night-migrating passerine species, the Meadow Pipit
Anthus pratensis, was tested, cluster N did not show enhanced
activity during daytime migration [75], so that it remains
open whether cluster N is indeed involved in magnetorecep-
tion or whether it controls other aspects of nocturnal
migratory activity (see [72,74]). Studies comparing the
activity of neuronal markers in birds subjected to a static
magnetic field and in birds subjected to a rotating magnetic
field indicated a certain increase in a number of brain
areas, with the most pronounced one in the dorsomedial
rostral hippocampus and some effect in a part of the
hyperpallium [76].

Altogether, there are still a number of open questions
about how a sensory signal is formed by the radical pair pro-
cess, how the magnetic signal is separated from the visual
information (see [77] for discussion) and about the brain
areas where magnetic directional information is processed.
3. Magnetic ‘map’ components: magnetite-
based receptors?

Because of their spatial distribution, magnetic intensity,
declination and inclination could serve as components of
the navigational ‘map’. Here, rather small differences must
be recorded. The response of homing pigeons to natural
fluctuations of the geomagnetic field suggests a sensitivity in
the range of about 20 nT (nanotesla) [78]. To use declination
and inclination, birds would have to record minute angular
differences; additionally, these parameters require non-
magnetic reference directions—true (astronomical) North
and gravity, respectively—which would complicate their use.

Magnetic parameters are only one component of a multi-
modal, redundant navigational ‘map’ [79]. The ‘map’ is
established by experience. All young birds are assumed to
familiarize themselves with the regional distribution of the
‘map’ factors in their home region by early exploration and
dispersal flights. Migrants additionally acquire the respective
knowledge on the ‘map’ factors for their extended journeys
during their first migration, which is controlled by an
innate migration programme (e.g. [80,81]); during later
migrations, they are able to navigate ([82,83]; for a review,
see [84]). The ‘map’ is assumed to include all factors that
prove suitable in the respective region, which may be
different in different parts of the world (e.g. [79]).

3.1. Effects of a magnetic pulse indicating receptors
based on magnetic material

Theoretical considerations led to a number of hypotheses pro-
posing magnetoreception by permanently magnetic particles
(e.g. [85–87]). Birds indeed have a second type of
magnetoreceptor apparently based on magnetite, a magnetic
material of biogenic origin. Depending on particle size, mag-
netite has different magnetic properties: in larger particles,
the magnetic moments tend to cancel each other; if the par-
ticles are sufficiently small—in the range between 0.04 and
0.12 µm—they consist of single domains with a permanent
magnetic moment. Even smaller particles are superparamag-
netic without stable magnetic moments, but their moments
align in an external magnetic field.

An indicator for the involvement of magnetic material is
the response to treatments with a strong magnetic pulse—
strong enough to alter the magnetization of single-domain
magnetite. Caged passerine migrants treated with a brief
0.5 T pulse showed a marked deviation from their migratory
direction [88,89], with the size and the direction of this deflec-
tion depending on how the pulse was applied [90,91]. This
suggests that the pulse did not silence the putative receptors
altogether, but caused them to provide the birds with false
information. The response to the pulsewas restricted to experi-
enced migrants that navigate towards an already familiar
goal, whereas young birds on their first migration that fly
innate courses were not affected [92]. This finding and the
observation that homing pigeons treated with such a pulse
deviated from untreated controls at some (but not all) sites
in greater distances from home [93,94] indicate that the pulse
affects a receptor that provides birds with a magnetic com-
ponent of the navigational ‘map’ (see also [95]). Apparently,
the pulse changes the course to be pursued, while the mag-
netic inclination compass remains unaffected [92,96]. This is
also supported by later studies wheremigrants were subjected
to magnetically simulated displacements (see below).

The effect of the pulse on the navigational system of
migrants is short-lived, however: the deflection lasted
only about 2–3 days; after this, the birds underwent a
phase of disorientation, and about 10 days after the
pulse treatment and later they again headed in their
normal migratory direction [88]. These observations with
caged migrants have a parallel in free-flying migrants:
migrating birds caught at a stop-over site were treated
with a pulse, released, and their departure directions
were radio-tracked. Here, too, young birds on their first
migration proved unaffected; adult migrants that departed
within 10 days after pulse treatment were random, those
that departed after 10 days were oriented in their normal
migratory direction [97].

The relative short duration of the pulse effect—recovery
of normal migratory orientation within about 10 days—
could be an indication for the size of the magnetite particles
involved. If the magnetization of single-domain particles was
altered by the pulse, a new magnetization would be just as
stable as the original one, and a complete exchange of the
magnetic particles within a time span of just 10 days seems
rather unlikely. Clusters of superparamagnetic particles, on
the other hand, would be disrupted by the pulse, but could
later rearrange themselves [98]. The observation that the
pulse effect was not modified by an applied biasing field
[99] could also by interpreted in favour of an involvement
of superparamagnetic particles.
3.2. The location of magnetite-based receptors
The location and the structure of the magnetite-based recep-
tors are still not entirely clear. After a number of studies had
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reported magnetic material in various places in the birds’
head, attention focused on tiny iron-containing particles in
the upper beak of pigeons. Electron-optical, magnetic rema-
nence and micro-XANES (microscopic X-ray absorption
near-edge structure) measurements identified clusters of
superparamagnetic material [100–103], consisting of magne-
tite (Fe(II)Fe(III)2O4) and maghemite (Fe(III)2O3) [104].
Similar structures were also found in two species of
migratory passerines and domestic chickens [104] so that
they seemed to be a general feature of birds. Fleißner and col-
leagues [105,106] described specific subcellular structures of
magnetite and maghemite in the dendrites of the ophthalmic
branch, V1, of the trigeminal nerve. A theoretical analysis
ascertained that the described structures could indeed pro-
vide the required magnetic information [107], while another
analysis was not so sure [108].

The location of magnetoreceptors in the skin of the upper
beak was in agreement with the observation that anaesthesia
of the skin of the upper beak with a local anaesthetic sup-
pressed the effect of the pulse [109]. Also, displaced
homing pigeons with their beak anaesthetized were no
longer confused in a strong magnetic anomaly; they left the
site more rapidly, probably orienting by non-magnetic
cues [110].

Another phenomenon associated with magnetoreceptors
in the upper beak is a certain behaviour that occurs under
unnatural light conditions where the normal inclination com-
pass appears to be disrupted, such as total darkness, intense
near-monochromatic light, or when yellow light is added to
short-wavelength light. In these situations, migratory birds
show so-called ‘fixed direction responses’ (figure 1e), that
is, they prefer directions that are different from their normal
migratory direction, do not reverse between autumn and
spring and turned out to be polar responses to the magnetic
field (figure 1f ). Anaesthesia of the skin of the upper beak
abolished these responses and led to disoriented behaviour
(figure 1h). Hence the ‘fixed direction responses’ were attrib-
uted to the magnetite-based receptors located there; they are
interpreted as possibly reflecting an ancient mechanism
before the present inclination compass was developed (e.g.
[2,111]).

Together, these findings supported magnetite-based
receptors in the skin of the upper beak of birds. However,
in 2010, Keays and colleagues [112] declared the iron-
containing cells in the beak described by Fleißner and
colleagues [105,106] to be macrophages. Also, in contrast to
the authors mentioned above, they failed to find magnetite
in the upper beak; yet, they used the spinning field method
[113], which works well for single domains, but not for
superparamagnetic particles. The disruptive effect of anaes-
thetizing the skin of the upper beak was also questioned, as
a recent study seemed to show that, in spite of anaesthesia,
changing magnetic fields led to magnetically induced activity
in parts of the trigeminal brainstem [114]. This study,
however, suffers from severe methodological short-comings:
a type of anaesthetic, a spray, was used that differed from
the injection solution used in the other studies (e.g.
[2,109,111]). The effect of the spray, according to the product
information sheet, lasts only 15–20 min, whereas the mag-
netic treatment was applied for 90 min. And the applied
stimuli were irregularly changing and in part unnaturally
strong, up to more than twice the intensity of the local geo-
magnetic field, while all the other studies with the
anaesthetic took place in the natural geomagnetic field.
Engels and colleagues [114] assume that the previous
observed effect of local anaesthesia was unspecific.
This is highly unlikely, however, because the treatment
had no effect when birds could use their inclination
compass (figure 1d; e.g. [2,111]), and migratory birds that
had been subjected to a pulse showed oriented
behaviour in their migratory direction when their beak
was anaesthetized [109].

Additionally, magnetic material was reported from the
otoliths of pigeons, particularly in the lagena, and discussed
in connection with magneto-sensitivity [115]; iron-rich cor-
puscles were also found in hair cells in the cochlea of
pigeons [116]. Yet their possible function as magnetorecep-
tors was questioned as they seemed unsuitable to provide
magnetic information [117–119]. A reported behavioural
response—slower homing of lagena-extirpated pigeons over
a short distance [120]—is in contrast with an earlier, more
extended study that had found no difference between cochleae
and lagenae-extirpated pigeons and untreated control
birds [121].

Presently, the specific location of the magnetite-based
magnetoreceptors is still unclear. The observation that mag-
netic stimuli had been found to be transmitted by the
ophthalmic nerve (see below) suggests that the receptors lie
in the area innervated by this nerve, and here the region of
the upper beak, where superparamagnetic magnetite had
been described, seemed a likely candidate. Also the behav-
ioural findings with the local anaesthesia supported
receptors in that location. But although a recent study
again searched very intensively in that area for potential
magnetite-based receptors, it failed to identify any structure
that would qualify [114].
3.3. Processing information from the magnetite-based
receptors

In the mid-1980s, electrophysiological studies revealed
responses to changes in the magnetic field recorded from
the ophthalmic nerve of a passerine migrant, with about
15–20% of the spontaneously active units responding
[122,123]. These responses continued when the direction of
the magnetic field was held constant, indicating that the
information concerned magnetic intensity [124].

Blocking the trigeminal nerve resulted in behavioural
responses that indicate the transmission of magnetic intensity
as navigational information. Treating the ophthalmic nerve
with an anaesthetic suppressed the effect of the pulse in
migrants: the birds continued in their migratory direction
[125]. Birds—pigeons and ducks—were successfully con-
ditioned to respond to an artificial local magnetic anomaly;
when the upper beak was anaesthetized or the trigeminal
nerve was sectioned, discrimination failed [126,127].

Most interesting are studies where migrants were
displaced, either in reality or virtually by simulating the mag-
netic field conditions of a distant region. The birds
compensated for the displacement and changed their course
accordingly [128,129]; they could no longer do so when the
trigeminal nerve was sectioned [130,131]. These findings
clearly show that the magnetic information transmitted by
the trigeminal nerve is used for navigation over longer
distances.



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190295

6
In some experiments in Italy, sectioning the ophthalmic
nerve did not affect the orientation behaviour of displaced
homing pigeons (e.g. [132,133]). This might reflect the redun-
dant nature of the navigational ‘map’: apparently, magnetic
factors could be replaced by other, non-magnetic ones. The
response of pigeons to magnetic anomalies (e.g. [110,134,135])
indicates that they normally consult magnetic information
when available.

Units in the trigeminal ganglion responded in a similar
way to those in the trigeminal nerve [136]. Later studies
using immediate gene expression markers, ZENK, also
revealed activity induced by magnetic stimuli in the tri-
geminal brainstem complex of passerine species and
pigeons, in particular in the principal trigeminal sensory
nucleus in the ascending tract and in the spinal trigeminal
sensory nuclei [68,72,137]. This is in agreement with
the behavioural data of blocking the trigeminal nerve
mentioned above.

A study using cFos found magnetically induced activity
in several parts of the brain of pigeons, among them the pos-
terior vestibular nuclei, dorsal thalamus, hippocampus and the
hyperpallium, which in part was attributed to receptors in the
lagena, since the activity was reduced when the lagena was
lesioned [138]. Electrophysiological recordings from single
units in the vestibular nuclei produced responses to direction,
intensity and polarity of the magnetic field [139]. The authors
speculate that this may be the neural basis for a magnetic
sense for navigation; yet a behavioural response to the mag-
netic field associated with the inner ear or the stato-acoustic
nerve remains unknown.
4. Outlook
At present, the findings indicate that birds sense magnetic
directions by radical pair processes in the eye, with the infor-
mation mediated by the optic nerve, and probably magnetic
intensity as a component of the navigational map by magne-
tite-based receptors in the region innervated by the
ophthalmic branch of the trigeminal nerve. A possible role
of magnetite particles in the inner ear is unclear.

Despite many successful studies in the last two decades,
there are still a number of questions open, and there are sev-
eral contradicting findings that have to be resolved. The
primary processes of detecting directions—if they follow
the radical pair model—appear to be largely understood,
but how and where this information is transmitted and
finally processed is still open. The sensing of a magnetic
‘map’ component is characterized by the striking discrepancy
between the transmission of magnetic information in the
ophthalmic branch of the trigeminal nerve being well docu-
mented by electrophysiology, neuronal activity markers and
behavioural data, and the fact that any receptive structures
in the area innervated by this nerve could not yet be securely
identified.

The magnetic stimuli used to identify structures proces-
sing magnetic information are not entirely unproblematic,
because they have to be completely unnatural. They normally
include rapid changes in direction as well as in magnetic
intensity at an order of magnitude that never occurs in
nature. The geomagnetic field is more or less stable and
never undergoes sudden changes; temporal and spatial vari-
ations, as they are caused by rock magnetization in the
ground, daily variations and magnetic storms, are minute.
In contrast to most other sensory systems that evolved to
detect changes in the environment, the magnetic compass
system is built to extract information from a situation that
never changes, and the receptors of the ‘map’ system must
have evolved to detect very small and subtle gradual
changes. We can only hope that in spite of the highly unna-
tural stimuli used the observed responses reflect the
sensory apparatus realistically.

We are only just beginning to understand the processing
of magnetic information in the brain. For directions as well as
intensity, a few regions are indicated, but where the more
complex processes combining magnetic information with
other relevant information for navigation take place is largely
unknown, e.g. where directional information from the mag-
netic field is combined with directional information from
the Sun and the stars, and where the magnetic component
of the navigational map is integrated with the other com-
ponents to allow the birds to determine their whereabouts
and the compass course to the desired goal. Mouritsen and
colleagues [140] discuss several possibilities in some detail.
One might consider the hippocampus as a most likely candi-
date for integrating all these types of information—
however, displacement experiments with hippocampal-
ablated pigeons showed that these birds departed homeward
oriented like the control birds (e.g. [141]), i.e. navigation from
greater distances could still take place. Further research will
hopefully lead to a more complete picture of where in the
brain magnetic information is processed and combined
with other information for navigational processes.

Finally, a note of caution: the summary on magnetorecep-
tion reported here applies to birds only—in particular, where
the compass is concerned, it appears to reflect a special devel-
opment of the birds. Other vertebrates seem to have different
ways of sensing magnetic directions. Fish and mammals have
a polarity compass [142–144], amphibians and reptiles also
have an inclination compass [145,146], but that of amphibians
shows a wavelength dependency that is different from that of
birds [147], and that of marine turtles does not require light
(e.g. [148]). Possible magnetic ‘map’ components have been
studied in only a few other vertebrates, with marine turtles
being the group that has been most thoroughly studied by
far. Here, Lohmann and colleagues [149], in a pioneering
study, tested Green Sea–turtles, Chelonia mydas, under mag-
netic conditions at two locations about 340 km north and
south of the test site; they found that the turtles compensated
for this magnetically simulated displacement, indicating that,
for them, too, magnetic factors are an important component
of long-distance navigation. The sensory mechanisms
involved in obtaining potential magnetic ‘map’ information
in non-avian vertebrates are still unknown.
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