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I
nsulin resistance is a potent and highly prevalent
risk factor for diabetes and cardiovascular disease. A
landmark compartmental analysis of human insulin
kinetics (that led to the development of the eugly-

cemic insulin clamp) identified insulin’s slow transit from
plasma to muscle as a rate-limiting step for insulin-mediated
glucose disposal (1). This first step of insulin-stimulated
glucose uptake, i.e., insulin’s crossing from plasma to
muscle interstitium, is governed by vascular endothelium.
Accumulating evidence supports a contribution of endo-
thelial insulin transport to insulin resistance (2). The insulin
receptor can mediate transendothelial insulin transport (3),
and mice lacking insulin receptor substrate 2 specifically
in vascular endothelium are insulin resistant. Never-
theless, the regulation of muscle transendothelial insulin
transfer, especially in humans, is poorly understood (2)
(Fig. 1).

Findings from previous studies using cultured endothe-
lial cells (3–5) have demonstrated a transfer process involv-
ing insulin binding to the insulin or (at high concentrations)
the IGF-I receptor. Insulin uptake requires intact insulin
signaling to endothelial nitric oxide synthase within the
endothelial cell (6), and transendothelial insulin transport
appears to involve a complex vesicular trafficking process
(2). In vivo, the endothelial cells in rat muscle accumulate
insulin and its transport is a saturable process, indicating
a role for the insulin receptor in the transendothelial insulin
transport (5,7) in muscle.

In humans, the contribution of impaired transendothelial
insulin transport to insulin resistance can potentially be
quantified by measurement of interstitial insulin concen-
trations in insulin-sensitive and -resistant conditions, as is
done using microdialysis by Szendroedi et al. (8) in this
issue of Diabetes. In the context of their data, it is im-
portant to consider both the strengths and limitations of
current experimental approaches to the assessment of in-
sulin access to muscle interstitium.

One approach uses arterial/venous (A/V) sampling cou-
pled with measurements of limb plasma flow. Such bal-
ance measurements are widely used to study glucose,
amino acid, and fat metabolism. Surprisingly, although
this can provide direct continuous sampling of muscle in-
sulin uptake, a careful kinetic study in control versus

insulin-resistant subjects has not been done. Both older
and more recent data suggest that in healthy individuals
the single pass extraction ratio of insulin across forearm
skeletal muscle is 10–15% (9,10). The clearance of insulin
declines when the plasma insulin concentration is raised,
suggesting that the transfer process is saturable (9). Lim-
itations to using A/V sampling include that it requires 1)
excellent assay precision as the A/V differences are small
and 2) invasive arterial cannulation. An important caveat
to the interpretation of A/V differences is that the limb
plasma flow measurement includes flow to nonmuscle
tissues. Finally, because the metabolic clearance rate of
insulin within muscle is unknown, A/V insulin measure-
ments do not allow construction of a time course for
changing interstitial insulin concentration.

Lymphatic insulin sampling, pioneered in canine studies
by the Bergman laboratory, has demonstrated a two- to
threefold steady-state plasma to interstitial insulin gradient
and a much tighter temporal correlation for glucose dis-
posal with lymphatic than with plasma insulin in animals
(11) and humans (12). This suggests that lymph insulin is
a reasonable surrogate for interstitial insulin. However,
lymphatic sampling is uncommonly used in clinical meta-
bolic studies. The technique is invasive and technically
demanding and is limited by the slow rate of lymph flow,
which introduces a delay beyond that due to trans-
endothelial insulin movement. Encouraging lymph flow by
limb heating or compression maneuvers may itself affect
insulin transfer (12). Beyond that, the lymph vessels that
have been sampled in humans were in the ankle and drain
mixed tissues without a significant muscle volume (12).

Several groups have used microdialysis to study the
regulation of muscle interstitial insulin (13,14). A critical
untested assumption of microdialysis is that the micro-
dialysis catheter itself does not influence the interstitial
insulin concentration by affecting either local flow or
vascular permeability (15). Beyond that, a significant lim-
itation is insulin’s inefficient transfer to the dialysate.
Careful studies put this at only w3% (16). Consequently,
the insulin concentration in the dialysate is extremely low,
and assay variance and small changes of transfer effi-
ciency will be multiplied substantially. In addition, because
dialysate flow must be slow to allow even this minimal
equilibration, there is a delay between insulin concentra-
tion changes in interstitial fluid and dialysate.

In this issue of Diabetes, Szendroedi et al. measured
muscle interstitial insulin using microdialysis during both
an oral glucose tolerance test and an insulin clamp in
healthy humans who also received either a lipid or glycerol
infusion. Lipid impaired insulin action but did not affect
interstitial insulin concentrations, supporting an effect of
lipid primarily on the myocyte and not on transfer of in-
sulin from plasma to interstitium. However, surprisingly,
during the oral glucose tolerance test there was no increase
whatsoever in muscle interstitial insulin concentration
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measured by microdialysis. Likewise, with the insulin
clamp there was little increase during lipid and none dur-
ing glycerol infusion, despite robust increases in plasma
insulin and glucose disposal. Such findings are perplexing
and again underscore the technical difficulties of assessing
interstitial insulin concentrations.

Although the study of Szendroedi et al. does not de-
finitively answer whether insulin’s access to interstitium
contributes to insulin resistance in muscle, it underscores the
need for studies to advance our understanding of the cell
biology and clinical physiology of transendothelial insulin
movement. For future studies in humans, a noninvasive
method, perhaps involving positron emission tomography or
other quantitative imaging technologies, may allow quantifi-
cation of the insulin transfer rate into muscle on a real-time
basis. Meanwhile, improvements in optical imaging techni-
ques such as multiphoton and total internal reflection fluo-
rescence microscopy may permit us to address in vivo (at
least in animal models) the cellular pathways involved in
insulin transfer. Such studies will be important to our un-
derstanding of how impairments in insulin transfer in muscle
or other tissues with continuous endothelium impact body
metabolism in states of insulin resistance. Clearly, much
remains to be done, but progress will increase our un-
derstanding of both the metabolic and vascular dysfunction
seen with diabetes and metabolic syndrome.
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