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Abstract

The prevalence of obesity increases with age in humans and in rodents. Age‐related
obesity is characterized by leptin resistance and associated with heightened risk of

metabolic disorders. However, the effect of leptin resistance per se has been diffi-

cult to disentangle from other effects of aging. Here we demonstrate that celastrol,

a natural phytochemical that was previously shown to act as a leptin sensitizer,

induces weight loss in aged animals, but not in young controls. Celastrol reduces

food intake and lowers fasting glucose without affecting energy expenditure. Unex-

pectedly, administration of celastrol just before the dark period disrupted circadian

rhythms of sleep and activity. This regimen was also associated with loss of lean

mass an outcome that would not be desirable in elderly patients. Adjusting the tim-

ing of celastrol administration by 12 hr, to the beginning of the light period, avoided

interference with circadian rhythms while retaining the reductions in body weight

and adiposity. Thus, targeting leptin signaling is an effective strategy to ameliorate

age‐associated weight gain, and can profoundly impact circadian rhythms.

1 | INTRODUCTION

The aging population is rising worldwide, with aged individuals

65 years or older projected to represent more than 20% of the popula-

tion in the United States by 2035 (Mathus‐Vliegen, 2012). Obesity

becomes increasingly more prevalent with age, and is a major risk fac-

tor for many conditions including cardiovascular disease, hypertension,

stroke, diabetes, dyslipidemia, cognitive decline, and mortality (Chung,

Kang, Lee, Lee & Lee, 2013; Dominguez & Barbagallo, 2016; Han &

Lean, 2016; Saag & Choi, 2006). In young individuals, the hormone

leptin plays a key role in maintaining energy balance and body weight.

Leptin is secreted by adipose tissue in proportion to its mass to relay

information on peripheral energy stores to the central nervous system

(Ahima, Saper, Flier & Elmquist, 2000; Frederich et al., 1995). Binding

of leptin to its receptor expressed in different sites within the brain

can suppress food intake and increase energy expenditure, thus serv-

ing as a negative feedback on energy storage (Ovesjö, Gamstedt, Collin

& Meister, 2001; Balthasar et al., 2004; Scott, Williams, Rossi, Lee &

Elmquist, 2011; Billes, Simonds & Cowley, 2012; Rezai‐Zadeh et al.,

2014; Li, Kelly, Heiman, Greengard & Friedman, 2015). Aging in

humans and rodents is characterized by an expansion of adipose mass

in middle age that is not resolved, despite increased circulating leptin
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levels (Justesen et al., 2001; Kotani et al., 1994; Kuk, Saunders, David-

son & Ross, 2009; Kyle et al., 2001; Muzumdar et al., 2008; Shek &

Scarpace, 2000; Visser et al., 2003). The inability of elevated leptin to

bring about appropriate metabolic and endocrine outcomes, including

the decrease in food intake and body weight, is termed leptin resistance

(Carter, Caron, Richard & Picard, 2013; Gabriely, Xiao Hui, Yang, Ros-

setti & Barzilai, 2002; Ma et al., 2002; Myers et al., 2012; Pétervári et

al., 2014). The underlying mechanism of leptin resistance with age is

debated, and has alternately been attributed to disruption of leptin

transport across the blood‐brain barrier, decreased leptin receptor

expression, feedback inhibition of leptin signaling by downstream effec-

tors such as SOCS3 and TCPTP, or chronic ER stress and inflammation

(Bigford, Bracchi‐Ricard, Nash & Bethea, 2012; Fernández‐Galaz et al.,

2001, 2002; González‐Rodríguez et al., 2012; Martínez, Duran‐Aniotz,
Cabral‐Miranda, Vivar & Hetz, 2017; Peralta, Carrascosa, Gallardo, Ros

& Arribas, 2002; Rostás et al., 2016; Scarpace, Matheny & Tümer,

2001). Although improved hypothalamic leptin signaling correlates with

the amelioration of age‐associated obesity in several models (Fernán-

dez‐Galaz et al., 2002; Sasaki et al., 2014; Yang et al., 2012), the contri-

bution of leptin resistance per se has been difficult to ascertain.

Celastrol, a phytochemical isolated from the thunder god vine

(Tripterygium Wilfordi) was recently identified as a leptin sensitizer

based on its ability to suppress food intake and reduce body weight in

diet‐induced obese mice, but not in lean mice or in obese mice with

genetically disrupted leptin signaling (Liu, Lee, Hernandez, Mazitschek

& Ozcan, 2015). Thus, its effects are contingent upon elevated plasma

leptin levels and leptin receptor expression. We hypothesized that

celastrol might also be an effective strategy to restore leptin sensitivity

and body weight homeostasis in aged mice, which, like obese mice,

display hyperleptinemia and leptin resistance. We report that celastrol

ameliorates leptin resistance in aged mice and decreases body weight,

but unexpectedly had adverse effects on the circadian rhythms of

locomotor activity and sleep when administered prior to the lights off

active period. Switching the time of drug delivery to just before the

onset of the light period avoided the circadian effects while still main-

taining the reductions in food intake and body weight. Therefore,

celastrol is effective in treating age‐related obesity, but the time of

delivery has a profound impact on the outcome of treatment.

2 | RESULTS

2.1 | Celastrol ameliorates age‐associated leptin
resistance

Aged mice show an increase in body weight and fat mass without

any change in lean mass (Figure 1a), as previously reported
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F IGURE 1 Celastrol restores leptin
sensitivity in aged mice. (a) Body
composition of young (4 month) and old
(18 month) male mice. n = 16–23. (b)
Plasma leptin of young (4 month) and old
(18 month) mice. n = 16–23. (c) 24 hr food
intake measurement during saline (average
of 5 d) and leptin injection in young
(4 month) and old (21 month) mice.
n = 9–10. (d) % body weight change during
saline (average of 5 d) and leptin injection
in young (5 month) and old mice
(21 month). n = 9–10. (e) Food intake of
vehicle or celastrol treated mice after
24 hr of leptin injection in young
(6 month) and old (22 month) mice. n = 7–
10. (f) % Body weight change of vehicle or
celastrol treated mice after 24 hr of leptin
injection in young (6 month) and old
(22 month) mice. n = 7–10. All data are
presented as mean ± SEMs. *p < 0.05,
**p < 0.01, +++p < 0.005, ++++p < 0.0001,
//,///indicated comparisons are non‐
significant when corrected for multiple
comparisons (ANOVA) but are nominally
significant by Student's t‐test (//p < 0.05,
///p < 0.005)
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(Houtkooper et al., 2011). Consistent with the increased adipose

mass, aged mice display higher plasma leptin concentrations (Fig-

ure 1b). A single injection of recombinant leptin tended to decrease

body weight and food intake, in young but not in aged mice (Fig-

ure 1c,d), consistent with previous reports that aged mice are leptin

resistant (Fernández‐Galaz et al., 2002; Gabriely et al., 2002). Next,

we determined the ability of celastrol to reestablish leptin signaling

in aged mice. We found that 2 days of celastrol pre‐treatment sensi-

tized aged mice to leptin's action on food intake and body weight

(Figure 1e,f). Importantly, the difference in leptin sensitivity between
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F IGURE 2 Celastrol decreases food intake and body weight in aged mice. (a) % Body weight change in 4 month young and 18–20 month
aged mice treated with either vehicle or celastrol. n = 6–9. (b) Fat mass of mice treated with vehicle or celastrol for 5 d as in (a). n = 6–9. (c)
Lean mass of mice treated with vehicle or celastrol for 5 d as in (a). n = 6–9. (d) Average food intake during 5 days of vehicle or celastrol
treatment as in (a). n = 6–9. (e) Average VO2 normalized to lean mass during 5 days of vehicle or celastrol treatment as in (a). n = 4–6. (f)
Average VCO2 normalized to lean mass during 5 days of vehicle or celastrol treatment as in (a). n = 4–6. (g) Average RER during 5 days of
vehicle or celastrol treatment as in (a). n = 4–6. All data are presented as mean ± SEMs. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001,
ANOVA comparison between vehicle and celastrol treated group; +p < 0.05, +++p < 0.005, ++++p < 0.0001 ANOVA between vehicle treated
young and old mice, φφφφp < 0.0001 ANOVA between celastrol treated young and old mice
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young and aged mice was completely abolished after celastrol

treatment.

2.2 | Celastrol decreases body weight in aged mice
by reducing food intake

To assess the effect of celastrol on body weight homeostasis young

and aged mice were intraperitoneally injected with vehicle or celas-

trol for 5 days. We found that aged mice lost ~11.5% of their initial

body weight with celastrol treatment (Figure 2a). Celastrol treatment

decreased both fat mass and lean mass in aged mice (Figure 2b,c).

On the other hand, celastrol did not cause a significant change in

body weight, fat or lean mass in young mice, as previously reported

(Liu, Lee, Hernandez, Mazitschek, Ozcan, 2015). This difference is

most likely attributable to the lower circulating leptin concentrations

in young, leptin sensitive animals. Celastrol lowered fasting glucose

in both young and old mice and reduced the absolute area under the

glucose curve during an insulin tolerance test (ITT) in aged mice

(Supporting information Figure S1a‐b). However, the effect of celas-

trol on ITT is no longer significant when the data are plotted as

percent change (Supporting information Figure S1c‐d), suggesting

that celastrol may in part lower glucose through mechanisms inde-

pendent of insulin sensitivity per se. Celastrol treatment significantly

decreased food intake during the dark period, with a much more

pronounced effect in aged mice (Figure 2d). Food intake correlates

with water intake in both lean and obese rodents (Fitzsimons & Le

Magnen, 1969; Strominger, 1947). Consistently, we found that celas-

trol reduced water consumption in aged mice more than in young

mice (Supporting information Figure S2a). In contrast, energy expen-

diture was unaffected by celastrol treatment in both age groups (Fig-

ure 2e,f). RER was decreased only in celastrol treated aged mice,

consistent with reduced food intake (Figure 2g). Thus, our data

12–18 18–24 0–6 6–12
0

100

200

300

Wake

Zeitgeber time

W
ak

e 
tim

e 
(m

in
)

Vehicle
Celastrol

***

*

12–18 18–24 0–6 6–12
0

50

100

150

200

250

NREM

Zeitgeber time

N
R

EM
 ti

m
e 

(m
in

)

Vehicle
Celastrol

*
***

Young Old

Vehicle Celastrol
0.0

0.5

1.0

1.5

2.0

D
ar

K/
Li

gh
t R

at
io

++

Vehicle Celastrol
0.0

0.4

0.8

1.2

D
ar

K/
Li

gh
t r

at
io

++++

12–18 18–24 0–6 6–12
0

10

20

30

40

50

REM

Zeitgeber time

R
EM

 ti
m

e 
(m

in
)

Vehicle
Celastrol *

Young Old

Vehicle Celastrol
0.0

0.4

0.8

1.2

D
ar

K/
Li

gh
t R

at
io

+

(a) (b)

(c) (d)

(e) (f)

(g)

D L D L D L D L D L D L D L D

Be
am

 b
re

ak
 c

ou
nt

s 
(×

10
4 )

 

BL Veh Vehicle /Celastrol

Vehicle
Celastrol

******

**

1

2

3

4

5

Veh Cel
0

1

2

3

4

D
arK/Light R

atio

++

D L D L D L D L D L D L D L D

Be
am

 b
re

ak
 c

ou
nt

s 
(×

10
4 )

 Vehicle
Celastrol

BL Veh Vehicle/Celastrol

*********
*

1

2

3

4

5

Veh Cel
0

1

2

3

4

D
arK/Light R

atio

+++

Veh Cel

1.0

1.5

2.0

2.5

D
ark/Light ratio

++

Vehicle Celastrol
0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n 

tim
e 

aw
ak

e

Light Dark Light Dark

****
n.s

Veh Cel

1.0

1.5

2.0

2.5

D
ark/Light ratio

++

Vehicle Celastrol
0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n 

tim
e 

aw
ak

e ****
****

Light Dark Light Dark

F IGURE 3 Celastrol treatment disrupts
circadian activity and sleep pattern. (a)
Beam break counts (left) and dark to light
counts ratio (right) of young mice treated
with vehicle or celastrol as in Figure 2a.
n = 5–7. (b) Beam break counts (left) and
dark to light counts ratio (right) of old mice
treated with vehicle or celastrol as in
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beam break counts. n = 7–8. (e) Wake time
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establish that a decrease in food intake in the absence of any overt

change in energy expenditure leads to body weight loss in celastrol

treated old mice.

2.3 | Celastrol treatment disrupts circadian rhythms
of locomotor activity and sleep

Locomotor activity, sleep/wake architecture and circadian rhythms

decline with age (Houtkooper et al., 2011; Naidoo et al., 2011; Wim-

mer et al., 2013). Accordingly, we observed reduced locomotor activ-

ity in aged mice (Figure 3a,b). Celastrol treatment significantly

decreased total locomotor activity in both young and aged mice.

Strikingly, the circadian rhythm of activity was significantly altered

after celastrol treatment in both age groups. Liu et al. (2015) also

reported decrease in locomotor activity in young lean and diet‐ induced
obese mice treated with celastrol, and suggested that this might reflect

reduced food‐ seeking behavior. Given that we and others have shown

that locomotor activity can predict sleep patterns (Brown, Hasan, Foster

& Peirson, 2017; Pack et al., 2007), we chose to examine the alternative

hypothesis that celastrol affects the circadian timing of sleep. Specifi-

cally, we have previously established that a period of immobility as esti-

mated by lack of beam break for >40 s is an accurate predictor of sleep

(Pack et al., 2007). We used this parameter to determine total sleep and

wake time, and estimated diurnal ratio to measure changes in circadian

rhythm. Based on this analysis, the vehicle‐treated young and aged mice

displayed increased wake time during the active dark period compared

to the inactive light period (Figure 3c,d). Paralleling the effect on activ-

ity, the circadian pattern of sleep/wake cycles was disrupted in mice

treated with celastrol in both of the age groups. Celastrol had more pro-

nounced effects in aged mice, resulting in complete loss of the circadian

pattern of wake time. To formally confirm the effect of celastrol on

sleep we next performed electroencephalography (EEG) measurements

in aged mice. Reduced body weight and food intake were observed in

response to celastrol after EEG instrumentation as in non‐instrumented

mice (Supporting information Figure S2b‐c). EEG measurements con-

firmed that celastrol decreased wake time during the dark period while

increasing it during light period, resulting in a flattening of circadian

rhythms of sleep (Figure 3e). Furthermore, the decrease in wakefulness

in the dark period paralleled an increase in both total NREM sleep and

REM bouts (Figure 3F,G and Table 1).

Taken together, our finding suggests that celastrol adversely

affects circadian rhythms of activity and sleep.

2.4 | Celastrol delivery at ZT23 abrogates age‐
associated obesity

Our results thus far show that celastrol negatively influences sleep

and wake, by decreasing wake time during their active period and

increasing wake time during their inactive period (Figure 3). We rea-

soned that if celastrol provided a circadian cue, then shifting the

time of delivery might reverse its effect on circadian rhythms. Nota-

bly, a circadian rhythm has been described for plasma leptin, peaking

before the onset of the light period and falling over the course of

the day (Ahima, Prabakaran & Flier, 1998; Sukumaran, Jusko, DuBois

& Almon, 2011). Injection at ZT23 (before the onset of the light per-

iod and 12 hr later than in the previous study) decreased body

weight and adipose mass in aged mice (Figure 4a,b), similar to the

effect at ZT11 injection. In contrast to ZT11 injection, ZT23 injection

did not significantly decrease lean mass in aged mice (Figure 4c).

Indirect calorimetry confirmed that the weight loss induced by ZT23

injection was primarily driven by a decrease in food intake and RER

without any change in energy expenditure in aged mice (Figure 4d‐g,
Supporting information Figure S2d).

2.5 | Celastrol delivery at ZT23 restores circadian
rhythms of activity and sleep

To test whether the shift in circadian timing of celastrol delivery

could ameliorate its effects on sleep and activity patterns, we

TABLE 1 Electroencephalography (EEG) recording data of aged
mice treated with vehicle or celastrol

Vehicle Celastrol
SignificanceMean ± SEM Mean ± SEM

Wake

Number of bouts

24‐hr 446.5 ± 21.9 437.2 ± 11.2 ns

Light 230.8 ± 15.0 211.6 ± 15.6 ns

Dark 215.7 ± 14.4 225.6 ± 9.2 ns

Bout length

24‐hr 104.1 ± 4.9 105.5 ± 2.6 ns

Light 78.32 ± 4.6 103.7 ± 10.2 ns (p < 0.086)

Dark 134.3 ± 10.8 110.3 ± 5.2 ns (p < 0.1)

NREM

Number of bouts

24‐hr 447.5 ± 22.0 437.4 ± 10.8 ns

Light 231.3 ± 14.7 212.0 ± 15.4 ns

Dark 216.2 ± 14.7 225.4 ± 8.9 ns

Bout length

24‐hr 80.9 ± 4.1 81.2 ± 3.9 ns

Light 96.1 ± 6.1 90.2 ± 7.4 ns

Dark 65.6 ± 3.5 74.6 ± 4.8 ns

REM

Number of bouts

24‐hr 89.2 ± 7.7 106.2 ± 12.8 ns

Light 69.8 ± 5.4 63.2 ± 5.3 ns

Dark 19.3 ± 4.2 43.0 ± 8.8 *

Bout length

24‐hr 53.1 ± 2.4 47.2 ± 2.5 ns

Light 53.4 ± 2.6 50.8 ± 2.2 ns

Dark 54.5 ± 4.0 41.9 ± 3.1 ns (p < 0.1)

*p < 0.05, repeated measures two way ANOVA following Sidak post‐hoc
test.
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performed beam break analysis. Mice injected with celastrol at ZT23

retained the pattern of increased activity during the dark period as

compared to the light period similar to vehicle‐treated controls (Fig-

ure 5a,b), although a modest reduction in activity during the dark

period was still detected. Calculating wake epochs demonstrates that

the circadian pattern of the wake period was preserved by ZT23

injection (Figure 5c,d).

Collectively, our data demonstrates that the circadian timing of

celastrol delivery can have a profound effect on the circadian

rhythms of activity and sleep.

3 | DISCUSSION

Aging is characterized by an increase in obesity and disruption of

metabolic homeostasis, driving intense interest in identifying small

molecules that can reverse these effects. The naturally occurring

phytochemical celastrol was recently reported to cause weight loss

in diet‐ induced obese mice by restoring leptin sensitivity and

thereby allowing hyperleptinemia to appropriately suppress food

intake. In contrast, the body weights of lean mice with lower

leptin levels were not affected. In this study, we determined that
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Average VCO2 normalized to lean mass during 4 days of vehicle or celastrol treatment as in (a). n = 4–6. (g) Average RER during 4 days of
vehicle or celastrol treatment as in (a). n = 4–6. All data are presented as mean ± SEMs. *p < 0.05, **p < 0.01, ***p < 0.001, ANOVA
comparison between vehicle and celastrol treated groups; +p < 0.05, ANOVA between vehicle treated young and aged mice
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age‐related obesity, which involves milder leptin resistance and

hyperleptinemia, is also treatable with celastrol. We report that

celastrol restores leptin sensitivity, suppresses food intake and low-

ers body weight selectively in aged mice. Unexpectedly, we found

that celastrol injection at ZT11 disrupts the circadian rhythms of

locomotor activity and sleep, and that this can be avoided by shifting

the timing of administration by 12 hours to ZT23. Thus, celastrol

holds promise in the treatment of age‐ related obesity, but requires

careful attention to circadian timing of treatment.

We found that intraperitoneal injection of celastrol (200 μg/kg/

day) decreases body weight almost exclusively by suppressing food

intake in aged mice. Our findings are consistent with previous

reports on celastrol‐induced weight loss in DIO mice receiving a sim-

ilar dosing regimen (Hu et al., 2017; Liu et al., 2015; Zhang et al.,

2017). Central leptin signaling was shown to mediate the effect of

celastrol on food intake (Liu et al., 2015).

Although the mechanism connecting celastrol to leptin signaling

remains elusive, Hu et al., (2017) recently demonstrated that celas-

trol can bind Nurr77 and induce interaction with TRAF2 to stimulate

autophagy and reduce inflammation. They further demonstrate that

Nurr77 is required for celastrol‐induced weight loss in vivo and spec-

ulate that improved leptin sensitivity might be a consequence of

reduced hypothalamic inflammation. Interestingly, celastrol adminis-

tration at higher doses in the diet (1–3 mg/kg/day) was reported to

increase energy expenditure by stimulating thermogenesis and oxy-

gen consumption in adipose tissue and skeletal muscle (Ma et al.,

2015). This effect was dependent on an HSF1‐PGC1α pathway that

was found to act independently from food intake (Ma et al., 2015).

Together, these studies suggest that celastrol treatment can influ-

ence different aspects of energy balance to alleviate obesity,

depending on the dose and/or route of delivery. It will be interesting

in future studies to determine how aging and celastrol treatment

affect expression of leptin and its receptor, as well as downstream

signaling in the hypothalamus versus peripheral tissues.

We and others have previously shown decreased locomotor

activity and fragmented sleep‐wake architecture in aged mice (Hout-

kooper et al., 2011; Naidoo et al., 2011; Wimmer et al., 2013). Nev-

ertheless, aged mice maintain a higher level of activity during the
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F IGURE 5 Celastrol injection at ZT23 restores circadian pattern of behavior. (a) Beam break counts (left) and dark to light counts ratio
(right) of 4 month young mice treated with vehicle or celastrol. n = 6. (b) Beam break counts (left) and dark to light counts ratio (right) of 18–
20 month old mice treated with vehicle or celastrol. n = 6–8. (c) Average fraction wake time (left) and dark:light ratio determined by beam
break counts of 4 month young mice during 4 days of vehicle or celastrol treatment as in (a). n = 6. (d) Average fraction wake time (left) and
dark:light ratio determined by beam break counts of 18–20 month old mice during 4 days of vehicle or celastrol treatment as in (b). n = 6–8.
All data are presented as mean ± SEMs. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ANOVA comparison of vehicle and celastrol
treated groups; p > 0.05 non‐significant (n.s.), unpaired t‐test between vehicle and celastrol treatment
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active dark period compared to the inactive light period. Similarly,

aged mice exhibit longer wake time in the dark period, and sleep

time during the light period. Our study suggests that administering

celastrol just before the dark period disrupts circadian patterns of

activity and sleep in both young and aged mice. However, we were

able to overcome this effect by switching the time of injection to

the light period. We do not believe that celastrol is acting primarily

as a somnogen because of the delayed onset of the sleep/wake dif-

ferences (Figure 3). Interestingly, this fits with the known circadian

rhythm of leptin concentration, which peaks during late dark phase

(Ahima et al., 1998; Sukumaran et al., 2011). We hypothesize that

sensitizing to leptin at the time of its natural peak may be less dis-

ruptive to circadian rhythms, and that further optimization of the

timing might even strengthen them, though this idea remains to be

formally tested. It also remains possible that the effects of celastrol

on circadian rhythms could be independent from leptin. The impor-

tance of delivering drugs at the optimum time within 24 hr biologi-

cal rhythms to maximize their efficacy and tolerability is well

recognized, specifically in the field of cancer therapeutics (Ballesta,

Innominato, Dallmann, Rand & Lévi, 2017; Lévi & Okyar, 2011).

Our study reemphasizes the need to assess optimal drug delivery

time of celastrol (and possibly leptin) in clinical trials to avoid

adverse side effects.

Celastrol, the most potent bioactive material in Tripterygium Wil-

fordi has been extensively tested in the treatment of cancer, lupus,

amyotrophic lateral sclerosis, and Alzheimer's disease in rodent mod-

els (Cascão, Fonseca & Moita, 2017). However, the clinical relevance

of celastrol is currently restricted by insolubility, bioavailability and

narrow therapeutic window. Thus, further studies are required to

completely understand the wide range of physiological and behav-

ioral effects of celastrol before this compound reaches human ther-

apy. In summary, we demonstrate that celastrol improves leptin

sensitivity and ameliorates age‐associated obesity in mice. We fur-

ther establish that the circadian timing of celastrol delivery impacts

the behavioral rhythms of activity and sleep.

4 | MATERIALS AND METHODS

4.1 | Animal use and care

Animal experiments were conducted in accordance with guidelines

of University of Pennsylvania Institutional Animal Care and Use

Committee. Mice were maintained under 12‐hr light/dark cycles at

~21°C and either fed a standard lab chow (Rodent Diet 5010, Lab-

Diet). Young (4–6 month) and Old (18–22 month) male mice were

obtained from National Institute of Aging. Mice were sacrificed by

cervical dislocation and tissues were harvested and frozen in liquid

nitrogen and stored at −80°C until use.

4.2 | Celastrol administration

Experiments were conducted in either in home cage or metabolic

cage. Mice were acclimatized to single housing and vehicle (0.6%

DMSO in 10% captisol) injection for 1–4 days and then intraperi-

toneally injected with vehicle or Celastrol (100–200 μg/kg body

weight) for 4–6 days. Injections were carried out either before the

onset of dark period at ZT11 (Figure 1–3 and Supporting information

Figure S1) or onset of light period at ZT23 (Figures 4 and 5). Body

weight and food intake were recorded daily at the time of injection.

4.3 | Leptin sensitivity assay

Mice were singly housed in their home cage and intraperitoneally

injected with saline at ZT11 for 5 days and monitored for body

weight and food intake. On day 6 mice were intraperitoneally

injected with leptin (4 mg/kg body weight). For leptin sensitivity after

celastrol treatment, mice were injected with either vehicle or celas-

trol (200 μg/kg body weight) for 2 days. On the 3rd day mice were

injected with either vehicle or celastrol 1 hr before leptin injection

(5 mg/kg body weight). Body weight and food intake were manually

tracked 24 hr after injection.

4.4 | Metabolic studies

Energy balance after celastrol treatment was monitored using com-

prehensive lab animal monitoring system (CLAMS) (Columbus Instru-

ments, Columbus, OH). Mice were acclimatized to metabolic cage

(1–2 d) and vehicle injection (1–2 d) and then injected with either

vehicle or celastrol. Food intake, energy expenditure, RER and

activity is presented as an average of 4 d during vehicle or celastrol

treatment.

4.5 | Body composition

Body composition was measured by nuclear magnetic resonance

imaging (EchoMRI, Echo Medical Systems, Houston, USA).

4.6 | Insulin tolerance test

For insulin tolerance test mice were fasted for 6 hr and injected

intraperitoneally with human insulin (0.75 IU/kg body weight). Blood

glucose was measured periodically using one touch glucometer for

2 hr following injection.

4.7 | EEG sleep recording

Sleep recordings were conducted as previously described (Perron,

Pack & Veasey, 2015). Briefly, silver wire electrodes were soldered

to gold sockets and push fit into 6‐channel plastic holders. Mice

were anesthsized under isoflurane, and holes were drilled in fron-

toparietal areas where electrodes were inserted; EMG reference

electodes were placed in nuchal muscles. After 1 week of recovery,

mice were acclimated to tether cables for 1 week prior to any sleep/

wake recordings. Data was acquired with Neurodata amplifier sys-

tems, exported to .edf files, and scored manually by an experience

investigator blinded to experimental condition. Sleep/wake
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recordings were measured on Day 0 (prior to celestral treatment)

and Day 4 of daily celestral injections. Total amount of wake, NREM

sleep, and REM sleep, as well as sleep/wake fragmentation analysis,

was calculated in MATLAB.

4.8 | Statistical analysis

Data are expressed as mean ± SEM, of sample size n. One‐way or

two‐way ANOVA was used with Tukey's or Sidak post‐hoc test for

comparisons of three or more groups. Student's t‐test was used for

two group comparisons or to determine nominal significance.

p < 0.05 was considered to be significant.
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