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Abstract: RET (rearranged during transfection) kinase, one of the receptor tyrosine kinases, plays
a crucial role in the development of the human nervous system. It is also involved in various
cell signaling networks responsible for the normal cell division, growth, migration, and survival.
Previously reported clinical studies revealed that deregulation or aberrant activation of RET signaling
can cause several types of human cancer. For example, medullary thyroid carcinoma (MTC) and
multiple endocrine neoplasia (MEN2A, MEN2B) occur due to sporadic mutation or germline RET
mutation. A number of RET kinase inhibitors have been approved by the FDA for the treatment
of cancer, such as cabozantinib, vandetanib, lenvatinib, and sorafenib. However, each of these
drugs is a multikinase inhibitor. Hence, RET is an important therapeutic target for cancer drug
design. In this work, we have performed various molecular modelling studies, such as molecular
docking and dynamics simulation for the most active compound of the pyrazole series as RET kinase
inhibitors. Furthermore, molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) free
energy calculation and 3-dimensional quantitative structure–activity relationship (3D-QSAR) were
performed using g_mmpbsa and SYBYL-X 2.1 package. The results of this study revealed the crucial
binding site residues at the active site of RET kinase and contour map analysis showed important
structural characteristics for the design of new highly active inhibitors. Therefore, we have designed
ten RET kinase inhibitors, which showed higher inhibitory activity than the most active compound of
the series. The results of our study provide insights to design more potent and selective RET kinase
inhibitors.

Keywords: RET; receptor tyrosine kinases; inhibitors; pyrazole; 3D-QSAR; MM/PBSA

1. Introduction

Receptor tyrosine kinases (RTKs) facilitate communication among cells and their
extracellular environment, helping them to carry out important phases in development
and maintenance of homeostasis [1]. RTKs comprise an N-terminal extracellular domain
(ECD), a transmembrane (TM) domain, an intracellular kinase domain, and, subsequently,
a C-terminal tail region [1,2]. There are 58 known RTKs in humans [2], and they share a
similar protein structure. RET (rearranged during transfection) kinase is one of the RTKs
that is involved in a wide range of complex biological functions, such as cell growth,
differentiation, motility, and metabolism [3].

The RET kinase was originally recognized during a human oncogenes screening
and has subsequently been associated with numerous human syndromes, like multiple
endocrine neoplasia types 2A and 2B, Hirschprung’s, disease and medullary/familial
thyroid carcinoma [2]. RET kinase transduces a signal upon activation by ligands of
the glial cell line-derived neurotrophic factor (GDNF) family of neurotrophins, which
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consists of GDNF, artemin (ART), neuturin (NTN), and persephin (PSP). They make a
tripartite complex with RET for its activation and a member of extracellular GPI-linked
alpha receptors (GFR alpha 1–4). In vitro mutagenesis studies have reported that GFR
alpha 1 is responsible for the development of the enteric nervous system (ENS) affected in
Hirschsprung’s disease [2,4,5].

There are four key mechanisms for the unusual RET activation in human cancers, in-
cluding genomic amplification, gain-of-function mutations, chromosomal rearrangements,
and autocrine activation [2,6]. Dysregulation of RET signaling plays critical role in different
human cancers [7]. RET kinase acts as an ontogenetic driver in various human cancers
including papillary and medullary thyroid carcinoma, colorectal carcinoma, lung adenocar-
cinoma, and salivary gland carcinoma due to the different genetic lesions as gene fusions,
point-mutations, and small insertions/deletions [8,9]. Additionally, in other neoplasms,
involving breast and pancreatic adenocarcinoma, expression of RET is upregulated [8].
Thus, RET is considered as an important therapeutic target for the treatment of different
types of cancer.

The FDA (Food and Drug Administration) has approved several drugs targeting RET
for the treatment of cancer for example, lenvatinib and sorafenib [10–12] for differenti-
ated thyroid cancers, and cabozantinib [13] and vandetanib [10,14] for medullary thyroid
carcinomas. Many other multikinase inhibitors are in use for the treatment of thyroid or
non-thyroid cancers. These include ponatinib [15,16], sunitinib [16], and regorafenib [17].
However, each of these drugs is a multitargeted tyrosine kinase inhibitor that has activ-
ity against RET [8]. Hence, there is a need for inhibitors that would specifically inhibit
RET kinase.

Computer-aided drug design (CADD) has emerged as one of the useful techniques
for drug design and discovery since the last decade. Although there have been many
modeling studies reported on various anticancer derivatives [18,19], the designing of new
inhibitors against RET using modeling studies has not been reported before. Therefore, in
this study, we have performed various molecular modeling studies on pyrazole derivatives
as RET antagonists. The compound 25 of the dataset showed the highest inhibitory activity
against RET kinase (pIC50 value = 8.8) and was used as a representative compound for the
dataset in the study. Molecular docking, molecular dynamics simulation, and MM/PBSA
binding free energy calculation were performed for the most active compound of the
dataset. Furthermore, 3D-QSAR models were generated to study the structure–activity
relation among pyrazole derivatives and, thereby utilizing the structural characteristics
studied, a design strategy was developed to design potent anticancer RET agents.

2. Results
2.1. Molecular Docking

The docking protocol was assessed by redocking of the co-crystalized ligand into the
active site of the RET kinase. The redocked ligand showed similar binding conformation
and H-bond interactions to that of co-crystalized ligand, and the root mean square deviation
(RMSD) between them was 1.20 Å. This showed that the docking procedure was reliable.
The active site of RET kinase is comprised of the residues Leu730, Gly731, Val738, Ala756,
Val804, Glu805, Tyr806, Ala 807, Lys808, Tyr809, Gly810, Ser811, and Leu881. The docked
conformation of the most active compound 25 was selected based on the binding energy
and binding interactions with the active site residues (Figure 1a). Binding energy of the
compound 25 with RET kinase was found to be −7.14 kcal/mol with the formation of
four H-bonds. Two hydrogen atoms from a fused ring amino group formed two H-bond
interactions with the hinge region residue Ala807, which is considered to be important
because it mimics the interaction of ATP with kinase. Ala807 was also reported to be an
important active site residue in previous X-ray studies of vandetanib, which binds within
the ATP binding pocket and forms a H-bond with Ala807 [5]. Furthermore, oxygen and
nitrogen atoms from the isoxazole moiety formed 2 H-bond interactions with another hinge
region residue Tyr806.
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Figure 1. (a) Docked conformation of the most active compound 25 (shown in stick model) inside
the active site of rearranged during transfection (RET) kinase. Hydrogen bonds are represented as
yellow dotted lines and their distances are labeled in angstrom. (b) The most active compound 25
(shown in stick model) inside the hydrophobic pocket of RET; the red colored region represents the
most hydrophobic surface and white color represents the least hydrophobic surface of the protein.
Hydrophobic residues are shown in the red colored line representation.

A python script ‘color h’ was utilized to color hydrophobic residues of the RET kinase
and find their interaction with the compound 25. This script uses Eisenberg hydrophobicity
scale (Figure 1b) to color the receptor in PyMOL [20]. It applies red coloring for the most
hydrophobic residues, whereas white is used for the least hydrophobic region. Active
site residues, which exist in the hydrophobic region (highlighted as lines in the Figure 1b),
appear to form hydrophobic interactions with the highly potent compound 25. The part of
ligand with an isoxazole moiety was docked inside the hydrophobic pocket, which formed
hydrophobic interactions with residues Leu730, Ala756, Val804, and Tyr806, among which
Val804 is a gatekeeper residue [21]. The fused ring was also in a close proximity of hy-
drophobic residues Ala807, Gly810, Ser811, and Leu881, forming hydrophobic interactions.
Hydrophobic interaction with Leu881 has been found to be crucial because it lies within
the catalytic spine, which occurs in the surface of the adenine-binding pocket [21]. The
selected docked pose of the most active compound was taken as an initial structure to
perform molecular dynamics simulation.

2.2. Molecular Dynamics Simulation

Gromacs-2018 [22] was used to perform MD simulation of the docked complex of
compound 25 inside the active site of RET kinase so as to inspect the binding stability and
conformation of the ligand. A production run of 100 ns MD simulation was carried out.
The root mean square deviation (RMSD) for the ligand and protein were calculated and
are shown in Figure 2. The ligand RMSD and protein RMSD are shown in red and black
color lines in the graph, respectively. The plot shows that the protein RMSD reached the
stability at 20 ns, later fluctuated a bit from 60 to 90 ns, and stabilized at the end of the
simulation, which suggests that stable conformation of protein was attained at the end.
RMSD of the ligand (compound 25) stabilized at 10 ns and no fluctuations were observed
with less than 0.1 nm deviations until the 100 ns simulation. Minimal fluctuations were
observed except for the loop regions during the simulation and the overall fluctuation was
less than 2 Å. Overall RMSD analyses indicated that the system was at equilibrium at the
end of the simulation.
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Figure 2. Root mean square deviations (RMSDs) of the protein and compound 25.

H-bond analysis of the protein–ligand complex at 100 ns revealed that compound 25
formed 5 H-bond interactions (Figure 3a). Two H-bond interactions were formed with
the hinge region residue Ala807, which was consistent with our docking results. The
other three H-bonds were formed with the residue Lys808 from the hinge region instead
of Tyr806, which was observed in the docking study. The graph of the total number of
hydrogen bonds formed between ligand and protein during 100 ns MD simulation is given
in Figure S1 of the supplementary material. All the H-bonds were monitored to check
their stability throughout the 100 ns MD simulation. Figure S1 revealed that presence of
four H-bonds was consistent throughout the simulation. One interaction was lost during
the 100 ns simulation; this might be due to the change in the orientation of the isoxazole
moiety at the end of the simulation. This change in orientation could be the reason for
the formation of H-bonds with residue Lys808 instead of Tyr806. To further explain the
same, initial (docked complex) and the final structure (100 ns) of MD were superimposed
and are shown in Figure S2 of the supplementary material. In the 100 ns structure, the
isoxazole moiety was slightly moved away from its initial docked position causing the
change in H-bonds interaction with residue Tyr806, but all the hydrophobic interactions
were consistent (shown in Figure 3b).

Figure 3. (a) 100 ns MD conformation of the most active compound 25 (shown in cyan color and
stick model) inside the active site of RET kinase. Hydrogen bonds are represented as yellow dotted
lines and their distances are labeled in angstrom. (b) The most active compound 25 (shown in stick
model) inside the hydrophobic pocket of RET; hydrophobic residues are shown in the red colored
line representation.
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From overall results, it was observed that H-bond interaction with residue Ala807 and
all hydrophobic interactions were consistent throughout the simulation, suggesting the
docking procedure was valid and the selected complex was stable. These interactions are
crucial in the inhibition of RET kinase. The analyzed MD pose of the most active compound
at 100 ns was used as a template in 3D-QSAR study.

2.3. MM/PBSA Binding Free Energy Calculation

The MM/PBSA package [23] was used to calculate the binding affinity of compound 25.
The predicted binding free energy was −233.399 kJ/mol. It was combined of Van der Waal
energy of −154.682 kJ/mol, electrostatic energy of −28.021 kJ/mol, polar salvation energy
of 85.379 kJ/mol and SASA energy of −15.241 kJ/mol. Van der Waals energy as well as
nonpolar salvation energy are crucial for the binding of compound 25 with RET kinase. In
contrast, polar salvation energy was not favorable for the binding of compound 25.

In our docking and MD results, most of the interactions formed by ligand were
hydrophobic and were found to be consistent. This explains why the contribution of Van der
Waals energy was highest among them. We performed binding free energy decomposition
analysis to understand the ligand–protein interactions in detail. The column chart (Figure 4)
shows that energy decomposition of each residue. The main contribution to the binding of
compound 25 was from residues Leu881, Gly810, Ser811, Ala807, and Lys808, which were
involved in the H-bond and hydrophobic interactions. It was also observed that residues
Ala756 and Leu730 were in disfavor with the binding of compound 25. In conclusion, the
binding free energy analysis revealed the contribution of important active site residues in
the inhibition of RET kinase. 

5 

 
Figure 4. The column chart depicting the each residue contribution in the total binding free energy.

2.4. 3D-QSAR

Receptor-based comparative molecular field analysis (CoMFA) [24,25] and compar-
ative molecular similarity indices analysis (CoMSIA) [26,27] models were developed for
the pyrazole derivatives (dataset). All the compounds were sketched and aligned inside
the receptor using the MD conformation of the most active compound 25 as a template in
SYBYL-X 2.1. The alignment of the dataset compounds is shown in Figure 5. The dataset
compounds were divided into training set (27) and test set (8) using the criteria given by
Golbraikh et al. and algorithm 4 (activity ranking) was implemented as described in the
reported article [28]. We chose algorithm 4 (activity ranking) because there are no large
gaps in activity values of dataset compounds and algorithm 4 can construct a test set that
represents the whole range of activities. Thus, our test set contains compounds having
high, moderate, and low activity (pIC50) values.
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Figure 5. Alignment of the dataset compounds inside the active site of RET kinase (the arrow
indicates the enlarged view of the dataset alignment inside the active site of RET kinase).

It is necessary to calculate various statistical parameters using the partial least square
(PLS) method, such as cross-validated correlation coefficient (q2), non-cross-validated
correlation coefficient (r2), standard error of estimate (SEE), optimal number of compo-
nents (ONC), and F value to assess the reliability of a 3D-QSAR model. Hence, we derived
CoMFA models (q2 = 0.563, ONC = 6, r2 = 0.927) for the full dataset and (q2 = 0.649, ONC = 6,
r2 = 0.955) for the selected test and training sets. The latter model was selected as a final
model due to its better q2 and r2 values. CoMSIA models were developed using different
field combinations and are shown in Table S1 of the Supplementary Material. A combi-
nation of electrostatic, hydrophobic, and hydrogen bond acceptor (EHA) fields yielded a
CoMSIA model with acceptable statistical values (q2 = 0.509, ONC = 4, r2 = 0.745). How-
ever, a CoMSIA model generated using an external test set gave better results (q2 = 0.557,
ONC = 5, r2 = 0.864), which was used for further validation. The detailed statistical values
of the chosen CoMFA and CoMSIA models are given in Table 1.

Table 1. Detailed statistical values of the selected comparative molecular field analysis (CoMFA) and
comparative molecular similarity indices analysis (CoMSIA) models.

Parameter
Full Model Test Set 11

CoMFA CoMSIA (EHA) CoMFA CoMSIA (EHA)

q2 0.563 0.509 0.649 0.557
ONC 6 4 6 5
SDEP 0.666 0.682 0.679 0.744

r2 0.927 0.745 0.955 0.864
SEE 0.272 0.491 0.242 0.412

F value 59.187 21.918 71.390 26.749
BS-r2 - - 0.982 0.945
BS-SD - - 0.013 0.038

q2 - - 0.531 0.508
r2

pred - - 0.652 0.660
rm2 - - 0.532 0.601

Delta rm2 - - 0.073 0.072

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SDEP: standard error
of prediction; r2: squared correlation coefficient; SEE: standard error of estimation; F value: F-test value; BS-r2:
bootstrapping r2 mean; BS-SD: bootstrapping standard deviation; q2: progressive sampling; r2

pred: predictive r2,
rm2: average rm2 for the dataset; Delta rm2: Delta rm2 for the dataset.
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Validation of CoMFA and CoMSIA Models

A range of validation techniques were employed to evaluate the predictive ability and
the robustness of produced 3D-QSAR models. All the techniques, such as predictive r2

(external test set), bootstrapping, progressive scrambling (q2), and rm2 metric calculation,
exhibited statistical values that were within the acceptable range [29–31]. These results
proved that the selected models were robust and predictive and their detailed values
are shown in Table 1. The experimental and predicted activity values for the established
models are presented in Table S2 of the Supplementary Material. The scatter plot for the
same is depicted in Figure 6. The compound 25 is shown superimposed with CoMFA and
CoMSIA contour maps inside the active site of RET kinase.

Figure 6. (A) Scatter plot for the selected CoMFA model; (B) scatter plot for the selected CoMSIA
model. The plots shows the actual pIC50 versus predicted pIC50 activity of the dataset for training
and test sets—the training set compounds are represented as diamonds in red color and the test set
compounds are represented as squares in blue color. The correlation coefficient (r2) for CoMFA was
0.955 and for CoMSIA electrostatic, hydrophobic, and hydrogen bond acceptors (EHAs) it was 0.864.

2.5. Contour Map Analysis
2.5.1. CoMFA Contour Maps

The steric and electrostatic contour maps of CoMFA model are shown in Figure 7a,b,
respectively. Favorable regions for steric and electropositive substitutions are denoted by
green and blue colors whereas, unfavorable regions for steric and electropositive substitu-
tions are shown by yellow and red colors.

Figure 7. Contour maps for the selected CoMFA model. (a) Steric contour map; (b) electrostatic
contour map—green contour shows the regions favorable for bulky substitutions and yellow con-
tours shows the regions unfavorable for bulky substitutions; Blue contour favors electropositive
substitutions while red contour favors electronegative substitutions.

A big green-colored contour (Figure 7a) was located at R2 position of the isoxazole
moiety, suggesting that bulky groups are favored at this region to increase the potency.
Having a steric group at R2 position could interact with many residues of the hydrophobic
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pocket of RET kinase. This can be explained by the hydrophobic interactions with residues
Leu730, Ala756, Val804, and Tyr806, observed in our docking and MD simulation analysis
of the most active compound 25. Similarly, two small yellow colored contours were
observed near the R2 substitution, which can be position specific because it shows that this
region is unfavorable for the bulky groups. This phenomenon could be explained by the
positive contributions of residues Leu730, Ala756, and Tyr806, which was revealed in the
MM/PBSA binding free energy calculations.

In the electrostatic contour map (Figure 7b), a large blue-colored contour was seen at
the R2 substitution of the isoxazole ring, which explains that the electropositive group at
this position is favorable and it may form H-bond interaction with residue Tyr806. On the
other hand, two red colored contours were observed near the R1 substitution of a fused ring;
suggesting that electronegative groups at this place are favorable. Thus, electronegative
substitution at this position might elevate the activity of compounds by forming H-bonds
with residues Ala807 and Lys808 of the hinge region. The same interactions were found in
our MD simulations study of the highly potent compound 25.

2.5.2. CoMSIA Contour Maps

The field combination of EHA was used to derive the CoMSIA contour maps and
they are shown in Figure 8. We skipped the explanation of CoMSIA electrostatic contour
(Figure 8a) since it is similar to the CoMFA electrostatic contour.

Figure 8. Contour maps for the selected CoMSIA model. (a) Electrostatic contour map; (b) hydropho-
bic contour map; (c) hydrogen bond acceptor contour map. Blue contour favors electropositive
substitutions, while red contour favors electronegative substitutions; green contour shows the re-
gions favorable for hydrophobic substitutions and yellow contours shows the unfavorable regions
for bulky substitutions. The favorable region of hydrogen bond acceptor contour map is depicted by
magenta color, whereas cyan color denotes that opposite.

In the hydrophobic contour map (Figure 8b), green- and yellow-colored contours
show favorable and unfavorable regions for hydrophobic substitution. Two green colored
contours were found at the R2 substitution, signifying that the hydrophobic groups at
this place are favorable and can form interactions with the residues around. Our docking
and MD simulation results of the compound 25 could elucidate this better, as it formed
hydrophobic interactions with residues Leu730, Ala756, Val804, and Tyr806. Furthermore,
a single green contour was observed near the cyclopropyl moiety of the fused ring (near
R1 substitution), which indicates that hydrophobic groups in that position could help in
increasing the activity of the ligand. The hydrophobic interactions formed by fused ring
of the most active compound 25 with active site residues Ala807, Gly810, Ser811, and
Leu881 contributed the most in the total binding free energy. This could be the reason why
hydrophobic groups are favorable at R1 position.

The favorable region of hydrogen bond acceptor contour map is depicted by magenta
color, whereas cyan color denotes that opposite (Figure 8c). Two magenta colored contours
were observed near R1 position and amino group of fused ring states that presence of
hydrogen bond acceptor group in this spot could help in elevating the activity. Compounds
with H-bond acceptor at this position could form H-bond with residues Ala807 or Tyr806.
This could be confirmed by the H-bond interactions with residues Ala807 and Tyr806 in
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our docking analysis of the compound 25. The cyan colored contour near H atom of the
isoxazole ring reveals that substituting a hydrogen bond acceptor group at this region
decreases the potency.

2.6. Designing of RET Kinase Inhibitors

3D-QSAR model development and contour map analysis led us to propose a design
strategy to design of the potent compounds. Using this strategy, we designed 10 RET
kinase inhibitors and their activity was predicted using the CoMFA model. All designed
compounds possessed predicted activity more than the activity of the most active com-
pound of the pyrazole series. The structures and the predicted pIC50 values of the designed
compounds are presented in Table 2.

Table 2. The structures and the predicted pIC50 values of the designed RET kinase antagonists.

1 
 

 

 
 
 
  

Compound R1 R2 pIC50

D1 10.31

D2 8.85

D3 8.97

D4 9.02

D5 10.26

D6 10.74

D7 9.08

D8 9.20
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Table 2. Cont.

Compound R1 R2 pIC50

D9 9.22

D10 8.80

Here, D1 to D10 indicate designed compounds 1 to 10 (D: designed compound).

Furthermore, we have calculated in silico ADME (absorption, distribution, metabolism,
and excretion), physicochemical properties, pharmacokinetics, drug-likeness, and medici-
nal chemistry friendliness for the designed RET kinase inhibitors using SwissADME web
tool (http://www.swissadme.ch/) [32] (Table 3). For lipophilicity, XLOGP3 should be
in the range from −0.7 to +6.0. For solubility, log S (calculated with the ESOL model36)
should not exceed 6. A qualitative estimation of the solubility class is given according to
the following log S scale: insoluble < −10 < poorly < −6 < moderately < −4 < soluble < −2
< very < 0 < highly. The more negative the log Kp (Kp in cm/s), the less skin permeant
is the molecule. The synthetic accessibility (SA) score ranges from 1 (very easy) to 10
(very difficult). Drug-likeness evaluates, qualitatively, the chance for a molecule to become
an oral drug with respect to bioavailability. Violation to the Lipinski’s rule-of-five filter
defined four classes of compounds with probabilities of 11%, 17%, 56%, or 85% [32]. Hence,
prediction results depicted in Table 3 show that designed inhibitors possess promising
ADME properties. However, experimental testing of the designed RET kinase inhibitors is
not possible at this stage in our lab because ours is a bioinformatics modeling lab.

Table 3. In silico (absorption, distribution, metabolism, and excretion (ADME) prediction and synthetic accessibility values
of new designed RET kinase antagonists.

Designed
Compound

Lipophilicity Water Solubility Pharmacokinetics
Synthetic

Accessibility

Druglikeness

Log Po/w Log S (ESOL) Class GI
Absorption

Log Kp (Skin
Permeation) Lipinski Rule

D1 1.72 −3.81 Moderately
soluble Low −7.46 cm/s 3.86 Yes; 0

violation

D2 1.97 −4.10 Moderately
soluble Low −6.68 cm/s 4.28 Yes; 0

violation

D3 1.08 −2.19 Soluble Low −8.54 cm/s 4.57 Yes; 0
violation

D4 0.48 −2.58 Soluble Low −8.61 cm/s 3.94
Yes; 1

violation:
NorO > 10

D5 1.51 −2.71 Soluble Low −8.26 cm/s 4.21 Yes; 0
violation

D6 1.99 −1.96 Soluble Low −9.13 cm/s 4.13
Yes; 1

violation:
NorO > 10

D7 0.86 −3.35 Moderately
soluble Low −8.39 cm/s 3.96

Yes; 1
violation:

NorO > 10

D8 1.26 −1.98 Soluble Low −8.61 cm/s 3.99 Yes; 0
violation

D9 0.47 −2.31 Soluble Low −8.96 cm/s 4.12
Yes; 1

violation:
NorO > 10

D10 2.43 −4.14 Moderately
soluble Low −7.75 cm/s 4.31 Yes; 0

violation

Where, Log Po/w: partition coefficient between n-octanol and water; Log S (ESOL): decimal logarithm of the molar solubility in water;
Log Kp: the skin permeability coefficient.

http://www.swissadme.ch/
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3. Discussion

Various molecular modeling studies were employed in this study to design potent RET
kinase antagonists. Molecular docking and MD simulation of the most active compound 25
of the pyrazole series were performed. The results of docking and MD simulation revealed
the important active site residues responsible for the inhibition of RET kinase (Figure 3).
Most of the hydrophobic and H-bond interactions were consistent in both docking and MD
simulation studies, which signified that selected conformation of the most active compound
inside the active site of RET was stable and valid for further studies. The selected com-
pound25-RET complex (at 100 ns) from MD simulation was utilized to perform MM/PBSA
binding free energy calculation, which showed the residue-wise contribution in the total
binding free energy. The binding free energy was found to be −233.399 kJ/mol. Different
types of energies were also calculated, such as Van der Waal energy (−154.682 kJ/mol),
electrostatic energy (−28.021 kJ/mol), polar salvation energy (85.379 kJ/mol), and SASA
energy (−15.241 kJ/mol). Among all, Van der Waal’s energy contributed the most to
total binding free energy. This could be the reason why all the hydrophobic interactions
observed in our docking study were consistent with MD simulation results. Hydrophobic
residues Leu881, Gly810, Ser811, Ala807, and Lys808 were found to be important, which
could be verified by the column chart of active site residue contribution in the binding free
energy (Figure 4). The residues that were observed in our study were also reported to be
important for the RET kinase inhibition in previous experimental and modeling studies. Af-
ter understanding the important residues required to inhibit the RET kinase, we performed
a structure–activity relationship study (CoMFA and CoMSIA) of pyrazole derivatives. We
obtained statistically reasonable CoMFA and CoMSIA (EHA) models and validated these
using different validation methods to check their reliability and predictive ability (Table 1).
The bootstrapping, external test set, progressive scrambling, and rm2 metric calculation
analysis showed that models were reliable and predictive. The contour map analysis of
CoMFA and CoMSIA revealed the structural modifications required at R1 and R2 positions
to increase the activity (Figures 7 and 8). Hydrogen bond acceptor and electronegative
groups were found to be favorable at R1 substitution, whereas electropositive, steric, and
H-bond donor groups were found to be favorable at R2 substitution to increase the potency
of inhibitors. Using this structural knowledge, we have designed 10 RET kinase inhibitors,
which showed predicted activity more than the most active compound 25 of the pyrazole
series (Table 2). Hence, overall outcome of our study can help modelers and medicinal
chemists to design and synthesize potent RET kinase inhibitors.

4. Materials and Methods
4.1. Test Set/Training Set Selection for 3D-QSAR Analyses

A dataset of 35 RET kinase inhibitors, with the pyrazole ring as a common scaffold,
was taken for our study [7,9]. SYBYL-X 2.1 was utilized to draw and optimize the structures
using energy minimization with Tripos force field [33]. Biological activities (IC50) were
converted into pIC50 (−log IC50) values and were implemented as dependent variables
to generate the 3D-QSAR models. The activity log span of pIC50 values of inhibitors was
more than 3 logarithmic units, which lay within the prerequisite range [34]. The dataset
was separated into a training set of 27 compounds for model generation and 8 compounds
as test set for model validation based on the activity span of compounds. The chemical
structures of the dataset compounds with their IC50 values are listed in Table 4 where the
test set compounds are denoted by *.
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Table 4. The chemical structures of the pyrazole derivatives with their IC50 and pIC50 values.
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Table 4. Cont.

Compound R1 R2 IC50 (µM) pIC50

15

 

3 

 
  

4.90 5.310

16

 

4 

 
  

8.33 5.079

17

 

4 

 
  

0.583 6.234

18 * 0.190 6.721

19 0.241 6.618

20 0.150 6.824

21 * 0.910 6.041

22 0.041 7.387

23 0.041 7.387

24 0.210 6.678

25 0.0014 8.854

26 0.241 6.618

27 0.910 6.041

28 H 0.213 6.672
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Table 4. Cont.

Compound R1 R2 IC50 (µM) pIC50

29 * H 0.052 7.284

30 0.027 7.569

31 0.074 7.131

32 0.096 7.018

33 * 0.068 7.167

34 0.002 8.699

35 0.005 8.301

4.2. Modeling of the Missing Residues

The crystal structure of RET kinase with high resolution (PDB ID: 4CKJ) was obtained
from the protein data bank for our study [35]. It contains missing residues in the loop
region from residue Gly823 to Glu843, which were modeled and refined using the mod-
ellerV9.14 [36]. The final modeled structure was selected depending on the energy, GA341
score [37], and DOPE score [38].

4.3. Preparation of the Protein and Molecular Docking

We used Autodock 4 to perform molecular docking of the most active compound 25
of the series [39,40]. The crystal structure (PDB: 4CKJ) was utilized as reference to dock the
compound 25 inside the active site of the RET kinase. Prior to the docking, the receptor
structure was prepared by the addition of polar hydrogens, applying Kollman charges
and assigning AD4 atom types. Consequently, Autodock tools were used to prepare the
ligand by keeping the number of rotatable bonds less than 6. The active site grid was
generated using the x, y, and z coordinates of the active site. The grid box was extended to
70 × 70 × 70 points, with a grid spacing of 0.375 Å. The docking was executed using the
Lamarckian genetic algorithm (LGA) by setting the number of the genetic algorithm (GA)
run to 100. The docked pose of compound 25 was selected based on its interactions with
RET kinase and the lowest binding energy.

4.4. Molecular Dynamics Simulations

The MD simulation was performed using Gromacs-2018 [41]. The protein and ligand
topology files were generated using Amber99SB force field [41] and general AMBER force
field (GAFF) [42], respectively. The ligand force field parameters were generated using
the ACPYPE program [43]. The system was neutralized by adding eight chloride ions.
A three-point water model (TIP3P) was used as the solvent. Energy minimization was
done by using the steepest descent method for 50,000 steps. Subsequently, the system was
equilibrated first via a NVT ensemble for a 100 ps at 300 K using Berendsen thermostat [44]
and then using NPT for 100 ps with the constant pressure of 1 atm. The bonds were
constrained using the LINCS algorithm [45]. The particle mesh Ewald (PME) method [46]
was used to handle the long-range coulombic interactions. A 100 ns production run was
performed using NPT ensemble at 300 K with 1.0 atm pressure with a time step of 2 fs.
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4.5. MM/PBSA Binding Free Energy Calculations

The g_mmpbsa package was employed to execute molecular mechanics Poisson–
Boltzmann surface area (MM/PBSA) free energy calculation [23]. The last 1 ns from the
production run of 100 ns MD simulation was utilized for the calculation of binding free
energy. The binding free energy comprises of three energetic terms, including potential
energy in vacuum, polar-solvation energy, and nonpolar solvation energy. The molecular
mechanics force field parameters were used to calculate both bonded (angle, bond, and
dihedral) and nonbonded (electrostatic and van der Waal) interactions included in the
potential energy in vacuum. Similarly, the Poisson–Boltzmann equation and solvent
accessible surface area (SASA) model was used to calculate polar solvation energy and
nonpolar solvation energy, respectively [47,48]. The estimation of binding free energy for
the protein-ligand complex in a solvent was calculated based on the equation given below:

∆Gbinding = ∆Gcomplex − (∆Gprotein + ∆Gligand) (1)

where, ∆Gbinding is the binding free energy and ∆Gcomplex, ∆Gprotein, and ∆Gligand represent
the free energy of complex, protein, and ligand, respectively.

4.6. Receptor-Based CoMFA and CoMSIA Models

3D-QSAR models; comparative molecular field analysis (CoMFA) and comparative
molecular similarity indices analysis (CoMSIA) were established to correlate 3D structures
of ligands and the biological activity using SYBYL-X2.1 [24,25]. The dataset compounds
were aligned inside the receptor using the distill rigid alignment method and most active
compound (compound 25) as a template. The models were developed for the same training
and test set. The CoMFA model was generated using steric and electrostatic fields, which
are calculated using Lennard-Jones and Coulombic potentials [25]. Whereas the CoMSIA
model utilized fields such as steric, electrostatic, hydrophobic, hydrogen bond acceptor,
and hydrogen bond donor [24]. Cross-validated leave-one-out (LOO) and a non-cross-
validation partial least squares (PLS) analysis were used to obtain the 3D-QSAR models.
The correlation coefficient (r2) was calculated using the formula given below:

r2 = 1 − [∑(y − y)2/ ∑(y − ŷ)2] (1)

where, y is the observed response variable, ŷ is its mean, and y is the corresponding
predicted value. Statistical values of q2, r2, standard error of estimate (SEE), and F values
were used to evaluate and select the final models. CoMSIA models were developed with
different field combinations and the one with acceptable q2 and r2 values were selected.
The robustness and predictive ability of the models were validated using various validation
techniques such as bootstrapping, progressive scrambling, predictive r2 and rm2 metric
calculations.

3D-QSAR Model Validation

CoMFA and CoMSIA models were assessed for the predictive ability using various
validation techniques. All the models are examined for stability and robustness with exter-
nal test set validation, a 100 run of bootstrapping, progressive sampling, and predictive r2

and rm2 metric calculations. Then, 100 runs with 2 to 10 bins of the progressive scrambling
were performed to validate the models [49]. Lastly, 3D-QSAR outcomes were graphically
denoted by field contour maps using the field type ‘StDev*Coeff’.

5. Conclusions

RET kinase is a one of the important receptor tyrosine kinases that play crucial role
in cell division, development, and maturation and it is involved in many types of human
cancer. Hence, it makes RET an ultimate drug target. In our study, we have utilized various
modeling techniques, like molecular docking, MD simulation, and MM/PBSA binding
free energy calculation, in order to investigate and find the crucial active site residues
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responsible for the inhibition of RET kinase. The overall analysis revealed that active site
residues Ala807, Lys808, Gly810, Ser811, and Leu881 were important for the RET inhibition.
The residues Gly810, Ser811, and Leu881 were found to contribute more to the total binding
energy. Furthermore, CoMFA and CoMSIA (EHA) resulted in reasonable statistical models
in terms of q2 and r2. The models were found to be predictive and reliable. Analysis of
contour maps developed using selected 3D-QSAR models was consistent with our docking
and MD results, thereby it explicated the structural characteristics required to design more
potent inhibitors. Using this information, we designed 10 RET kinase inhibitors. Our
designed RET inhibitors showed predicted activity greater than the most potent compound
of the pyrazole series, which can be further evaluated using experimental studies for their
specific contribution in the inhibition of RET kinase.

Supplementary Materials: The following are available online. Table S1: CoMSIA models developed
using different combinations of fields. Table S2: Residual values of the selected CoMFA and CoMSIA
models. Figure S1: The graph of the number of hydrogen bonds during 100 ns MD simulation.
Figure S2: Superimposition of the initial (docked complex) and the final (100 ns) MD structure of the
compound 25 inside in the binding site of RET kinase.
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